Lekcja 1. Podstawowe prawa obwodow elektrycznych

Wstep
Lekcja pierwsza wprowadza podstawowe pojecia i prawa obwodéw elektrycznych, w tym

prad i napigcie, elementy liniowe obwodu w postaci rezystora, cewki i kondensatora oraz
zrodla sterowane i niezalezne. Najwazniejszym prawem teorii obwodow jest prawo pradowe i
napigciowe Kirchhoffa, podane tutaj w postaci ogdlnej. Z prawa Kirchhoffa wynikaja reguty

upraszczania obwoddéw, zdefiniowane dla potaczenia szeregowego, réwnoleglego oraz

O

transfiguracji gwiazda-trojkat i trgjkat-gwiazda.

1.1. Podstawowe pojecia obwodow

Teoria obwodow stanowi jedna z dziedzin elektrotechniki zajmujaca si¢ strong teoretyczna
zjawisk wystgpujacych w obwodach elektrycznych, w tym metodami analizy rozptywu
pradéw i rozktadu napi¢g¢ obwodu w stanie ustalonym i nieustalonym. Przyjmuje sig, ze
nosnikami elektrycznosci sa czastki elementarne: elektrony i1 protony wystgpujace w atomie.
W przypadku przewodnikéw elektrycznych najwazniejsza role odgrywaja elektrony
swobodne, stanowiace trwale nosniki ujemnego tadunku g, wyzwolone z przyciagania jadra
atomu oraz jony, stanowiace czasteczki natadowane dodatnio lub ujemnie. tLadunek
elektryczny elektronu, oznaczany jest litera e a jego warto$¢ e=1,602-10"°C.

Prad elektryczny powstaje jako uporzadkowany ruch fadunkéw elektrycznych i jest utozsamiany
w teorii obwodéw z pojeciem nat¢zenia pradu elektrycznego. W ogdlnosci definiowany jest jako
granica stosunku tadunku elektrycznego przeptywajacego przez przekrdj poprzeczny elementu do
rozpatrywanego czasu, gdy czas ten dazy do zera. Prad elektryczny oznaczany bedzie litera i (duza lub
mata). Jest wielkoscia skalarna a jej jednostka w uktadzie SI jest amper (A).

Kazdemu punktowi w $rodowisku przewodzacym prad elektryczny mozna przyporzadkowaé
pewien potencjal mierzony wzgledem punktu odniesienia. Réznica potencjatéw migdzy dwoma
punktami tego Srodowiska nazywana jest napigeciem elektrycznym. Jednostka napigcia elektrycznego

jest volt (V).



1.2. Elementy obwodu elektrycznego

Za obwod elektryczny uwazac¢ bedziemy takie potaczenie elementéw ze soba, Ze istnieje mozliwosc¢
przeptywu pradu w tym potaczeniu. Obwdd jest odwzorowywany poprzez swéj schemat, na ktérym
zaznaczone sg symbole graficzne elementéw oraz sposéb ich potaczenia ze soba, tworzacy okreslona
strukture.

Na strukture obwodu elektrycznego poza elementami sktadaja si¢ réwniez galezie, wezly i
oczka. Galgz obwodu jest tworzona przez jeden lub kilka elementéw polaczonych ze soba w
okreslony sposéb. Wezlem obwodu jest zacisk bedacy koncéwka gatezi, do ktérego mozna dotaczy¢
nastgpna galaz lub kilka gatezi. Gataz obwodu tworza elementy ograniczone dwoma weztami. Oczko
obwodu to zbidr galtezi potaczonych ze soba i tworzacych droge zamknigta dla pradu elektrycznego.
Oczko ma t¢ wlasciwo$¢, ze po usunig¢ciu dowolnej galezi ze zbioru pozostale gatezie nie tworza drogi
zamknigtej. W obwodzie o zadanej strukturze istnieje $cisle okreslona liczba weztéw, natomiast liczba
oczek jest wprawdzie skonczona ale blizej nieokreslona.

Element jest czg¢Scia sktadowa obwodu niepodzielna pod wzgledem funkcjonalnym bez utraty
swych cech charakterystycznych. Na elementy obwodu sktadaja si¢ zrodta energii elektrycznej oraz
elementy akumulujace energi¢ lub rozpraszajace ja. W kazdym elemencie moga zachodzi¢ dwa lub
nawet wszystkie trzy wymienione tu procesy, cho¢ jeden z nich jest zwykle dominujacy. Element jest
idealny jesli charakteryzuje go tylko jeden rodzaj procesu energetycznego.

Elementy posiadajace zdolno$¢ akumulacji oraz rozpraszania energii tworza klas¢ elementéw
pasywnych. Nie wytwarzaja one energii a jedynie ja przetwarzaja. Najwazniejsze z nich to rezystor,
kondensator oraz cewka. Elementy majace zdolno$¢ generacji energii nazywane sa zrédlami.
Zaliczamy do nich niezalezne Zrédlo napigcia i pradu oraz zrédla sterowane.

Kazdy element obwodu moze by¢ opisany réwnaniami algebraicznymi lub rézniczkowymi,
wiazacymi prad i napigcie na jego zaciskach. Element jest liniowy, jesli rownanie opisujace go jest

liniowe. W przeciwnym wypadku element jest nieliniowy.

1.2.1. Rezystor

Rezystor, zwany réwniez opornikiem nalezy do klasy elementéw pasywnych rozpraszajacych energig.
W teorii obwoddéw rezystor uwaza si¢ za element idealny i przypisuje mu tylko jedna ceche
(parametr), zwanga rezystancja lub oporem. W dalszej czg$ci rozwaza¢ bedziemy wylacznie rezystor
liniowy. Rezystancje (oporno$¢) oznacza¢ bedziemy litera R a jej odwrotno$¢ jest nazywana
konduktancja i oznaczana litera G, przy czym R = 1/G. Symbol graficzny rezystora liniowego

przedstawiony jest na rys. 1.1.
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Rys. 1.1. Oznaczenie rezystora liniowego

Opis matematyczny rezystora wynika z prawa Ohma, zgodnie z ktérym

Spadek napigcia na rezystorze liniowym jest proporcjonalny do pradu przeptywajacego przez niego a
wspoélczynnik proporcjonalnosci jest rowny rezystancji R. Warto$¢ rezystancji rezystora liniowego
przyjmuje warto$¢ stata. Jednostka rezystancji jest om (£2) a konduktancji siemens (S).

W realizacji praktycznej opornik jest wykonywany najczesciej z drutu metalowego o dtugosci
[, polu przekroju poprzecznego S i rezystancji wlasciwej p. Rezystancja takiego opornika jest wprost

proporcjonalna do /i p a odwrotnie proporcjonalna do S, stad R = p I/S.

1.2.2. Cewka

Cewka zwana rowniez induktorem nalezy réwniez do klasy elementéw pasywnych. Ma
zdolno$¢ gromadzenia energii w polu magnetycznym. Cewce idealnej przypisuje si¢ tylko
jedna wiasciwos¢, zwana indukceyjnoscia wiasna (w skrécie indukcyjnoscia) L. W przypadku
cewki liniowej indukcyjnos¢ definiuje sig jako stosunek strumienia ¥ skojarzonego z cewka

do pradu pltynacego przez nia, to znaczy

L=-

¥ (0.2)
lL

Strumien skojarzony W cewki o z zwojach jest réwny sumie strumieni wszystkich zwojow
cewki, to jest ¥ = z¢ (¢ - strumien skojarzony z jednym zwojem cewki, z — liczba zwojéw).
Jednostka indukcyjnosci jest henr (H), przy czym 1H = 1Qs. Napigcie cewki wyrazone jest

jako pochodna strumienia wzgledem czasu



u =Y (0.3)

W przypadku cewki liniowej, dla ktérej strumien jest iloczynem pradu i indukcyjnosci L,

Y = Li, , relacja napigciowo-pradowa upraszcza si¢ do postaci

p
u, = % 0.4)

Narys. 1.2 przedstawiono symbol graficzny cewki liniowej o indukcyjnosci L.

Rys. 1.2. Symbol graficzny cewki liniowe;j

Zauwazmy, ze przy stalej wartosci pradu cewki napigcie na niej jest rowne zeru, gdyz
pochodna warto$ci statej wzgledem czasu jest rowna zeru. Stad cewka w stanie ustalonym
obwodu przy pradzie statym zachowuje si¢ jak zwarcie.

Interesujace zjawiska powstaja w uktadzie dwu cewek potozonych blisko siebie, w
ktorych zachodzi wzajemne przenikanie si¢ strumieni magnetycznych. Jesli dwie cewki o
indukcyjno$ciach wlasnych L, i L, sa tak usytuowane, ze strumien wytworzony przez jedng z
nich jest skojarzony z druga to takie cewki nazywamy sprz¢zonymi magnetycznie. Na rys. 1.3
przedstawiono oznaczenie cewek sprz¢zonych magnetycznie. Gwiazdkami oznaczono

poczatki uzwojen kazdej cewki.

Rys. 1.3. Oznaczenie cewek sprz¢zonych magnetycznie



Obok indukcyjnosci wlasnej wprowadza si¢ dla nich pojgcie indukeyjnosci wzajemnej M,
jako stosunek strumienia magnetycznego wytworzonego w cewce pierwszej i skojarzonego z

cewka druga do pradu ptynacego w cewce pierwszej, a wigc

M =2 (1.5)

gdzie Y, oznacza strumien skojarzony z cewka druga wytworzony przez prad plynacy w
cewce pierwszej a ¥,, — strumien skojarzony z cewka pierwsza wytworzony przez prad
ptynacy w cewce drugiej. Jednostka indukcyjnosci wzajemnej jest rOwniez henr.

Istnienie sprzg¢zenia magnetycznego powoduje indukowanie si¢ napi¢¢ na cewce
wskutek zmian pradu ptynacego w cewce drugiej. Zgodnie z prawem indukcji
elektromagnetycznej napigcie wytworzone na skutek indukcji wzajemnej okreslone jest

WZorem

di di
uMllej;iMd_; (16)
di di
u,, =L —2+tM—L 1.7
L dr (1.7

Znak plus lub minus wystepujacy we wzorze jest uzalezniony od przyjetego zwrotu pradu
wzgledem poczatku uzwojenia cewki. Przyjmuje si¢ znak plus, jesli prady w obu elementach
sprz¢zonych magnetycznie maja jednakowe zwroty wzgledem zaciskOw oznaczajacych
poczatek uzwojenia (oznaczone na rysunku gwiazdka). Przy zwrotach przeciwnych przyjmuje
si¢ znak minus. Z zaleznosci powyzszych wida¢, ze w elementach sprzgzonych magnetycznie
energia elektryczna moze by¢ przekazywana z jednego elementu do drugiego za
posrednictwem pola magnetycznego. Co wigcej, nawet przy braku przeptywu pradu przez
cewke, moze na niej pojawi¢ si¢ napigcie pochodzace ze sprz¢zenia magnetycznego od cewki

drugiej.

1.2.3. Kondensator

Kondensator jest elementem pasywnym, w ktorym istnieje mozliwos¢ gromadzenia

energii w polu elektrycznym. Kondensatorowi idealnemu przypisuje si¢ tylko jedna



wlasciwos¢ zwana pojemnoscia C. W przypadku kondensatora liniowego pojemnos¢ C jest
definiowana jako stosunek tadunku g zgromadzonego w kondensatorze do napigcia migdzy

oktadzinami tego kondensatora

c=2 (1.8)

W uktadzie SI jednostka tadunku jest kulomb (C), a pojemnosci farad (F), przy czym
1 F=1C/V. Zaleznos¢ wiazaca napigcie 1 prad kondensatora dana jest w postaci rOwnania

rézniczkowego

d
e =C= (1.9)

Symbol graficzny kondensatora przedstawiony jest na rys. 1.4.

i C
c _’_{ ‘_}_

Rys. 1.4. Symbol graficzny kondensatora

Podobnie jak w przypadku cewki, jesli napigcie na zaciskach kondensatora jest state, jego
prad jest rowny zeru (pochodna warto$ci statej wzgledem czasu jest zerem). Kondensator

zachowuje si¢ wtedy jak przerwa (pomimo istnienia napigcia prad nie plynie).

1.2.4. Niesterowane zrédto napiecia i pradu

Zrédlo niesterowane (niezalezne) pradu badz napiecia, zwane w skrécie zrédtem pradu i
zrodlem napigcia, jest elementem aktywnym, generujacym energi¢ elektryczna, powstajaca
zwykle z zamiany innego rodzaju energii, na przyktad z energii mechanicznej, stonecznej,
jadrowej itp. W teorii obwodéw rozwaza¢ bgdziemy zrddia idealne nalezace do klasy zrodet
napieciowych badz pradowych. Symbol idealnego niesterowanego zrédta napigcia

przedstawiony jest na rys. 1.5a, natomiast zrodia pradu na rys. 1.5.b.



a) b)

Rys. 1.5. Symbole graficzne niesterowanego zrdodia a) napigcia, b) pradu

Niesterowane zrddia pradu 1 napi¢cia maja nastgpujace wlasciwosci.

Napigcie na zaciskach idealnego zrddta napigcia nie zalezy od pradu przeptywajacego
przez to zrddlo, a zatem nie zalezy od jego obcigzenia.
Przy stalym napigciu u panujacym na zaciskach oraz pradzie i wynikajacym z

obciazenia, rezystancja wewngtrzna idealnego zrédta napigciowego, definiowana w

postaci zaleznosSci rézniczkowe] R = 7” =0. Stad idealne zrédlo napigcia
i

charakteryzuje si¢ rezystancja wewngtrzna rowng zeru (zwarcie z punktu widzenia
rezystancyjnego).

Prad idealnego zrédia pradu nie zalezy od obcigzenia tego zrédia, a wigc od napigcia
panujacego na jego zaciskach.

Przy stalym pradzie ptynacym przez idealne zrédto pradowe i dowolnym (blizej
nieokreslonym) napigciu panujacym na jego zaciskach rezystancja wewngtrzna
idealnego zrédta pradowego jest rowna nieskonczonosci. Stad idealne zrédto pradowe

z punktu widzenia rezystancyjnego reprezentuje soba przerwe.

Rys. 1.6 przedstawia charakterystyki pradowo-napigciowe obu rodzajow idealnych zrédet

niesterowanych: napigcia (rys. 1.6a) 1 pradu (rys. 1.6b).

u=1J




Rys. 1.6. Charakterystyki pradowo-napigciowe idealnych Zrédet niesterowanych:

a) zrédto napigcia, b) zrédto pradu

)

Dla zrédta napigciowego charakterystyka jest rownolegta do osi pradowej (warto$¢ napigcia u

stala), a dla zrédta pradowego réwnolegla do osi napigciowej (wartos¢ pradu i stata). Tak
podane charakterystyki odnosza si¢ do zrédet statych. W przypadku zrédet sinusoidalnych
idealnos¢ jest rozumiana jako stalo$¢ parametréw zrédta (amplituda, faza poczatkowa oraz
czestotliwos¢ niezalezne od obcigzenia).

Przyktadami zrédla napigcia stalego jest akumulator, zrédta napigcia zmiennego -
generator synchroniczny, zrédla pradowego - elektroniczny zasilacz pradowy o

stabilizowanym, niezaleznym od obcigzenia pradzie, itp.

1.2.5. Zrodta sterowane pradu i napiecia
W odréznieniu od zrédet niesterowanych, ktérych prad lub napigcie (badz parametry
charakteryzujace je, np. amplituda i czg¢stotliwos¢) byly stale, ustalone na etapie wytworzenia,
zrédla sterowane z definicji zaleza od wielkos$ci sterujacych, ktéorymi moga by¢ prad lub
napigcie dowolnego innego elementu w obwodzie.
Zrédlo sterowane jest wigc elementem czterozaciskowym i charakteryzuje si¢ tym, ze
napigcie lub prad na jego zaciskach wyjsciowych sa proporcjonalne do napigcia lub pradu
zwigzanego z druga para zaciskéw sterujacych. Wyrézni¢ mozna cztery rodzaje zrodet
sterowanych:
e 7rédlo napigcia sterowane napigciem, opisane rOwnaniem
u, = au,

e 7rédlo napigcia sterowane pradem, opisane rOwnaniem
u, =ri

e 7rédlo pradu sterowane napigciem, opisane rGwnaniem
I, = gu,

e 7rédto pradu sterowane pradem, opisane réwnaniem

i, =bi



Schematy graficzne wszystkich wymienionych tu rodzajéow zrédet sterowanych pradu i

napigcia przedstawione sa na rys. 1.7.

Uy Us=au [ Ls=Ti

a) b)

d)

Rys. 1.7. Schematy graficzne zrédet sterowanych

©

Wielkosci r, g oraz a 1 b stanowia wspotczynniki proporcjonalnosci migdzy wielkoscia
sterujaca i sterowana tych zrédel. Przyjmuja one najczesciej wartosci rzeczywiste, cho¢ w
r6znego rodzaju modelach moga by¢ rowniez opisane funkcja zespolona. Nalezy nadmienic,
ze zrédla sterowane stanowig bardzo popularne modele wielu elementéw elektrycznych i1
elektronicznych, takich jak transformatory idealne, maszyny elektryczne, tranzystory

bipolarne i polowe, wzmacniacze operacyjne napigciowe i pradowe, itp.

1.3. Prawa Kirchhoffa

Pod pojeciem analizy obwodu elektrycznego rozumie si¢ proces okres$lania rozptywu pradéw
1 rozktadu napig¢ w obwodzie przy zatozeniu, ze znana jest struktura obwodu oraz wartosci
wszystkich jego elementéw. Podstawe analizy obwodow elektrycznych stanowia prawa
Kirchhoffa, podane przez niemieckiego fizyka Gustawa Kirchhoffa w dziewigtnastym wieku.
Wyréznia si¢ dwa prawa okreslajace rozptyw pradéw i rozktad napig¢ w obwodzie. Pierwsze
prawo Kirchhoffa kojarzy si¢ zwykle z bilansem pradéw w wezle obwodu elektrycznego a

drugie z bilansem napig¢ w oczku.

1.3.1. Prawo prgdowe

Suma pradéw w kazdym wezle obwodu elektrycznego jest rowna zeru



> =0 (1.10)

k

Sumowanie dotyczy wszystkich pradéw, ktére doptywaja lub odptywaja z danego oczka, przy
czym wszystkie prady wplywajace do wezta brane sa z jednakowym znakiem a wszystkie
prady wyplywajace z wezta ze znakiem przeciwnym (nie jest istotne czy znak plus dotyczy
pradow wplywajacych czy wyplywajacych). Sposéb tworzenia réwnania pradowego

Kirchhoffa zilustrujemy dla jednego w¢zta obwodu przedstawionego na rys. 1.8.

Rys. 1.8. Przyktad wezta obwodu elektrycznego

Prawo Kirchhoffa dla tego we¢zta z uwzglednieniem kierunkéw pradéw w wezle zapiszemy w

postaci

i +i,+i,—i,—1is =0

Mozna je rowniez zapisa¢ jako bilans pradow dopltywajacych 1 odptywajacych od wezia w

postaci

I, +i, +iy =i, +1i5

Dla kazdego obwodu mozna napisa¢ doktadnie n-/ niezaleznych réwnan pradowych, gdzie n
oznacza catkowita liczb¢ weztow a (n-1) liczb¢ weziow niezaleznych. Bilans pradéow w

pozostaltym n-tym we¢zle obwodu wynika z rownan pradowych napisanych dla n-/ we¢ziow

10



(jest to wezet zalezny zwany we¢ztem odniesienia). Wybor wezta odniesienia jest catkowicie

dowolny.

1.3.2. Prawo napigciowe

Suma napie¢ w kazdym oczku obwodu elektrycznego jest réwna zeru

> =0 (111)

Sumowanie dotyczy napi¢¢ gateziowych wystgpujacych w danym oczku zorientowanych
wzgledem dowolnie przyjetego kierunku odniesienia. Napigcie gal¢ziowe zgodne z tym
kierunkiem jest brane z plusem a przeciwne z minusem. Spos6b pisania rOwnan wynikajacych
z prawa napigciowego Kirchhoffa pokazemy na przyktadzie oczka obwodu przedstawionego

narys. 1.9.

Rys. 1.9. Przykiad oczka obwodu z oznaczeniami napig¢ gatgziowych

Uwzgledniajac kierunki napig¢ gateziowych rownanie napigciowe Kirchhoffa dla tego oczka

przyjmie postac

u, +u, +u,—u, —e=0

Mozna je réwniez zapisa¢ jako bilans napi¢¢ zrédtowych i1 odbiornikowych w postaci

e=u +u, +u;—u,

Dla kazdego obwodu mozna napisa¢ tyle rownan oczkowych ile oczek wyodrgbnimy w tym

obwodzie, przy czym czg$¢ réwnan oczkowych bedzie rownaniami zaleznymi (wynikajacymi

11



z liniowej kombinacji innych réwnan). Liczba réwnan oczkowych branych pod uwage w

analizie jest wigc réwna liczbie oczek niezaleznych.

Przyktad 1.1

Napiszmy réwnania Kirchhoffa dla obwodu z rys. 1.10.

Rys. 1.10. Schemat obwodu poddanego analizie w przyktadzie 1.1

Rozwiqzanie
Zgodnie z prawami Kirchhoffa réwnania obwodu przyjma nastgpujaca postac.
e Rownania pradowe:
i =i —ic =0
Iy —lp —lgy =0
i, =i
¢ ROéwnania napigciowe:
Ue —Up —Ug =0

Up —Ug, —€=0

Przedstawiony tu uklad réwnan jest wystarczajacy do uzyskania wszystkich innych wielkosci
pradowych badz napigciowych w obwodzie. Nalezy go jedynie uzupeilni¢ o réwnania
definicyjne wiazace prad i napigcie kazdego elementu. Po takim uzupetnieniu uzyskuje si¢
pelny opis obwodu a jego rozwiagzanie pozwala wyznaczy¢ rozptyw pradow 1 rozktad napigc
w obwodzie.

Szczegdlnie proste zaleznosci otrzymuje si¢ dla obwodu rezystancyjnego,
zawierajacego oprocz zrédel wymuszajacych jedynie rezystory oraz (ewentualnie) zrédta
sterowane o rzeczywistych wspoétczynnikach sterowania. Dla takich obwodéw réwnania
elementow rezystancyjnych sa dane w postaci zaleznosci algebraicznych, ktére wstawione do

rownan Kirchhoffa pozwalaja utworzy¢ uklad réwnan algebraicznych o liczbie zmiennych

12



réwnych liczbie réwnan. Sposéb tworzenia takiego uktadu réwnan pokazemy na przyktadzie

obwodu z rys. 1.11.

Przyktad 1.2

Nalezy okresli¢ rozptyw pradéw i rozktad napie¢ w obwodzie rezystancyjnym o strukturze
przedstawionej na rys. 1.11. Warto$ci elementéw sa nastgpujace: Ry =2Q, R, =2Q, R3 = 3Q,
Ri=4Q, e =10V, i;; =2A, in=5A.

i i
i T 2 ¥

Iz

Rys. 1.11. Struktura obwodu poddanego analizie w przyktadzie 1.2

Rozwiqzanie
Z réwnan Kirchhoffa otrzymuje si¢
i, —i,—i,—1,=0
iy +i, +i, —i;=0
Up, —Upy T €—Upy =0
Upy =€~ Up, =0
Roéwnania elementéw rezystancyjnych: u,, = R/i,, Uy, = R,i,, Up;, = Rii;, u,, =R,i, tworza
wspdlnie z réwnaniami Kirchhoffa nast¢pujacy uktad réwnan algebraicznych:
i +i, +i, =1,
Ly =l Ty =1,
R, —R,i, —Rji; =—¢
R,i, —Rji,=e

Po wstawieniu danych liczbowych do powyzszych réwnan otrzymuje sig:
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i +i, +i, =2

iy —iy+i,==5

i, —2i, —3i,=-10

2i, —4i, =10
W wyniku rozwiazania tego ukladu réwnan otrzymuje sig¢: i;=3,187A, i»=0,875A,
iz=3,812A oraz i, =-2,062A. Latwo sprawdzi¢ przez podstawienie obliczonych wartosci do
uktadu réwnan, ze bilans pradow w kazdym wezle oraz bilans napie¢ w kazdym oczku

obwodu jest zerowy.

1.4. Przeksztatcenia obwodow

W analizie obwodéw elektrycznych wazna rol¢ odgrywa upraszczanie struktury obwodu,
polegajace na zastgpowaniu wielu elementéw potaczonych szeregowo lub réwnolegle poprzez
jeden element zastgpczy. Umozliwia to zmniejszenie liczby réwnan w opisie obwodu i
uproszczenie etapu rozwigzania tych rownan. Wyrdzni¢ mozna cztery podstawowe rodzaje
polaczen elementéw, do ktérych stosuje sig¢ przeksztalcenie. Sg to:

e polaczenie szeregowe

e polaczenie rownolegte

e potaczenie gwiazdowe

e potaczenie tréjkatne.

1.4.1. Uktad potaczenia szeregowego elementéw

W potaczeniu szeregowym elementéw koniec jednego elementu jest bezposrednio potaczony

z poczatkiem nastgpnego. Rys. 1.12 przedstawia schemat ogdlny polaczenia szeregowego

rezystorow.
. Ry R Ry
s o I =
-— -« -«
u Ur, Ur, YR,

Rys. 1.12. Potaczenie szeregowe elementéw
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Prad kazdego elementu obwodu jest jednakowy i réwny i, natomiast napigcie na zaciskach
zewnetrznych obwodu jest rowne sumie napi¢¢ poszczegdlnych elementéw tworzacych

polaczenie. Napigciowe rownanie Kirchhoffa dla obwodu z rys. 1.12 przyjmuje wigc postac

u=(R +R,+..+R))i (1.12)

Przy oznaczeniu sumy rezystancji przez R

R=R +R,+..+R, (1.13)

otrzymuje si¢ uproszczenie N rezystorow potaczonych szeregowo do jednego rezystora
zastgpczego o rezystancji R opisanej wzorem (1.13). Rezystancja wypadkowa potaczenia
szeregowego rezystorow jest rowna sumie rezystancji poszczegolnych elementéw tworzacych

to potaczenie.

1.4.2. Uktad potaczenia réwnolegtego elementéw

W potaczeniu réwnolegtym poczatki i konce wszystkich elementéw sa ze soba bezposrednio

polaczone, jak to pokazano dla elementow rezystancyjnych na rys. 1.13.

Rys. 1.13. Potaczenie réwnolegte elementéw
7. potaczenia tego wynika, ze napigcie na wszystkich elementach jest jednakowe a prad
wypadkowy jest réwny sumie pradow wszystkich elementéw obwodu. Pradowe prawo

Kirchhoffa dla obwodu z rys. 1.13 mozna wigc zapisa¢ w postaci

i=(G+G,+..+Gy)u (1.11)
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przy czym G; (i = 1, 2, ..., N) stanowia konduktancje rezystoréw, G;=1/R;. Przy oznaczeniu

sumy konduktancji przez G, gdzie

G=G +G,+..+G, (1.12)

otrzymuje si¢ uproszczenie N rezystorow potaczonych réwnolegle do jednego rezystora
zastepczego o konduktancji G opisanej wzorem (1.12). Jak wida¢ w potaczeniu réwnoleglym
rezystorow konduktancja wypadkowa jest réwna sumie konduktancji poszczegdlnych
rezystorow.

Szczegblnie prosty jest wzor na rezystancj¢ zastgpcza dla 2 rezystoréw potaczonych
réwnolegle. W tym przypadku G =G, +G,. Uwzgledniajac, ze G =1/R po prostych

przeksztalceniach otrzymuje si¢

R= RR, .
R, +R,

Nalezy jednak podkresli¢, ze przy trzech (i wigcej) elementach potaczonych réwnolegte
wygodniejsze jest operowanie na konduktancjach a przejScie na rezystancje zastgpcza

wykonuje si¢ w ostatnim kroku po ustaleniu wartosci sumy konduktancji.

1.4.3. Transfiguracja gwiazda-trojkat i trojkat-gwiazda

Operowanie uproszczonym schematem wynikajacym 2z polaczenia szeregowego 1
rownolegtego elementéw jest najwygodniejszym sposobem redukcji obwodu. W przypadku
gdy nie ma elementéw potaczonych szeregowo czy rownolegle mozliwe jest dalsze
uproszczenie przez zastosowanie przeksztalcenia gwiazda-trojka lub tréjkat-gwiazda.

Oznaczenia elementéw obwodu tréjkata i gwiazdy sa przedstawione na rys. 1.14.
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a) b)

3 2

Rys. 1.14. Potaczenie tréjkatne i gwiazdowe elementow

Transfiguracja tréjkata na gwiazde lub gwiazdy na trdjkat polega na przyporzadkowaniu
danej konfiguracji elementéw konfiguracji zastepczej, rGwnowaznej jej z punktu widzenia
zaciskdw zewngtrznych (te same prady przy tych samych napigciach mig¢dzyzaciskowych).
Dla uzyskania niezmienionych pradéw zewngtrznych obwodu gwiazdy 1 trojkata rezystancje
migdzy parami tych samych zaciskow gwiazdy i tréjkata powinny by¢ takie same. Zostato
udowodnione, ze warunki powyzsze sa automatycznie spetnione, jesli przy zamianie gwiazdy

na tréjkat spetnione sa nastgpujace warunki na rezystancje

R R
R,=R +R, +——*% (1.13)
R3
R,R
Ry =R, +R;+——= (1.14)
1
R.R
R31=R3+R1+% (1.15)

2

Podobnie przy zamianie trojkata na gwiazdg rezystancje gwiazdy musza spetnia¢ warunki

R,.R
1: 127731 (116)
R12 +R23 +R31
R,.R
= PETASP) (1.17)
R12 +R23 +R31
R, R
=z (1.18)
R12 +R23 +R31
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Przeksztalcenia roéwnowazne obwodu wykorzystujace reguty potaczenia szeregowego,
rownolegtego oraz przeksztatcenia gwiazda-tréjkat i tréjkat-gwiazda umozliwiaja dalsza
redukcje tego obwodu 1 po wykonaniu odpowiedniej liczby przeksztalcen sprowadzenie go do

pojedynczego elementu zastgpczego.

Przyktad 1.3
Okresli¢ rezystancje zastgpcza obwodu przedstawionego na rys. 1.15, widziang z zaciskow
1-2. Warto$ci rezystancji sa nastgpujace: R, =2Q, R, =4Q, R, =3Q, R, =2Q, R, =4Q,

R, =5Q, R, =5Q oraz R, =10Q..

Rys. 1.15. Struktura obwodu do przyktadu 1.3.

Rozwiqzanie

Z punktu widzenia zaciskow wejsciowych 1-2 w obwodzie nie mozna wyr6zni¢ zadnego
polaczenia szeregowego czy réwnoleglego elementéw. Dla uproszczenia struktury tego
obwodu konieczne jest wigc zastosowanie przeksztalcenia gwiazda-tréjkat lub tréjkat-
gwiazda w stosunku do rezystoréw potozonych najdalej od weztéw wejsciowych (w wyniku

przeksztalcenia nie moga ulec likwidacji we¢zly wejSciowe obwodu). Zamieniajac gwiazde

ztozong z rezystoréw R, , R, i Rs na réwnowazny jej trojkat otrzymuje sie

R, :3+4+3;L—4:10

R :3+4+3;L—4:10
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R, :4+4+%:13,33

Schemat obwodu po przeksztalceniach przedstawiony jest na rys. 1.16.

Re
@
Ry
Ry
‘ [] RQS {} RB
R, |] Ris
R'\'\B
1 @
R
a)

Rys. 1.16. Schemat obwodu z rys. 1.15 po przeksztatceniu gwiazda-tréjkat

W obwodzie tym mozna juz wyrdzni¢ potaczenia rownolegle elementéw R; i Ry3 oraz Ry 1

R3s5. Wykorzystujac regule upraszczania elementéw potaczonych réwnolegle otrzymuje si¢

R ‘R
L= 21667
R +R,,
R, R
L=t 21667
R, + R,

Rezystory R 1 R;» sa polaczone szeregowo. Ich rezystancja zastgpcza jest rowna

R,=R,1+R,»=3,333

Jest ona polaczona réwnolegle z rezystorem Rjs. Stad rezystancja zastgpcza tego potaczenia

wynosi

3333.1333

= = 2,667
47 3333+1333
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Rezystory R, R4 1 R7sa potaczone szeregowo. Ich rezystancja zastgpcza wynosi wigc
R,5=R¢+R, 4+R7= 1 2,667
Rezystancja ta jest z kolei polaczona réwnolegle z rezystancja Rg tworzac wypadkowa

rezystancje¢ obwodu widziang z zaciskéw zewngtrznych. Stad catkowita rezystancja zastgpcza

obwodu wyraza si¢ wzorem

12,667 -10
we = RsRs _ =5,588Q
R +R;, 12,667+10

Jak wida¢ w powyzszym przykladzie przeksztalcenie gwiazda-trojkat umozliwito dalsze
uproszczenie obwodu i1 otrzymanie ostatecznego wyniku na rezystancj¢ widziang z zaciskow
wejsciowych. Nalezy jednak zaznaczy¢, ze przeksztalcenia gwiazda-trojkat 1 tréjkat-gwiazda
sa bardziej ztozone obliczeniowo w stosunku do reguly upraszczania polaczenia szeregowego
i rownolegtego. Stosuje si¢ je tylko wtedy, gdy w obwodzie nie da si¢ wyrézni¢ zadnych

polaczen szeregowych i réwnolegtych.

Zadania sprawdzajace

Zadanie 1.1
Stosujac prawa Kirchhoffa wyznaczy¢ prady w obwodzie przedstawionym na rysunku 1.17,

jesli Ri=1Q, R,=5Q, R3=10Q2, R4=4Q, a warto$ci zrddet sa nastgpujace: e=10V, i=5A.
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Rys. 1.17. Schemat obwodu do zadania 1.1.

Rozwiqzanie
Korzystajac z praw Kirchhoffa otrzymuje si¢ uktad réwnan opisujacych obwdd w postaci
i, —i,—1;,=0
—iy+i, =i
Ri, +R,i, =e
R,i, —R,i, —R,i, =0

Po wstawieniu wartosci liczbowych parametréw i rozwiazaniu uktadu réwnan otrzymuje sig:

i1=1,011A, i, =1,798A, i3=-0,786A oraz i, = 4,214A.

Zadanie 1.2

Stosujac prawa Kirchhoffa wyznaczy¢ prady w obwodzie przedstawionym na rysunku 1.18,
jesli Ri=1Q, R, =2Q, R3=5Q, Ry=5Q, a warto$ci zrédet sa nastgpujace: e =20V, i;; = 1A,
in=2A.

[
i2 Rz i4
L —
~ o 71—
Iy 1@ I3 y
R
4l R4

Y Ril | s, Ra| | |
iz© T T @)iﬂ

Rys. 1.18. Schemat obwodu do zadania 1.2.

Rozwiqzanie

Korzystajac z praw Kirchhoffa otrzymuje si¢ uktad réwnan opisujacych obwdd w postaci

I, +1, =1,

by =l =71,
R, —R,i, —R;i; =—e

i, =i,

Po wstawieniu wartosci liczbowych otrzymuje si¢: i; = -0,375A, ix= 1,375A, iz = 3,375A oraz

is=2A.
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Zadanie 1.3

Wyznaczy¢ rezystancje wypadkowa obwodu przedstawionego na rys. 1.19

o [
SIS

Rys. 1.19. Schemat obwodu do zadania 1.3

Rozwiqzanie

Nalezy najpierw zastosowac transformacje tréjkat-gwiazda lub gwiazda-tréjkat w odniesieniu
do wybranych trzech rezystorow obwodu, a nastgpnie wykorzysta¢ uproszczenia wynikajace z
powstalych polaczen szeregowych i rownolegtych w obwodzie. Po wykonaniu tych dziatan

otrzymuje si¢ R, = 3,18Q.

Zadanie 1.4

Wyznaczy¢ rezystancje wypadkowa obwodu przedstawionego na rys. 1.20

30
SIS

Rys. 1.20. Schemat obwodu do zadania 1.4
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Rozwiqzanie

Poniewaz w obwodzie nie mozna wyrdzni¢ zadnych potaczen szeregowych i rownolegtych
nalezy najpierw zastosowac transformacje trojkat-gwiazda lub gwiazda-tréjkat w odniesieniu
do wybranych trzech rezystoré6w obwodu (np. transfiguracja gwiazdy 2Q, 3Q i 5Q na
rOwnowazny trojkat) a nastgpnie wykorzysta¢ uproszczenia wynikajace z powstatych
polaczen szeregowych i rownolegtych w obwodzie. Po wykonaniu tych dzialan otrzymuje si¢

wartos$¢ rezystancji zastgpczej obwodu réwna R, = 1,59Q.
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Lekcja 2. Metoda symboliczna analizy obwodow w stanie ustalonym
przy wymuszeniu sinusoidalnym

Wstep
Sposréd wielu réznych rodzajow wymuszen stosowanych w obwodach elektrycznych, do
najwazniejszych nalezy wymuszenie sinusoidalne, ze wzgledu na to, ze w praktyce
codziennej mamy do czynienia z napigciem i pradem sinusoidalnym generowanym w
elektrowniach. Analiza obwodéw RLC przy wymuszeniu sinusoidalnym nastr¢cza pewne
problemy zwiazane 2z konieczno$cia rozwiazania uktadu réwnan rézniczkowych,
wynikajacych z opisu ogdlnego kondensatoréow i cewek. W lekcji drugiej poznamy metode
symboliczng analizy obwodéw RLC w stanie ustalonym przy wymuszeniu sinusoidalnym.
Dzigki tej metodzie uktad réwnan rézniczkowo-catkowych opisujacych obwdd RLC
zostaje sprowadzony do ukladu réwnan algebraicznych typu zespolonego. Wprowadzone
zostanie pojgcie wartosci skutecznej zespolonej, impedancji 1 admitancji zespolonej oraz
prawa Kirchhoffa dla wartosci skutecznych zespolonych. Prawo pradowe i napigciowe
Kirchhoffa dla obwodéw RLC w metodzie symbolicznej stosuje si¢ identycznie jak dla
obwodoéw rezystancyjnych pradu statego zastgpujac rezystancj¢ pojeciem impedancji
zespolonej. W rezultacie otrzymuje si¢ wartosci zespolone odpowiedzi, ktérym mozna
przyporzadkowa¢ wartosci chwilowe zgodnie z metoda symboliczna. Uzupetnieniem tej
lekcji sa wykresy wektorowe przedstawiajace na plaszczyznie zespolonej relacje migdzy

wartosciami skutecznymi pradéw i napig¢ gateziowych w obwodzie.

©

2.1. Parametry sygnatu sinusoidalnego
Sygnaly sinusoidalne zwane rowniez harmonicznymi sa opisane w dziedzinie czasu
nastgpujacym wzorem (w opisie przyj¢to oznaczenie sygnatu napigciowego)

u(t)=U, sin(at +p) 2.1)

Wielkosci wystgpujace w opisie maja nast¢pujace nazwy i oznaczenia:

u(t) - warto$¢ chwilowa napigcia
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U, - warto$¢ maksymalna (szczytowa) napigcia zwana réwniez amplitudg
v - faza poczatkowa napigcia odpowiadajaca chwili =0

wt+y - Kkat fazowy napigcia w chwili ¢
f=1T - czgstotliwo$¢ mierzona w hercach (Hz)

T - okres przebiegu sinusoidalnego

w =27 - pulsacja mierzona w radianach na sekundeg.

Wartosci chwilowe sygnaléow oznacza¢ bedziemy malg litera a wartosci maksymalne,

skuteczne 1 wielkos$ci operatorowe duza.

ul) &
O%o
/ .\'\ /
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/ /
'\..\ I"J
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f\ \\. r’."
\ !
/ TR ST t
L |
Ll—i 0 \\ T I'r- '-!|
'l_lJ \\\\ n =T (€3] t
LIL\'. ;“.r.
\ f{
Fad
\\\-‘_-/

Rys. 2.1. Sygnat sinusoidalny

Rys. 2.1 przedstawia przebieg sygnalu sinusoidalnego napigcia z oznaczeniami
poszczegblnych jego parametréw. O$ odcigtych ma podwdjne oznaczenie: czasu oraz fazy
(aktualny kat fazowy).

Przebiegi zmienne w czasie dobrze charakteryzuje warto$¢ skuteczna. Dla przebiegu

okresowego f(t) o okresie T jest ona definiowana w postaci

t,+T

F= = [f@ad 2.2)

1
T

25



Fatwo udowodni¢, ze wartos¢ skuteczna przebiegu okresowego nie zalezy od wybory fazy
poczatkowej. Dla okreslenia wartosci skutecznej sygnatlu sinusoidalnego przyjmiemy sygnat
napigciowy o fazie poczatkowej rownej zeru.

u(r) =U, sin(ar) (2.3)

Wartos$¢ skuteczna tego sygnatu okreslona jest wigc zaleznoscia

T
U= \/l [Usin*(@)ar (2.4)
r 0
Wykonujac operacj¢ catkowania otrzymuje sig

m

T T
[Usin*(@ndt = 0,50 [ (1—cos 2ar)dt =
0 0

(2.5)
2 U2 s T 2
0,5TU,, —0,25="sin 2ar|; =0,5TU,,
w
Stad po podstawieniu do wzoru (2.4) otrzymuje si¢
U
U=—*~ (2.6)
V2
Analogicznie w przypadku pradu sinusoidalnego
i(t)y=1 sin(at+y,) (2.7)
otrzymujemy identyczna relacj¢
1
V2
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Dla sygnatu sinusoidalnego warto$¢ skuteczna jest wigc V2 razy mniejsza niz jego warto$¢
maksymalna.

Drugim parametrem charakteryzujacym sygnat sinusoidalny jest wartos¢ Srednia, czyli
pole zawarte pod krzywa odniesione do czasu, w ktérym ta wartos¢ jest obliczana. Wartos¢

srednig sygnatu w okresie T definiuje zalezno$¢

to+T

F,=— [fd (29

1
T
Ze wzgledu na symetrig funkcji sinusoidalnej wartos¢ Srednia calookresowa jest z definicji
réwna zeru. W elektrotechnice uzywa si¢ pojgcia wartosci Sredniej poélokresowej, w ktorej
przyjmuje si¢ 7 —7/2. W tym przypadku mozna udowodni¢, ze warto$¢ Srednia

polokresowa dla sygnatu sinusoidalnego jest powigzana z wartoscia maksymalna poprzez

relacjg

1,4T12

! [U, sin(@ndt =0,6370,, (2.10)

U?’r:_
S T2

Nalezy zauwazy¢, ze napigcie state u(z)=U jest szczegdlnym przypadkiem sygnatu
sinusoidalnego, dla ktorego czgstotliwos¢ jest rowna zeru (f=0) a warto$¢ chwilowa jest stata
1 rowna u(t)=U,, sin(y )=U. Jest to wazna wilasciwos¢, gdyz dzigki temu metody analizy
obwodéw o wymuszeniu sinusoidalnym moga mie¢ zastosowanie réwniez do wymuszen
stalych przy zalozeniu f=0. Dla sygnatu stalego warto$¢ maksymalna, skuteczna i $rednia sa

sobie rowne 1 rownaja si¢ danej wartosci stale;j.

2.2. Metoda symboliczna analizy obwodow RLC w stanie ustalonym przy
wymuszeniu sinusoidalnym

Analiza obwodéw zawierajacych elementy RLC przy wymuszeniu sinusoidalnym napotyka
na pewne trudno$ci zwigzane z wystapieniem w opisie cewki i kondensatora réwnan
rézniczkowych. Trudnosci te tatwo jest pokona¢ w stanie ustalonym. Stanem ustalonym
obwodu nazywa¢ bedziemy taki stan, w ktérym charakter odpowiedzi jest identyczny jak
charakter wymuszenia, to znaczy odpowiedzia na wymuszenie sinusoidalne jest odpowiedz

roOwniez sinusoidalna o tej samej czgstotliwosci cho¢ o rdéznej amplitudzie i1 fazie
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poczatkowej. Dla stanu ustalonego obwodu wprowadzona zostanie metoda symboliczna
sprowadzajaca wszystkie operacje rézniczkowe i catkowe do dziatan algebraicznych na
liczbach zespolonych.

Dla wprowadzenia tej metody przyjmijmy, ze rozwazany jest obwod szeregowy RLC

(rys. 2.2) zasilany ze zrédia napigcia sinusoidalnego u(¢) = U, sin(@t +y).

. R L C
it
S S O S
- - -
w:ﬂ T Up U U

Rys. 2.2. Potaczenie szeregowe elementéw RLC

7. prawa napigciowego Kirchhoffa wynika nastgpujacy zwiazek migdzy napigciami

elementéw tego obwodu

u(t) =u, +u, +u, (2.11)

Biorac pod uwage podstawowe zaleznos$ci definicyjne dla rezystora, cewki i kondensatora

u, = Ri,
u. =1/C[idt
)
LT

otrzymuje si¢

1 di
U sin(a¥ +w)=Ri+—|idt+ L— 2.12
. Sin(@r + ) i1 (2.12)

Jest to rOwnanie r6zniczkowo-catkowe opisujace zaleznosci migdzy wartosciami chwilowymi

pradu i napigcia wymuszajacego w obwodzie. Pelne rozwiazanie tego rownania sprowadza si¢
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do wyznaczenia dwu sktadowych pradu, stanowiacych odpowiedz obwodu w stanie

ustalonym i stanie przejSciowym:

1. skladowej ustalonej, ktdérej charakter zmian w czasie jest taki sam jak sygnatu
wymuszajacego (przy sinusoidalnym wymuszeniu odpowiedz réwniez sinusoidalna o tej
samej czestotliwosci)

2. skladowej przejsciowej stanowiacej rozwiazanie réwnania rézniczkowego pochodzacego

od niezerowych warunkéw poczatkowych.

Sktadowa przejsciowa zanika zwykle szybko w czasie i pozostaje jedynie skladowa ustalona.
Stan po zaniknigciu sktadowej przejSciowej nazywamy stanem ustalonym obwodu. Sktadowa
ustalong pradu w obwodzie mozna otrzyma¢ nie rozwiazujac rownania rézniczkowego
opisujacego ten obwod a korzystajac jedynie z tzw. metody symbolicznej. Istotnym
elementem tej metody jest zastapienie przebiegdw czasowych ich reprezentacja zespolona.
Przyjmijmy, ze prad i(¢z)=1,sin(@t+"¥,) oraz napigcie u(t)=U, sin(at+"¥) zastapione

zostaly przez wektory wirujace w czasie, odpowiednio /(¢) oraz U(¢) okreSlone w postaci

Ut)=U, e e'™ (2.13)

I(t)y=1,e""e'™ (2.14)

Po zastagpieniu wartosci czasowych pradu 1 napigcia w réwnaniu (2.12) poprzez ich

reprezentacj¢ w postaci wektoréw wirujacych otrzymuje si¢

~ i 1
U(t) = RI(t) + L—dt o j 1(t)dt 2.15)

Po wykonaniu operacji r6zniczkowania i catkowania rownanie powyzsze przyjmuje postac¢

U,e’Ve! =RI e’ e’ + joll, e’ e™ +%I e’Vie’™ (2.16)
J

Dzielac obie strony réwnania przeze’® i przechodzac do wartosci skutecznych (w tym celu

nalezy podzieli¢ obie strony réwnania przez V2 ) otrzymuje si¢
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‘ I . I 1 7,
R e (2.17)

V2 joC 2

I~y

m

; . I,
e’V warto$¢ skuteczna zespolong napiecia, a przez [ =—=¢’"

V2

warto$¢ skuteczng zespolong pradu. Wtedy rOéwnanie (2.15) mozna zapisa¢ w nastgpujacej

Oznaczmy przez U =

postaci obowiazujacej dla wartosci skutecznych zespolonych

U:Rl+ja)LI+_LI (2.18)
jaoC

Sktadnik
U,=RI (2.19)
odpowiada napigciu skutecznemu zespolonemu na rezystorze. Wielko$¢
U, =jaLl (2.20)
reprezentuje wartos¢ skuteczna zespolong napigcia na cewce, a sktadnik

U, —— g 2.21)
joC

odpowiada wartosci skutecznej zespolonej napigcia na kondensatorze. Wszystkie napigcia i
prad w obwodzie sa wartosciami zespolonymi. Rownanie (2.18) wyraza prawo napigciowe
Kirchhoffa odnoszace si¢ do wartosci skutecznych zespolonych dla obwodu szeregowego
RLC. Stwierdza ono, ze przy wymuszeniu sinusoidalnym wartos¢ skuteczna napigcia
wymuszajacego w obwodzie szeregowym RLC jest réwna sumie wartosci skutecznych
zespolonych napie¢ na poszczegdlnych elementach tego obwodu.

Analizujac posta¢ réwnania (2.18) mozna zauwazyC prosta analogi¢ do réwnania
opisujacego obwdd rezystancyjny. W tym celu wprowadzimy uogélnienie rezystancji w

postaci pojecia impedancji zespolonej wiazacej wartosci skuteczne pradu i napigcia na
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elementach R, L, C w stanie ustalonym przy wymuszeniu sinusoidalnym. Z ostatnich réwnan

na podstawie prawa Ohma mozna napisa¢ nast¢pujace przyporzadkowania:

Dla rezystora
Z,=R (2.22)

impedancja Zg jest rOwna rezystancji tego rezystora.

Dla cewki
Z, = joL (2.23)

impedancja Z;, jest liczba zespolong (urojona) zalezna liniowo od czgstotliwosci.

Dla kondensatora
1 1
7 = —_ i 2.24
< “Gac Tac 2.24)

impedancja Zc jest takze zespolona i odwrotnie proporcjonalna do czgstotliwosci.

Wartos¢ X, =wL nosi nazwe reaktancji indukcyjnej a warto$¢ X :E reaktancji

pojemnosciowej. W zwiazku z powyzszym mozna napisa¢ Z, = jX,, Z.=-jX,.

Wprowadzajac oznaczenie wypadkowej impedancji obwodu przez Z, gdzie Z =Z,+Z, + Z,.

zaleznos¢ pradowo-napigciowa w obwodzie szeregowym RLC mozna zapisa¢ w postaci,

znanej jako prawo Ohma dla wartosci symbolicznych

U=17I (2.25)
lub
1=2 = (2.26)
gdzie modut pradu
[1|= d i (2.27)

|zl R @L-17aC)
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natomiast kat fazowy pradu

v, =y— arctg 2L~ @C —;/wC (2.282)

Faza poczatkowa wektora napigcia wymuszajacego jest tu oznaczona przez Y, a faza
poczatkowa wektora pradu — przez ¥,. Réznica faz nazywana jest przesunig¢ciem fazowym

pradu wzgledem napigcia i oznaczana litera ¢, przy czym

o=y -y, = arctg% (2.28b)

Kat przesunigcia fazowego ¢ odgrywa ogromna rol¢ w elektrotechnice, zwlaszcza w
zagadnieniach mocy. Kat ten jest uwazany za dodatni dla obwodéw o charakterze
indukcyjnym a za ujemny dla obwodéw o charakterze pojemnosciowym.

Zauwazmy, ze warto$ciom skutecznym pradu oraz napigcia mozna przyporzadkowac
funkcje czasu. Biorac pod uwage, ze przejscie z przebiegu czasowego na opis zespolony

(symboliczny) odbywa si¢ wedtug schematu

u .
u(t)=U, sin(laxt+y)———=e’" (2.29)
V2
powrdt z wartosci zespolonej do postaci czasowej polega na pomnozeniu modulu wartosci
skutecznej przez V2 i uzupelnieniu wyniku przez dopisanie funkcji sin(at+y). Stad
przyktadowo, jesli wynik zespolony pradu dany jest w postaci I =10e’* , to odpowiadajacy
mu przebieg czasowy ma postac i(t) =1042 sin(ax +507) . Istnieje rowniez Scisla analogia
migdzy konduktancja (odwrotno$¢ rezystancji) a odwrotno$cia impedancji. Analogicznie do
pojecia konduktancji w obwodzie rezystancyjnym wprowadza si¢ pojecie admitancji
zespolonej dla obwodu RLC. Admitancja jest definiowana jako odwrotnos¢ impedancji.

Oznaczana jest najczesciej litera Y, przy czym

Y=1/7Z (2.30)
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o . . . . 1 1 .
Admitancja kondensatora jest rowna Y. = jwC, cewki Y, =——=— ]—L, natomiast
1)

joL
admitancja rezystora jest rowna jego konduktancji Yz=G=I/R. Podobnie odwrotnos¢
reaktancji X nosi specjalna nazwg susceptancji. Warto$¢ susceptancji dla kondensatora jest

rowna B, = wC , natomiast dla cewki B, =1/aL.

2.3 Prawa Kirchhoffa dla wartosci symbolicznych

Przy zastapieniu wartosci rzeczywistych przez wartosci zespolone réwnania rézniczkowe
zostaly zastapione przez réwnania algebraiczne. Nastapila zatem algebraizacja réwnan
opisujacych obwdd. Wszystkie elementy RLC traktowane sa w podobny sposéb i
reprezentowane przez swoje impedancje symboliczne w postaci zespolonej. Impedancje
zespolone moga by¢ interpretowane jako uogélnienie rezystancji. Dla obwodu
reprezentowanego w postaci symbolicznej obowiazuja prawa Kirchhoffa, ktére maja
identyczna posta¢ jak dla obwodu rzeczywistego, z ta rdznica, ze zamiast wielkosci

chwilowych uzywa si¢ wielkos$ci zespolonych.
Prawo pradowe Kirchhoffa

Suma pradéw zespolonych w dowolnym we¢zle obwodu elektrycznego jest rowna zeru, co

zapiszemy w postaci

>I1,=0 (2.31)

k
W réwnaniu tym wszystkie prady dane sa w postaci zespolone;j.
Prawo napieciowe Kirchhoffa

Suma napig¢¢ zespolonych w kazdym oczku obwodu elektrycznego jest rOwna zeru, co

zapiszemy w postaci

dYU =0 (2.32)

W réwnaniu tym symbolem U oznaczono wszystkie napigcia w postaci zespolonej, zaré6wno

na gal¢ziach pasywnych jak i zrédtowych obwodu. Sposéb sumowania (znak plus lub minus)
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zarbwno pradéw jak i napig¢ jest taki sam jak w przypadku operowania warto$ciami

rzeczywistymi.

2.4. Wykresy wektorowe obwodu

W przypadku analizy obwodéw RLC w stanie ustalonym waznym pojeciem jest wykres
wektorowy przedstawiajacy w sposéb orientacyjny zalezno$ci migdzy poszczegdlnymi
wektorami pradu i1 napigcia w obwodzie. Jak wiadomo kazdej liczbie zespolonej mozna
przyporzadkowac reprezentacje geometryczng w postaci odpowiedniej zaleznosci wektorowe;j
przedstawionej na ptaszczyznie, w ktorej o§ pozioma odpowiada czesci rzeczywistej a oS
pionowa czgs$ci urojonej liczby zespolonej. Konstruujac wykres nalezy pamigtaé, ze

pomnozenie wektora przez operator j jest rOwnowazne jego obrotowi o kat 90 stopni

. . . .. . j90° )
przeciwnie do ruchu wskazéwek zegara gdyz operator j jest réwny ¢’ . Podobnie
pomnozenie wektora przez operator -j jest rtOwnowazne jego obrotowi o kat 90 stopni zgodnie

z ruchem wskazéwek zegara gdyz operator -j jest réwny e /* . Pomnozenie wektora przez
liczbe rzeczywista nie zmienia pozycji wektora w przestrzeni o ile jest to liczba dodatnia lub

zmienia zwrot wektora o 180° jesli liczba ta jest ujemna.

Z zaleznosci pradowo-napigciowych dla rezystora jest oczywiste, ze
U, =RI, (2.33)

co wobec rzeczywistych, dodatnich warto$ci R oznacza, ze napigcie na rezystorze jest w fazie

z pradem tego rezystora. Dla cewki obowiazuje
U,=jalLl, (2.34)

co oznacza, ze napigcie na cewce wyprzedza prad o kat 90°. Podobnie napigcie na

kondensatorze opdznia si¢ wzgledem swojego pradu o kat 90°, gdyz

1
Ue==i—lc (2.35)

Na rys. 2.3 przedstawiono wykresy wektorowe dla rezystora, cewki i kondensatora z

zaznaczeniem przesuni¢¢ katowych migdzy wektorami pradu i napigcia.
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Rys. 2.3. Wykresy wektorowe dla a) rezystora, b) cewki, c) kondensatora

Przedstawione powyzej zasady konstruowania przesuni¢¢ katowych migdzy wektorami pradu
1 napigcia umozliwiaja podanie ogélnych zasad postgpowania przy konstruowaniu wykresu
wektorowego dla dowolnego obwodu RLC.

Wykres wektorowy z definicji uwzglednia przede wszystkim przesunigcia katowe
migdzy poszczegllnymi wektorami. Relacje ilosciowe (dtugosci) poszczegdlnych wektoréw
sq mniej istotne 1 zwykle uwzgledniane w spos6b jedynie przyblizony. Wykres rozpoczyna sig
zwykle od konca obwodu (gal¢zi najdalej potozonej od zrédta). Jesli gataz jest potaczeniem
szeregowym elementéw rozpoczynamy od pradu tej gal¢zi, a w przypadku polaczenia
rownolegltego — od napigcia. Nastgpnie rysuje si¢ na wykresie na przemian napigcia i prady
kolejnych gatezi, dochodzac w ten sposéb do zrédla. Budoweg wykresu konczy si¢ w
momencie dojScia do pradu i napigcia zrédlowego obwodu. Relacja wektora pradu
zrodlowego wzgledem napigcia decyduje o charakterze obwodu. Jesli napigcie wypadkowe
(zrodtowe) wyprzedza prad wypadkowy lub inaczej mowiac prad opdznia si¢ wzgledem
napigcia - obwdd ma charakter indukcyjny. Jesli natomiast napigcie opdznia si¢ wzglegdem
pradu lub prad wyprzedza napigcie - méwimy o charakterze pojemnosciowym obwodu. Jesli
nie istnieje przesunigcie fazowe pradu wypadkowego wzgledem napigcia (kat fazowy rowny
zeru) méwimy o tzw. stanie rezonansu obwodu, lub po prostu charakterze rezystancyjnym
danego obwodu. Charakter rezystancyjny obwodu moze powsta¢ nawet przy istnieniu w

obwodu indukcyjnosci i pojemnosci w przypadku gdy nastgpuje kompensacja odpowiednich
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sktadowych indukcyjnej 1 pojemnosciowej wektorow. Sposéb postgpowania przy

sporzadzaniu wykresow wektorowych przedstawimy na przyktadzie konkretnego obwodu.

Przyktad 2.1
Narysowa¢ wykres wektorowy pradéw i napig¢ dla obwodu RLC o strukturze

przedstawionej na rys. 2.4.

Rys. 2.4. Schemat obwodu RLC do przyktadu 2.1

Rozwiqzanie

Na rys. 2.5 przedstawiono wykres wektorowy pradow i napie¢ w obwodzie RLC z rys. 2.4.
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Sporzadzanie wykresu rozpoczyna si¢ od pradu /3 dobudowujac kolejno wektory napigc€ i
pradéw gatezi przesuwajac si¢ w strong zrédta: U Ry U Lo U R, s 1, 1,,U ¢, E. Jak wida¢
obwdd ma charakter pojemnosciowy, gdyz napigcie wypadkowe E opdznia si¢ wzgledem

odpowiadajacego mu pradu ;.

Zadania sprawdzajqce
Zadanie 2.1

Wyznaczy¢ rozptywy pradéw w obwodzie z rys. 2.6 w stanie ustalonym. Przyja¢ nastgpujace

wartosci parametrow: i(f) = 5x/§ sin(10007) A, R=10Q, C =0,0001F, L = 5SmH.

i) (@ u R N L

Rys. 2.6. Schemat obwodu do zadania 2.1

Rozwiqzanie

Wartosci symboliczne elementéw obwodu:

@ =1000
=5
Z, = joL=j5

Z. =1/ jwC =—j10

Impedancje obwodu RLC:
Y :l+L+L:O,1— jo,1
R Z, Z.
7=1_10 s

NG

Prady i napigcie w obwodzie:
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U=7Zl=—e
V2

U 5
I :_:_6145
R R ﬁ

u 10
I :_:_8—145
L ZL \/5
LA

Z. 2

Wartosci chwilowe pradéw i napigcia

u(r) = 50sin(1000¢ + 45%)
i, (t) = 5sin(1000¢ + 45°)
i, () = 10sin(10007 — 45°)

i (t) =5sin(1000z +1357)

Zadanie 2.2

Wyznaczy¢ prady i napigcia w obwodzie przedstawionym na rys. 2.7. Przyja¢ nastgpujace
wartosci  elementow: e(t) = 20\/5 sin(100r -=90°)V, R, =10Q, R,=5Q, C=0,001F,
L =0.05H.

Rys. 2.7. Schemat obwodu do zadania 2.2

Rozwiqzanie

Wartosci symboliczne elementéw obwodu:
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@ =100
E =207
Z, = joL=j5

Z. =1/ jwC =10

Impedancje obwodu:

R2 ZL

= =25+ j2.5
R,+Z,

RL

Z=Z,+R+Z.=125-j15

Prady i napigcia w obwodzie:
I=E/Z=0,71-j1,18
Uy =12, =4,71- j1,18

=Y — _923_ joos

~

T N

I,==1 =094~ j0.23

U.=1Z,=-11,76— j7,06

Up =IR =7.1-j118

Zadanie 2.3

Sporzadzi¢ wykres wektorowy pradéw i1 napi¢e¢ w obwodzie przedstawionym na rys. 2.8.

EI " C, TTch “%TU R,

Rys. 2.8. Schemat obwodu do zadania 2.3

Rozwiqzanie
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Wykres rozpoczyna si¢ od pradu /3, dodajac kolejno napigcia na Rz i Ls, napigcie Ucs, prad

I, prad I, oraz napigcie E. Pelny wykres wektorowy przedstawiony jest na rys. 2.9.

Kat fazowy przesunigcia pradu wzgledem napigcia zasilajacego jest rowny ¢@. Biorac pod

uwage, ze napigcie wyprzedza prad obwod ma charakter indukcyjny.

40



Lekcja 3. Zagadnienia mocy w obwodach RLC przy
wymuszeniu sinusoidalnym

Wstep
Jednym z najwazniejszych poje¢ w elektrotechnice jest moc elektryczna. Jest ona S$cisle
zwigzana ze zjawiskami energetycznymi zachodzacymi w obwodzie o wymuszeniu
sinusoidalnym. Wielko$ciom pradu i napigcia przyporzadkowa¢ mozna rézne rodzaje mocy.
Lekcja trzecia po$§wigcona jest zagadnieniom mocy chwilowej p(f), mocy czynnej P,
mocy biernej Q oraz mocy pozornej S. Poznamy wzory wiazace poszczegolne rodzaje mocy z
pradami i napigciami w obwodzie RLC przy wymuszeniu sinusoidalnym w stanie ustalonym.
Podane zostana wzory wyrazajace energi¢ zgromadzong w cewce i kondensatorze, a na tej
podstawie modele rzeczywistej cewki i kondensatora, uwzgledniajace ich stratnosci. Ostatnim
fragmentem lekcji sa zagadnienia dopasowania odbiornika do zrédia rzeczywistego o

niezerowej impedancji wewngtrzne;.

3.1. Moc chwilowa

Warto$¢ chwilowa napigcia i pradu galgzi oznaczymy odpowiednio przez u(t) = U, sin(a@t)
oraz i(t) =1, sin(wt— @) przyjmujac dla uproszczenie fazg poczatkowa napigcia rowna zeru.

Moc chwilowa p(t), jako jedyna z mocy jest funkcja czasu i definiuje si¢ ja w postaci iloczynu

wartosci chwilowych pradu i(¢) oraz napigcia u(t) w obwodzie

p(t) = u(t)i(r) (3.1)

Przy wymuszeniu sinusoidalnym moc chwilowa opisana jest wzorem

p(t)=u@)i(t)=U, 1, sin(ax)sin(ax — @) = %[cos¢ —cos(2ax — @)= 32)

= |U ||I |[cos— cosLax — ¢)]

Z powyzszej zaleznosci widac¢, ze moc chwilowa zawiera dwie sktadowe: stala |U ||I |cos((p)

oraz zmienna W czasie |U ||I|cos(2a)t—¢) o czestotliwosci dwukrotnie wigkszej od

czgstotliwosci napigeia 1 pradu w obwodzie. Jest zatem wielko$cia zmienng w czasie opisang
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funkcja okresowa harmoniczna. Moc chwilowa nie znajduje wigkszego zastosowania

praktycznego, natomiast jest niezbedna dla zdefiniowania mocy czynne;.

3.2. Moc czynna

Moc czynna definiuje si¢ jako wartos¢ srednig za okres z mocy chwilowej, to jest

P= [ ptya (3.3)

Ty

Podstawiajac do powyzszego wzoru funkcje okreslajaca moc chwilowa w obwodzie, po

wykonaniu operacji catkowania otrzymuje si¢
P =|U|I|cos ¢ (3.4)

Moc czynna w obwodzie o wymuszeniu sinusoidalnym jest wigc wielkoscia stala réwna
iloczynowi modutéw wartosci skutecznych napigcia i pradu oraz cosinusa kata przesunigcia
fazowego migdzy wektorem napigcia 1 pradu. Wspoélczynnik ten odgrywa ogromng rol¢ w
praktyce i nosi specjalna nazw¢ wspoétczynnika mocy (cos@).

Moc czynna stanowi sktadowa stata mocy chwilowe;j. Jest ona nieujemna dla obwodu
RLC a w granicznym przypadku przy ¢ =+7/2 jest réwna zeru. Moc czynna osiaga wartos¢
najwigksza P = |U ||I | wtedy, gdy @=0, to znaczy gdy odbiornik ma charakter
rezystancyjny, cos@ =1. Warto$¢ najmniejsza (P=0) moc osiaga w przypadku granicznym,
gdy ¢ =%7/2, to znaczy gdy odbiornikiem jest cewka idealna lub kondensator idealny,
cos @ = 0. Oznacza to, ze na elementach reaktancyjnych nie wydziela si¢ moc czynna.

Z przytoczonych rozwazan wynika, ze moc czynna jest tym wigksza im mniejszy jest
kat przesunigcia fazowego migdzy pradem i napigciem. Moze wydziela¢ si¢ jedynie na
elementach rezystancyjnych i odpowiada energii, ktéra wydziela si¢ w jednostce czasu w
postaci ciepta w tych elementach. Uwzgledniajac, ze przesunigcie fazowe pradu i napigcia na

rezystorze jest rowne zeru (cos@ =1) wzdér na moc czynna wydzielana w rezystorze moze

by¢ wyrazony w trzech rownorzednych postaciach
P=|U|1]cosp=R|I|" =G|’ (3.5)
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w ktérych prad I oraz napigcie U odpowiadaja rezystorowi R. Jednostka mocy czynnej jest
wat (W) , przy czym 1W=1AV. W praktyce stosuje si¢ rowniez wielokrotno$ci wata w
postaci kilowata (1kkW=1000W) lub megawata (IMW:IO(’W) oraz wartosci utamkowe, np.
miliwat (mW) lub mikrowat (uW ).

3.3. Moc bierna
W obwodach elektrycznych pradu sinusoidalnego definiuje si¢ trzecia wielko$¢ energetyczna

bedaca iloczynem napigcia i pradu oraz sinusa kata przesunigcia fazowego migdzy nimi.

Wielko$¢ ta oznaczana jest litera Q i nazywana moca bierna
0 =|U||f|sing (3.6)

Jednostka mocy biernej jest war (var) bedacy skrétem nazwy woltamper reaktywny.

Ze wzgledu na wystgpowanie w definicji mocy biernej funkcji sinusoidalnej jest
oczywiste, ze moc bierna jest tym mniejsza im mniejszy jest kat przesunigcia fazowego pradu
1 napigcia. Stad w przypadku rezystora, dla ktérego przesunigcie fazowe jest rOwne zeru
(singp =0) moc bierna jest zerowa Moc bierna moze si¢ wigc wydziela¢ jedynie na
elementach reaktancyjnych, gdyz tylko dla nich przesunigcie fazowe pradu i napigcia jest
rozne od zera. Przesunigcie fazowe pradu 1 napigcia na elementach reaktancyjnych (cewce 1
kondensatorze) przyjmuje wartos¢ +90 dla cewki oraz -90 dla kondensatora, co oznacza, ze
sinus kata jest odpowiednio rowny rowny +/ dla cewki (moc bierna cewki jest uwazana za
dodatnia) oraz —/ dla kondensatora (moc bierna kondensatora jest uwazana za ujemna). Stad
przy pomini¢ciu znaku wzér na moc bierng elementow reaktancyjnych o reaktancji X moze

by¢ przedstawiony w trzech réwnorzednych postaciach
. 1
o=|u|i|singp=x1|’ =}|U|2 3.7)

W ogdlnosci kat przesunigcia fazowego ¢ uwaza si¢ za dodatni dla obwodéw o charakterze

indukcyjnym (napigcie wyprzedza prad) a za ujemny dla obwodéw o charakterze

pojemnosciowym (napigcie op6znia si¢ wzgledem pradu). Moc bierna obwodéw o
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charakterze indukcyjnym jest w sumie moca indukcyjna, kojarzona z liczba dodatnia a moc
bierna obwodéw o charakterze pojemno$ciowym jest w sumie moca pojemnosciowq i

kojarzong z liczba ujemna.

3.4. Moc pozorna
Czwartym rodzajem mocy wprowadzanym w obwodach elektrycznych jest tak zwana moc

pozorna. Jest ona proporcjonalna do wartosci skutecznych pradu i napigcia, i oznaczana litera
S. Moc pozorna definiowana jest formalnie jako liczba zespolona w postaci iloczynu wartosci
skutecznej zespolonej napigcia U 1 wartosci skutecznej sprzgzonej pradu /

*

S=UI (3.8)

Tak zdefiniowana moc pozorna przedstawia soba sumg mocy czynnej (czg$¢ rzeczywista §)

oraz mocy biernej (czg$¢ urojona S), stad

S=P+jQ (3.9)

Uwzgledniajac, ze operator j oznacza przesunig¢cie wektora o kat 90°, ostatniej zaleznoS$ci na
moc pozorng przyporzadkowa¢ mozna wykres wektorowy mocy, tzw. trojkat mocy

przedstawiony na rys. 3.1.

la
a) b)

Rys. 3.1. Wykres wektorowy mocy dla obwodu a) o charakterze indukcyjnym,

b) o charakterze pojemnosciowym
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Biorac pod uwagg kierunek przesunigcia pradu wzgledem napigcia na rys. 3.1a wykres mocy
dotyczy obwodu o charakterze indukcyjnym a rys. 3.1b obwodu o charakterze
pojemnosciowym. Wykres ten nazywany jest rowniez tréjkatem mocy. W tréjkacie mocy
sktadowa czynna i bierna sa przyprostokatnymi natomiast moc pozorna przeciwprostokatna.
Zaleznos¢ na moc pozorng zespolona mozna przedstawi¢ rowniez w postaci

wykladniczej S = |S |ej ?. W zalezno$ci tej |S | wyraza modul mocy pozornej, ktéry moze by¢

wyrazony w postaci iloczynu modutéw wartosci skutecznych pradu i napigcia

|S|=|ul|t]=yP* +0Q? (3.10)

Z. wykresu wektorowego obwodu przedstawionego na rys. 3.1 mozliwe jest wyznaczenie

wspotczynnika mocy. Mianowicie

cos(p:£ 3.11)

]

Wartos¢ wspétczynnika mocy wyznaczona z powyzszej zalezno$ci jest identyczna z
wartoscia wynikajaca z relacji pradowo-napigciowych zachodzacych dla wielkosci
bramowych obwodu. Dla utatwienia korzystania z poje¢ mocy zestawiono ponizej

najwazniejsze postacie wzorow na moc czynna, bierng i pozornga

= Moc pozorna

S=UI"=P+jQ (3.12)

= Moc czynna

_Us
R

|2

P=|U|l|cosp=Re(S)=|I,[R (3.13)

=  Moc bierna
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X

|2

0 =U|t[sing=Im(s)=|I, | x (3.14)

3.5. Bilans mocy
W obwodzie elektrycznym, jak w kazdym uktadzie fizycznym obowiazuje prawo zachowania

energii. W przypadku obwod6éw prawo to przeksztalca si¢ w tak zwane prawo bilansu mocy.
Jesli catkowita moc pozorna wytworzong przez zrodto (lub wiele zrodet wystgpujacych w
obwodzie) oznaczymy przez S, a sumaryczng moc pozorng wydzielona w elementach
odbiornika przez S,, to biorac pod uwage prawo zachowania energii obie moce musza by¢
sobie réwne, to znaczy S,=S,. Jest to tak zwana zasada bilansu mocy w obwodach
elektrycznych.

W tak sformutowanej zasadzie bilansu mocy przyjmuje si¢ standardowo, ze zwroty
pradéow 1 napig¢ w elementach odbiornikowych sa przeciwne sobie a w elementach
zrodlowych takie same. Jesli przyjmiemy ujednolicona zasad¢ znakowania pradéw i napie¢ na
galeziach obwodu, zaktadajaca, ze niezaleznie od rodzaju elementu zwroty pradu i napigcia
na galezi sa przeciwne sobie, to zasadg¢ bilansu mocy mozna sformutowa¢ w ten sposob, ze
suma mocy liczonej po wszystkich elementach w obwodzie elektrycznym jest rowna zeru,
Se+8S,=0.

Dla zilustrowania wprowadzonych tu poje¢ mocy oraz zasady bilansowania si¢ mocy

rozpatrzymy przyktad obwodu przedstawionego na rys. 3.2.

Przyktad 3.1

Niech dany bedzie obwdéd RLC o strukturze przedstawionej na rys. 3.2 zasilany z

. . . .. . . L. rad , .

sinusoidalnego zrédta napigcia  e(t) = 100\/5 sin(ax +45°) V o wartosci @ =1——. WartosSci
Ry

elementéw obwodu sg nastgpujace: R=1Q, C=05F, L=1H .
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Rys. 3.2. Schemat obwodu do przyktadu 3.1

Nalezy wyznaczy¢ wartosci skuteczne zespolone pradéw 1 napig¢ elementdw oraz moce w

obwodzie.

Rozwiqzanie
Wartosci zespolone impedancji 1 napigcia wymuszajacego w obwodzie przy danych
wartosciach elementéw sa réwne: Z, = joL = jl, Z.=-jl/@C=~-j2, E=100e’*".

Rz, _ 0.707¢'*" .

Impedancja zastgpcza potaczenia réwnolegtego L i R réwna si¢ Z,, =
L

Impedancja  zastgpcza  polaczenia  szeregowego C i Z,  jest rowna
Z=2.+Z, =05+j05-j2= 1,78¢7/""%" . Zgodnie z prawem Ohma prad I w obwodzie jest
rowny

j4s° ] ,
1= E o100 _ 33000

Z 15877

Napigcia na poszczegdlnych elementach obwodu dane sa w postaci

U, =Z..=106,6e"""

U, = Zp 1o =44,75¢"

Prady cewki i rezystora obliczone z prawa Ohma réwnaja si¢
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URL

I, = =Rt = 4475
ZL
I = URL — 44 75€jl6].6”
R R ’

Na rys. 3.3 przedstawiono wykres wektorowy pradow 1 napie¢ w obwodzie.

Poszczegdblne rodzaje mocy wydzielonej w obwodzie réwnaja sig:

=  Moc pozorna wydawana przez zrodto
S=E- IC* =6330e7" = (1998 — j6000)V - A
= Moc czynna rezystora
P, =|1] R=1998W
= Moc bierna cewki i kondensatora
Q, =ImU,, -1,)=2000var
Q. =Im(U, -1.)=-8000 var
Catkowita moc bierna wydzielona na cewce i kondensatorze réwna si¢

0 =0, +Q0, =—6000 var

Moc wydzielona na rezystorze oraz cewce i kondensatorze réwna si¢ doktadnie mocy
dostarczonej przez zrdodto. Bilans mocy generowanej przez zrédio i mocy wydzielone] w

odbiorniku jest zatem réwny zeru.
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3.6 Energia magazynowana w cewce i kondensatorze
Cewka i kondensator traktowane jako idealne elementy obwodowe naleza do elementéw

magazynujacych energi¢ elektrycznag 1 z tego punktu widzenia odgrywaja ogromng rol¢ w

elektrotechnice

3.6.1 Energia magazynowana w idealnym kondensatorze
Rozpatrzmy kondensator o pojemnosci C zasilony z generatora napigciowego u(t). Obliczymy

energi¢ dostarczong do tego kondensatora w czasie od 7y do t. Energia ta moze by¢ obliczona

jako catka z mocy chwilowe;j

W(t,.1) = j p(D)dr (3.15)

0

Uwzgledniajac wzor na moc chwilowa 1 dokonujac odpowiednich operacji catkowania

otrzymujemy

t t u(t)
W (ty.1) = j w(0)i(7)dr = j u(r)C%dr: C [udu (3.16)

’4(’0)

Zatézmy, ze czas tj jest taka chwila, w ktdérej napigcie u(¢) jest zerowe. W takim razie wzor na

energi¢ upraszcza si¢ do postaci

u(t)
W(t,.1)=C juduz%Cuz(t) (3.17)

0

Zasadnicza cecha kondensatora idealnego jest jego bezstratno$¢, co oznacza, Ze energia
zgromadzona na nim pozostaje w nim zmagazynowana. Zatem kondensator natadowany do

napigcia stalego U posiada energig¢ rOwna

W:%CUZ (3.18)
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Jest to bardzo wazna wilasnos¢ kondensatora, wykorzystywana do magazynowania energii

elektrycznej.

3.6.2 Energia magazynowana w idealnej cewce
Rozpatrzmy cewke o indukcyjnosci L zasilona z generatora napigciowego u(t). Obliczymy

energi¢ dostarczong do tej cewki w czasie od #, do ¢. Energia ta, podobnie jak w przypadku

kondensatora, moze by¢ obliczona jako catka z mocy chwilowe;j

W (t,.1) = j p(r)dt (3.19)

fo

Uwzgledniajac wzor na moc chwilowa 1 dokonujac odpowiednich operacji catkowania

otrzymujemy

W (t,1) = [u(Di(z)d7 = [i(2)L

Iy

dicty "¢
- dr=1L jzdz (3.20)

u(ty)

Zatézmy, ze czas 1y jest taka chwila, w ktorej prad cewki i(7) jest zerowy. W takim razie wzor

na energi¢ upraszcza si¢ do postaci

u(r)
W (ty,t) = L [idi =%Li2(t) (3.21)

0

Zasadnicza cecha cewki idealnej jest jej bezstratnos¢, co oznacza, ze energia dostarczona do
niej pozostaje w niej zmagazynowana. Zatem cewka, przez ktéra przeptywa prad staty [

posiada energi¢ réwna

W==LI" (3.22)
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W odréznieniu od kondensatora, w ktérym energia zwigzana byla z napigciem migdzy
oktadkami (fadunkiem) energia cewki jest uzalezniona od pradu (strumienia magnetycznego).

Stad przyjmuje sig, ze kondensator magazynuje energi¢ w polu elektrycznym a cewka w polu

magnetycznym.

3.7 Rzeczywiste modele cewki i kondensatora
W dotychczasowych rozwazaniach traktowaliSmy cewke i1 kondensator jako elementy idealne,

posiadajace tylko jedna cechg: indukcyjnos¢ w przypadku cewki i pojemno$¢ w przypadku
kondensatora. Bardziej realistyczne modele tych elementéw wymagaja uwzglednienia ich

stratnosci, ktéra mozemy zamodelowac przy pomocy rezystancji.

3.7.1 Cewka rzeczywista
W przypadku cewki rzeczywistej zbudowanej z wielu zwojéw drutu (zwykle miedzianego)

naturalny model wymaga uwzglednienia rezystancji zwojow. Najczgsciej przyjmuje si¢ model
szeregowy cewki, przedstawiony na rys. 3.4, w ktéorym indukcyjno$¢ i rezystancja tworza

polaczenie szeregowe.

Rys. 3.4. Szeregowy model cewki rzeczywistej
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Cewke rzeczywista charakteryzuje jej dobro¢ Q; definiowana jako stosunek maksymalnej
energii zgromadzonej w polu magnetycznym do energii rozproszonej w rezystancji w ciagu

okresu T

0, = 2%—VVVVLE‘;*) (3.23)

Uwzgledniajac zalezno$ci energetyczne obowiazujace dla cewki i rezystora mozna tatwo

udowodni¢, ze wzor powyzszy dla modelu szeregowego cewki upraszcza si¢ do postaci

wlL
0 == (3.24)

Mnozac licznik 1 mianownik tej zaleznosci przez modul pradu (wspdlnego dla obu
elementéw) wzor na dobro¢ mozna wyrazi¢ jako stosunek modutu napigcia na indukcyjnosci

do modutu napigcia na rezystancji

.
A

0,= (3.25)

Jesli uwzglednimy wykres wektorowy pradéw i napi¢¢ dla szeregowego modelu cewki

(rys. 3.5) otrzymamy nastgpujaca zalezno$¢
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Rys.3.5. Wykres wektorowy dla modelu szeregowego cewki

Q, =tgyp (3.26)

Dobro¢ obwodu jest wigc rowna tangensowi kata przesunigcia fazowego migdzy wektorem
pradu i napigcia na cewce. W przypadku cewki idealnej kat fazowy jest réwny 90’ (napigcie

na rezystorze szeregowym dazy do zera), stad taka cewka ma dobro¢ nieskonczona.

3.7.2 Kondensator rzeczywisty
Model kondensatora rzeczywistego powinien uwzglednia¢ naturalna uptywno$¢ izolacji

miedzyoktadkowej (skonczona rezystancj¢ izolacji). Naturalny sposéb uwzglednienia tego
pradu to przyjecie modelu réwnoleglego, w ktérym na catkowity prad kondensatora sktada si¢

prad pojemnosci C oraz konduktancji G jak to przedstawiono na rys. 3.6.

Rys. 3.6. Réwnolegty model kondensatora rzeczywistego
Kondensator rzeczywisty charakteryzuje jego dobro¢ Q¢ definiowana jako stosunek

maksymalnej energii pola elektrycznego kondensatora do energii rozproszonej w rezystancji

w ciagu okresu T’

O, = 27r—vv:,/cgl;*) (3.27)
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Uwzgledniajac zaleznos$ci energetyczne obowiazujace dla kondensatora i rezystora mozna
tatwo udowodni¢, ze wzor powyzszy dla modelu rownolegtego kondensatora upraszcza si¢ do

postaci

0, = “J_GC ~ &CR (328)

Dobro¢ kondensatora mierzona w modelu réwnolegtym jest tym wigksza im mniejsza jest
jego uplywnos¢ (wigksza rezystancja), a wigc odwrotnie niz dla modelu szeregowego cewki.
Mnozac licznik i mianownik tej zaleznosci przez modut napigcia (wspdlnego dla obu
elementéw) wzor na dobro¢ mozna wyrazi¢ jako stosunek modutu pradu pojemnos$ciowego

do modutu pradu uptywnosciowego rezystancji

0 _ el (3.29)
A

Jesli uwzglednimy wykres wektorowy pradéw 1 napi¢¢ dla réwnolegtego modelu

kondensatora (rys. 3.7) otrzymamy nastepujaca zaleznos¢
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Oc=tgy (3.30)

Dobro¢ obwodu jest wigc rowna tangensowi kata przesunigcia fazowego migdzy wektorem
wypadkowym pradu i napigcia na kondensatorze. W przypadku kondensatora idealnego kat
fazowy jest réwny 90° (warto§¢ pradu uptywnosciowego dazy do zera), stad taki kondensator

ma dobro¢ nieskonczona.

3.8 Dopasowanie odbiornika do zrodta
Rzeczywiste zrodlo energii elektrycznej mozna przedstawi¢ w postaci szeregowego

polaczenia idealnego zrédla napigecia E oraz impedancji wewngtrznej zrodla Z, jak to

przedstawiono narys. 3.8

Rys. 3.8. Model rzeczywistego zrodta napigciowego generatora

Rozwazmy elementarny obwdd ztozony z rzeczywistego zrédla napigcia oraz impedancji

odbiornika Z jak to przedstawiono na rys. 3.9.

Rys. 3.9. Rzeczywiste zrédio napigcia obciazone impedancja Z
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Przyjmijmy ogdélny model impedancji wewngtrznej zrédta w postaci
Z,=R,+jX, (3.31)

Podobnie zalozymy, ze impedancj¢ odbiornika stanowi potaczenie szeregowe rezystancji R

oraz reaktancji X, to jest
Z=R+jX (3.32)
Dopasowanie odbiornika do generatora rozumiemy jako dobor takiej impedancji odbiornika,

przy ktorej odbiornik pobiera ze zrédta maksymalng moc czynna. Z analizy obwodu

przedstawionego na rys. 3.9 wynika, ze moc P odbiornika jest okreslona zaleznoscia

>

|2

B R
R={ (3.33)

R +Rf +(x, +xJ

Przy ustalonej warto$ci rezystancji odbiornika wyrazenie powyzsze osiaga maksimum dla

X =-X (3.34)

Znak minus oznacza, ze reaktancja odbiornika powinna mie¢ charakter odwrotny do
reaktancji generatora. Przy indukcyjnym charakterze impedancji zrédta, odbiornik powinien
mie¢ charakter pojemnosciowy.

Po uwzglednieniu tej zaleznosci wyrazenie na moc przyjmie uproszczong postac

EI'R
R, +R

|2

P= (3.35)

Wydzielenie maksymalnej mocy czynnej na rezystorze wymaga, aby pochodna funkcji mocy

wzgledem rezystancji R rownala sig zeru, czyli
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dP(R) _ 0 (3.36)
dR

czyli

(R, + R} —2R(R, +R)
(R, +R)

E|=0 (3.37)

Réwnane powyzsze jest spetnione dla wartosci rezystancji obciazenia rownej rezystancji

zrodia, czyli

R=R (3.38)

Mozna tatwo sprawdzi¢, ze przy takim warunku druga pochodna funkcji mocy wzgledem
rezystancji jest ujemna, co oznacza, ze mamy do czynienia z maksimum mocy. Ostatecznie
stwierdzamy, ze warunkiem dopasowania odbiornika do generatora ze wzgledu na moc

czynna jest
Z=7Z,=R, - jX, (3.39)

Latwo jest pokazaé, ze przy spelnieniu powyzszego warunku na impedancji odbiornika

wydzieli si¢ maksymalna moc czynna P, rOwna

X

£
p_ ==L (3.40)
4R,

Biorac pod uwage, ze w obwodzie istnieja dwie identyczne rezystancje (odbiornika i
generatora), przez ktére przeptywa identyczny prad moc maksymalna odbiornika stanowi

50% catkowitej mocy wydzielanej przez zrédto idealne.

Zadania sprawdzajace
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Zadanie 3.1
Sporzadzi¢ bilans mocy w obwodzie przedstawionym na rys. 3.10. Przyja¢ nastgpujace

wartosci elementow: e(t) = SO\/Esin(a)t) V, w= 1ﬂ, L=10H, C=0,]F, R =15Q,
S

R, =10Q.
A A
-
11 12 l3
e(t) ﬁ) Uag C L R2
. .
Rys. 3.10. Schemat obwodu do zadania 3.1
Rozwiqzanie

Wartosci symboliczne elementéw obwodu:

w=1
E =50
Z, = jwL= j10

Z. =1/ jwC =—j10

Impedancje obwodu:

l :i+i+i:0’1
Zsas R, Z, Z,

Z,, =10

Z=2Z,+R =25

Prady i napigcia w obwodzie:

I=E/Z=2

U, =1Z,, =20

=Y o
ZC
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I,=—2=—j2
ZL

I3 — UAB =2
R2

Moc wydawana prze zrédto

S, =EI =50-2=100+ jO

Moce elementéw
B, =|I[ R =60W
P, =[] R, =40W

0, = |12|2a)L =40var

|
QC:—|Il Ez—40var

Moc catkowita odbiornika

S, = b + B, JjO, + jO, =100+ jO

Moc odbiornika jest doktadnie réwna mocy zrédta.

Zadanie 3.2
Dobra¢ tak wartosci rezystancji R, 1 indukcyjnosci L aby w odbiorniku obwodu z rys. 3.11
wydzielita si¢ maksymalna moc czynna. Obliczy¢ t¢ moc. Dane liczbowe elementéw obwodu:

e(t)=10012sinr V, Z, =50Q, X =20Q, R, =20Q.
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o0 (4 1
l

Rys. 3.11. Schemat obwodu do zadania 3.2

Rozwiqzanie
Impedancja catkowita odbiornika
—-j20-20

Z=R+jX,+
T 020

=R +jX, +10- /10

Wobec zerowej wartosci czgsci urojonej impedancji generatora X, =0 czgs¢ urojona

impedancji odbiornika musi by¢ takze réwna zeru, czyli

Im(Z)=0— X, =10Q

Dopasowanie odbiornika do generatora pod wzgledem mocy czynnej wymaga, aby

Re(Z)=Re(Z,)

R +10=50 = R, = 40Q

Prad w obwodzie

,__E__ 100 _
Z+Z, 50+50

Moc wydawana przez zrodto

S, =EI"=100

Moc odbiornika

P=|IR=50
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Na odbiorniku w warunkach dopasowania mocy wydziela si¢ potowa mocy zrédia. Druga

polowa wydziela si¢ na rezystancji zrédta.
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Lekcja 4. Metody analizy ztozonych obwodéw RLC w stanie ustalonym przy

wymuszeniu sinusoidalnym

Wstep

Analiza obwodow w stanie ustalonym przy wymuszeniu sinusoidalnym tylko w najprostszym
przypadku potaczenia szeregowego lub réwnoleglego elementéw jest zagadnieniem prostym,
nie wymagajacym rozwiazywania uktadu réwnan. W wigkszosci bardziej zlozonych
obwodéw nalezy liczy€ si¢ z rozwigzaniem wielu rownan algebraicznych typu zespolonego.
Lekcja czwarta poswigcona bedzie skutecznym metodom analizy ztozonych obwodow
RLC w stanie ustalonym przy wymuszeniach sinusoidalnych. Podstawowym zalozeniem przy
wymuszeniu sinusoidalnym jest przyjgcie opisu symbolicznego elementéw obwodu, zgodnie

z ktéorym cewka opisana jest impedancja zespolona Z, = jwL a kondensator impedancja
Z. =~ jE' Zrodio sinusoidalne zastgpuje si¢ jego wartoscia skuteczna zespolona,

okreslang wedtug zasad podanych w lekcji drugiej.

Znanych jest wiele metod umozliwiajacych analiz¢ dowolnie zlozonych obwoddéw
elektrycznych, sposréd ktérych oméwimy metodg klasyczna, oparta na prawach Kirchhoffa,
zastosowaniu twierdzenia Thevenina i Nortona oraz metode we¢ztowa i oczkowa. W
przypadku wielu wymuszen o réznych czgstotliwosciach niezbgdne jest zastosowanie tak

zwanej zasady superpozycji obowiazujacej dla obwoddéw liniowych, wprowadzonej w

©

koncowej fazie lekcji.

4.1. Metoda rownan Kirchhoffa

W metodzie tej wykorzystuje si¢ w bezposredniej formie prawo pradowe i napigciowe
Kirchhoffa uzupetnione o rownania symboliczne opisujace poszczegdlne elementy obwodu.
W efekcie zastosowania praw Kirchhoffa otrzymuje si¢ uktad réwnan algebraicznych o
zespolonych wspdtczynnikach. Jesli zatozymy, ze obwdd posiada b galezi i n wezidw to w
rOwnaniach opisujacych obwdéd wykorzystuje si¢ (n-1) réwnan pochodzacych z prawa
pradowego Kirchhoffa. Pozostate (b-n+1) rownan wynika z prawa napigciowego Kirchhoffa

dla (b-n+1) oczek niezaleznych (dowolnie wybranych) w obwodzie.
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Jak z powyzszych rozwazan wynika w metodzie klasycznej wykorzystujacej
bezposrednio prawa Kirchhoffa istnieje potrzeba rozwiazania uktadu b réwnan z b
niewiadomymi. Jest to wigc metoda zlozona obliczeniowo, zwlaszcza jesli wezmie si¢ pod
uwage, ze wszystkie rownania sa zespolone. W efekcie metodg t¢ stosuje si¢ gtdwnie w
przypadku obwodéw o matej liczbie elementéw. Metodg zlustrujemy przyktadem liczbowym

obliczania pradéw i napie¢ w obwodzie przedstawionym na rys. 4.1.

Przyktad 4.1
Stosujac réwnania Kirchhoffa nalezy obliczy¢ wszystkie prady i napigcia w obwodzie
przedstawionym na rys. 4.1. Przyja¢ nastgpujace wartosci parametrow obwodu: R =2Q,

C=0,5F, L=1H, e(t) = 1042 sin(ax) V, i(t) =Ssin(ax —45°) A, o= 1ﬂ.
s

I3

|
2
(1) wl[r L @i

Rys. 4.1. Schemat obwodu do przyktadu 4.1

Rozwiqzanie
Przy sinusoidalnym wymuszeniu zastosujemy podejScie symboliczne, zgodnie z ktérym

przebiegi czasowe sa zastapione wartosciami zespolonymi. W przypadku zrédet przyjmuje
sie:  E=10e’° =10, I=%e"'450. Impedancja cewki jest réwna Z, = joL=jl, a

. . 1
impedancja kondensatora Z, =—j——=—j2.

oC
Przy oznaczeniach pradéw 1 napig¢ jak na rys. 4.1 z praw Kirchhoffa wynikaja

nastgpujace rownania pradowe 1 napigciowe
E-Z,1,—RI,=0
I1+1,-1,-1,=0

LR —-Z.1,=0
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Po uporzadkowaniu réwnan i wstawieniu wartosci liczbowych otrzymuje si¢ uktad 3 rownan

zespolonych w postaci

jI, +21,=10

5 450
L -1,-I,=——¢'%
1 2 3 \/5
21, + j21,=0

W obwodzie wyréznione zostaty 3 gatgzie, w ktorych obliczany jest prad, stad jego pelny opis

zawiera 3 niezalezne rownania. Rozwiazanie tych réwnan prowadzi do wyniku

I, =10+ j5=11,18¢"*"
I,=75-j5=90le 7"

I,=5+ j1,5=9,01e"*

Wartosci chwilowe pradéow sa zatem wyrazone w postaci nastgpujacych funkcji

sinusoidalnych

i,(1) = 11,182 sin(ax +26,5°)
i,(1) = 9,012 sin(ax —33,7°)

iy(t) = 9,012 sin(ax + 56,3")

Wykorzystujac prawo Ohma otrzymuje si¢ nastgpujace wartosci napie¢ na elementach

pasywnych

U, =Z,1=1118¢""

U, = RI=18,02¢ 77

Wartosci chwilowe napig¢ wyrazone sa w postaci funkcji sinusoidalnych
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u,(£) = 11,182 sin(ax +116,5°)

u, (1) =18,02+/2 sin(ar —33,7°)

Latwo sprawdzi¢, ze bilans pradow i napig¢ w obwodzie jest spelniony. Mianowicie w

przypadku pradéw (jeden we¢zet niezalezny)
I+1,-1,-1,=0
oraz napig¢ (dwa oczka niezalezne)

E-U,-U,=0
LR —Z.1,=0

4.2. Metoda oparta na twierdzeniu Thevenina

Jednym z wazniejszych twierdzen w teorii obwodéw jest twierdzenie Thevenina. Pozwala
ono zastapi¢ ztozony obwdd elektryczny o dowolnej strukturze i wartosciach elementéw,
przez obwdd prosty bedacy potaczeniem szeregowym jednej impedancji zastgpczej oraz
zrodia napigciowego. Umozliwia znaczne uproszczenie struktury obwodu, a w nastgpstwie w

bardzo prosty spos6b wyznaczy¢ prad lub napigcie jednej wybranej gatgzi obwodu.

Twierdzenie Thevenina
Dowolny, aktywny obwdd liniowy mozna zastapi¢ od strony wybranych zaciskow gal¢zi AB
uproszczonym obwodem réwnowaznym, ztozonym z szeregowego polaczenia jednego
idealnego zrédta napigcia i impedancji zastgpczej obwodu. Warto$¢ zrddta zastepczego
oblicza si¢ na podstawie analizy obwodu oryginalnego jako napigcie panujace na zaciskach
AB po odfaczeniu gatezi AB. Impedancja zastgpcza widziana z zaciskow AB dotyczy obwodu
po wylaczeniu gatgzi AB i po zwarciu wszystkich Zzrédet napigcia oraz rozwarciu zrddet
pradu.

Na rys. 4.2 przedstawiono spos6b transformacji obwodu zgodnie z twierdzeniem

Thevenina.
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Rys. 4.2. Transformacja obwodu zgodnie z twierdzeniem Thevenina

Prad I wystgpujacy w gatezi AB obwodu oryginalnego jest rowny pradowi I w tej samej
gat¢zi obwodu uproszczonego. Napigcie U,, wystgpujace na rysunku reprezentuje zrodto
zastgpcze, natomiast impedancja Z,, jest impedancja zastgpcza obwodu. Przy zatozeniu, ze
gataz AB w ktorej obliczamy prad reprezentowana jest przez impedancj¢ Z, prad tej galezi

mozna obliczy¢ korzystajac z prawa napigciowego Kirchhoffa
U,—-1(Z+Z,,)=0 4.1
z ktérego wynika wyrazenie na prad gatezi w nastgpujacej postaci

UAB

=48 4.2
Z+Z,, (%2

Metoda Thevenina w wigkszosci przypadkéw znakomicie upraszcza analiz¢ obwodu. Jest
szczegblnie uzyteczna w przypadkach, w ktorych trzeba wyznaczy¢ tylko jeden prad w
obwodzie, gdyz mozna dokona¢ tego bez koniecznoSci rozwiazywania ukladu réwnan

algebraicznych lub przy znacznej redukcji liczby tych rownan.

Przyktad 4.2

Korzystajac z twierdzenia Thevenina wyznaczy¢ prad I w gal¢zi AB obwodu mostka
przedstawionego na rys. 4.3, jesli e(t) = IOx/Esin(aJt) V, Ry=75Q, R =5Q, R,=5Q a
reaktancje cewki 1 kondensatora sa rowne odpowiednio X, =@l =5Q oraz

X, =1/aC=10Q, X, =1/0C, =5Q.
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Rys. 4.3. Schemat obwodu do przyktadu 4.2

Rozwiqzanie

Na rys. 4.4a przedstawiono schemat obwodu do wyznaczenia impedancji zastgpcze]

Thevenina.
ly
R :%C R :E Zc
U F 3
- BB 1, C}E
_—y
2
Fi'g ; R
2 ; ZL
=] T [+ ]
B Zab A
aj b)

Rys. 4.4. Postaci obwodu do wyznaczania a) impedancji zastgpczej Thevenina,

b) napiecia zrédta zastepczego

Latwo pokazaé, ze impedancja zastgpcza tego obwodu jest rOwna

RR, 2,2, _55 j5(=jl0)

= = ————=2,5+j10
R+R, Z, +Z. 5+5 j5-j10

AB
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Rys. 4.4b przedstawia obwdd do obliczenia wartosci zrédia zastgpczego U ,, w schemacie

zastgpczym Thevenina. Obliczajac kolejno prady

E
I, = =1
R +R,
E
= =2j
JXL_]XC

napigcie U ,, okresla sig¢ ze wzoru

U, =RI -Z.I,=-15

Z B U g

Rys. 4.5 Schemat obwodu zastgpczego wynikajacego z twierdzenia Thevenina

Wykorzystujac obwdd zastgpczy Thevenina z rys. 4.5 i prawo napigciowe Kirchhoffa,

warto$¢ skuteczna zespolona pradu I okresla si¢ ze wzoru

U, ~15 ~15

= = = — =—134¢*
Zyt+R —jXoo 25+ j10+75-75 11,18

Wartosci chwilowe pradu i(f) wyznaczane sa z zaleznosci

i(t) ==134sin(ax —26")A

Zauwazmy, ze zastosowanie twierdzenia Thevenina umozliwilo rozwiazanie obwodu
wzgledem jednego wybranego pradu bez konieczno$ci rozwigzania uktadu réwnan

algebraicznych.
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4.3. Metoda oparta na twierdzeniu Nortona
Pozwala ono zastapi¢ ztozony obwdd elektryczny o dowolnej strukturze i wartoSciach
elementéw, przez obwdd prosty bedacy potaczeniem réwnoleglym jednej impedancji

zastepczej oraz idealnego zrédta pradowego.

Twierdzenie Nortona

Dowolny aktywny obwdd liniowy mozna od strony wybranych zaciskow AB zastapic
obwodem réwnowaznym, ztozonym z réwnoleglego potaczenia idealnego zrédia pradu i
impedancji zastgpczej obwodu. Warto$¢ zrédta zastgpczego oblicza si¢ w obwodzie
oryginalnym jako prad zwarciowy gal¢zi AB. Impedancja zast¢pcza widziana z zaciskow AB
dotyczy obwodu po wylaczeniu gatezi AB 1 po zwarciu wszystkich zrédet napigcia oraz
rozwarciu zrodet pradu i jest identyczna z impedancja zastgpcza w twierdzeniu Thevenina.

Rys. 4.6 przedstawia schemat transformacji obwodu zgodnie z twierdzeniem Nortona.

gataz AB gataz AE
A A
I I
Obwaod U .
liniowy Z — Zyg U Z
+- |Z 4
B B

Rys. 4.6. Schemat transformacji obwodu wedtug twierdzenia Nortona

Prad I oraz napigcie U wystepujace w gatezi AB obwodu oryginalnego sa réwne
odpowiednio pradowi I oraz napigciu U w tej samej galezi obwodu uproszczonego. Zrédto
pradowe I, wystgpujace na rysunku reprezentuje zrodlo zastgpcze, natomiast impedancja
Z,, jest impedancja zastgpcza obwodu. Przy zatozeniu, ze galaz AB reprezentowana jest

przez impedancj¢ Z, napigcie tej galgzi oblicza si¢ z prawa pradowego Kirchhoffa

1 1 ., . . . .
I.-U [— + —j =0, ktére pozwala wyrazi¢ poszukiwane napigcie gatgzi w postaci
AB
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v L. (4.3)
1/1Z+1/Z,,

Znajomos¢ napigcia pozwala wyznaczy¢ na podstawie prawa Ohma prad galezi korzystajac z
zaleznosci I =U/Z. Podobnie jak metoda Thevenina, zastosowanie twierdzenia Nortona
umozliwia obliczenie pradu i napigcia tylko jednej gatezi obwodu. Zwykle z punktu widzenia

obliczeniowego wygodniejsze jest uzycie metody Thevenina.

4.4. Rownowaznos¢ twierdzenia Thevenina i Nortona

Twierdzenie Thevenina i Nortona pozwalaja wyznaczy¢ uproszczone schematy zastgpcze
tego samego ukladu elektrycznego z punktéw AB obwodu wyjsciowego. Oba schematy
uproszczone stanowia wigc obwody zastgpcze rOwnowazne sobie, co oznacza, ze prad i
napigcie w galezi AB, ktéra nie ulegla zmianie w wyniku transformacji, sa takie same.
Oznacza to, ze galaz szeregowa zawierajaca idealne zrédio napigcia E i impedancje¢ Z moze
by¢ bez zmiany pradu w obwodzie zewngtrznym zastapiona gal¢zia réwnolegla zawierajaca

idealne zrédto pradowe I oraz impedancj¢ Z, jak to zilustrowano na rys. 4.7.

=
I
o
[
-

E=2-

I
M1 [T

Rys. 4.7. Réwnowazno$¢ obwoddéw zastepczych Thevenina i Nortona

&

Wzajemne relacje migdzy warto$ciami zrédta pradu i napigcia okresla wzor

4.4)

~
Il
N|S
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przy zamianie gale¢zi szeregowej na réwnolegla oraz

U=7I (4.5)

przy zamianie gal¢zi rownoleglej na szeregowa. Impedancja Z w obu obwodach zastgpczych
pozostaje taka sama. Dla zilustrowania korzys$ci pltynacych z réwnowaznos$ci obu twierdzen
rozpatrzmy obwdd z rys. 4.8a zawierajacy zarowno zrédta pradu jak i napigcia. Zastosowanie
rOwnowaznosci twierdzenia Thevenina 1 Nortona pozwala uzyska¢ obwdd zawierajacy

wylacznie jeden typ zrédet (pradowych) jak to przedstawiono na rys. 4.8.

1
|
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a) b)
Rys. 4.8. Przyktad transformacji obwodu wykorzystujacej réwnowazno$¢ obwodéw
zastgpczych Thevenina i1 Nortona: a) obwdd oryginalny zawierajacy zrédia pradu i1 napigcia,

b) obwdd po transformacji zawierajacy wytacznie zrédia pradowe

4.5. Metoda potencjatow weztowych

Metoda potencjaléw wezlowych, zwana réwniez metoda wezlowa, jest jedna z
najogdlniejszych 1 najczesciej stosowanych metod, pozwalajacych wyznaczy¢ prady
wszystkich galezi wystepujacych w obwodzie. Jako zmienne przyjmuje si¢ w niej potencjaty
poszczegbdlnych weztéw obwodu okreslane wzgledem jednego arbitralnie wybranego wezta
uznanego za wezel odniesienia (,,masy”), ktérego potencjal przyjmuje si¢ za réwny zeru.
Liczba réwnan w tej metodzie jest rowna liczbie we¢zléw niezaleznych a wigc znacznie
mniejsza niz w metodzie wykorzystujacej bezposrednio uktad rownan otrzymanych w wyniku
zastosowania praw Kirchhoffa.

Metoda we¢ztowa wynika bezposrednio z réwnan pradowych Kirchhoffa napisanych

dla wszystkich weztéw niezaleznych w obwodzie. Prad kazdej gatgzi obwodu jest wyrazany
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za posrednictwem potencjatow wezlowych. Zostato wykazane, ze kazdy obwdd liniowy RLC
moze by¢ opisany réwnaniem macierzowym potencjatow weztowych o postaci

YV=I, (4.6)
w ktérej Y jest macierza weztowa o wymiarach NXN, gdzie N jest liczba weztow
niezaleznych w obwodzie, V jest wektorem niezaleznych potencjatow weztowych o wymiarze

N a I, jest wektorem pradow zrédtowych stanowiacych wymuszenie. Macierz wezlowa Y

okreslona jest w postaci

TR ¢ Y
vo|B Ve e Y )
YNl YN2 YNN

4
VZ
V= (4.8)
V N
zrl
Izr2
I,=|° (4.9)
Ier

Elementy Y, potozone na giéwnej diagonalnej macierzy Y nazywane sa admitancjami

wlasnymi wezta i-tego. W przypadku obwodéw RLC bez zrédet sterowanych admitancja
wlasna wezla i-tego jest rowna sumie admitancji wszystkich galezi wlaczonych w i-tym

wezle. Elementy Y, potozone poza giéwna diagonalna sa admitancjami wzajemnymi

migdzy we¢ztem i-tym oraz j-tym. Admitancja wzajemna dwu we¢ztow jest rOwna admitancji

taczacej te wezty wzigte] ze znakiem minus. Admitancja wzajemna we¢zta i-tego oraz j-tego
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jest taka sama jak wezta j-tego oraz i-tego, tzn. Y, =Y. Macierz admitancyjna Y dla

obwodéw RLC bez zrodet sterowanych jest wigc macierza symetryczna.

Elementy wektora wymuszef pradowych I, sa rowne sumie wszystkich pradow
zrodlowych wplywajacych do danego wezta, przy czym prad zrédtowy doptywajacy do wezta
bierze sig ze znakiem plus a prad odptywajacy od wezta ze znakiem minus.

Nalezy podkresli¢, ze metoda potencjatdéw weztowych dopuszcza istnienie w
obwodzie jedynie zrédel wymuszajacych typu pradowego. Jesli w obwodzie wystgpuja
rowniez zrédla napigciowe nalezy je przeksztalcic w odpowiednie zrodta pradowe
wykorzystujac do tego celu réwnowaznos¢ Thevenina — Nortona (patrz rys. 4.7). Sposéb
formutowania réwnan we¢ztowych zilustrujemy na przyktadzie obwodu przedstawionego na

rys. 4.9.

Przyktad 4.3
Korzystajac z przedstawionych regul formutowania réwnan weztowych nalezy napisaé

rownanie potencjatéw weztowych dla obwodu przedstawionego na rys. 4.9.

(V3
5 g
e [ O
IzE
| N

Rys. 4.9. Schemat obwodu do przyktadu 4.3

Rozwiqzanie

Obwod zawiera 3 wezly niezalezne: V), V, oraz V, mierzone wzgledem wezta
odniesienia jak to oznaczono na rysunku. Oznaczajac admitancje przez Y, gdzie Y=1/Z
otrzymuje si¢ macierz potencjatéw weztowych Y oraz wektor pradéw wymuszajacych I, w

postaci
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Y=-Y, YV,+Y,+Y, Y,
0 -7, Y, +Y, +Y,
Iz1+1z2

I, =\EY,-1,-1,
I, —1.—EY;

Roéwnanie potencjaléw weztowych obwodu przyjmuje postac

YV=I_,
4

w ktorej V=|V, |.
V3

Na podstawie obliczonych wartosci napie¢ we¢ztowych obwodu mozna w prosty
sposob korzystajac z prawa napigciowego Kirchhoffa dla poszczegdlnych gatezi obwodu
wyznaczy¢ prady gateziowe. Wystarczy w tym celu zastosowa¢ badz prawo Ohma (jesli gataz
zawiera jedynie element pasywny) lub rownanie napigciowe Kirchoffa dla galgzi szeregowe;j
zawierajacej zrédlo napigcia i element pasywny. Przykladowo dla obwodu z rys. 4.9

odpowiednie zaleznos$ci przyjmuja postac

1, =Y,(V,~V,)
I,=Y,(V,-E,)
I,=Y,(V,-V,)
I, =Y,(V,+E)

I =YV,

Nalezy podkresli¢, ze metoda potencjalow weztowych wymaga rozwiazania uktadu N
roOwnan, gdzie N oznacza liczb¢ weztéw niezaleznych. Zwykle liczba weztéw jest duzo
mniejsza niz liczba elementéw obwodu, stad metoda potencjatéw weztowych jest znacznie

efektywniejsza niz metoda klasyczna wykorzystujaca bezposrednio prawa Kirchhoffa.
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Reguty tworzenia opisu weztowego przedstawione powyzej zaktadaly istnienie
jedynie elementéw pasywnych RLC oraz zrédet wymuszajacych typu pradowego. Dzigki
takiemu zalozeniu sa one bardzo proste 1 tatwe w stosowaniu.

W przypadku wystapienia zrodet sterowanych w obwodzie trudno jest poda¢ formutg
og6lna pozwalajaca okresli¢ zaréwno macierz admitancyjna jak 1 wektor wymuszen
pradowych. Zasada tworzenia opisu admitancyjnego w takim przypadku Kkorzysta
bezposrednio ze stwierdzenia, ze opis admitancyjny powstaje jako uporzadkowany zbior
rownan wynikajacych z prawa pradowego Kirchhoffa, w ktoérych wszystkie prady galgziowe
zostaly wyrazone poprzez potencjaty weztowe 1 wartos$ci zrédet wymuszajacych. Macierz
admitancyjna Y wynika wéwczas z uporzadkowania macierzowego powstalego uktadu
rOwnan. Taka metod¢ tworzenia rownan we¢ztowych zilustrujemy na przyktadzie obwodu

przedstawionego na rys. 4.10.

Przyktad 4.4
Korzystajac z praw pradowych Kirchhoffa wyznaczy¢ opis admitancyjny obwodu

przedstawionego na rys. 4.10.

Rys. 4.10. Schemat obwodu do przyktadu 4.4

Rozwiqzanie

W obwodzie wystgpuja dwa zrodta sterowane, z ktorych jedno jest sterowane napigciem
U,=(V»-V)) a drugie pradem [,=V,/Z,. Biorac pod uwageg, ze napigcie wezla trzeciego jest
rowne Vi=FE, w opisie obwodu przy zastosowaniu metody weztowej wystgpuja jedynie dwa
niezalezne potencjalty weztowe V) i V,. Z prawa pradowego Kirchhoffa napisanego dla dwu

weztow o potencjatach Vi1 V, wynikaja nastgpujace rOwnania
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I-1,+1,=0
I,—k,,—1,=0

Wyrazajac wszystkie prady gal¢ziowe przez napigcia wgztowe

I, =YV,
L=Y,V,-V)
I :Y3[E_V2 +k1(V2 _Vl)]

1 podstawiajac je do rownan pradowych Kirchhoffa otrzymuje si¢

Y,[E-V, +k,(V,=V)]-kYV -Y,(V,-V,)=0
Y,(V,=V)+1-YV,=0

Porzadkujac powyzszy uktad réwnan i zapisujac go w postaci zalezno$ci macierzowe]

otrzymuje si¢ ostatecznie uktad réwnan weztowych

Y, +Y, -7, vl [1
—Y, + kY, + kY, Y, +Y,—kY,|V,| |VE

Jest to uktad dwu réwnan z dwoma nieznanymi napigciami weztowymi V; oraz V,. Po
rozwiazaniu tych réwnan mozna wyznaczy¢ wszystkie poszukiwane prady w obwodzie,
korzystajac z przytoczonych wczesniej rOwnan.

Nalezy zwroci¢ uwage na uproszczenia wynikajace z istnienia w obwodzie idealnego
zrédta napiecia. Zrédio takie ustala potencjat okre§lonego wezta (gdy jest whaczone
wzgledem wezta odniesienia) lub uzaleznia potencjal jednego wezta wzgledem drugiego (gdy
jest wlaczone migdzy dwoma weztami niezaleznymi). W obu przypadkach prowadzi to do

redukcji liczby réwnan opisujacych obwaod.

4.6. Metoda pradow oczkowych

W metodzie pradéw oczkowych, zwanej réwniez metoda oczkowg, wprowadza si¢ prady
oczkowe jako zmienne, czyli prady przypisane niezaleznym oczkom wystgpujacym w
obwodzie. Przyktadowy wybor oczek niezaleznych i oznaczenie pradéw oczkowych obwodu

przedstawiono na rys. 4.11.
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Rys. 4.11. Przyktad wyboru oczek niezaleznych w obwodzie

Oznaczmy w ogdlnosci wektor pradéw oczkowych w postaci

102
I = (4.10)

w ktorej I, oznacza prad oczkowy k-tego oczka. Dla uzyskania opisu oczkowego

wykorzystuje si¢ prawo napigciowe Kirchhoffa napisane dla wszystkich oczek niezaleznych
obwodu. Nastgpnie wyraza si¢ wszystkie prady gal¢ziowe poprzez prady oczkowe (prad
galeziowy jest rowny sumie lub réznicy pradéw oczkowych przeprowadzonych przez dana

galaz) 1 otrzymuje opis obwodu w postaci uktadu réwnan oczkowych
71, =E (4.11)
gdzie macierz oczkowa Z oraz wektor napi¢¢ wymuszajacych E przyjmuja postac

Z, Zy . Zy
g\ % Zn o Ty 1)

Ly, Ly, .. Zyy
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E= (4.13)

Elementy Z, polozone na giéwnej diagonalnej macierzy Z nazywamy impedancjami
wlasnymi oczka i-tego. Przy zatozeniu, ze wszystkie prady oczkowe maja identyczny zwrot,
dla obwodéw RLC bez zrédet sterowanych impedancja wtasna oczka i-tego jest rowna sumie
impedancji wszystkich gatezi wystgpujacych w oczku. Elementy Z; potozone poza gtéwna
diagonalng s3 impedancjami wzajemnymi mig¢dzy oczkiem i-tym oraz j-tym. Impedancja
wzajemna dwu oczek przy identycznym zwrocie wszystkich pradow oczkowych jest réwna
impedancji wspdlnej dla obu oczek wzigtej ze znakiem minus. Impedancja wzajemna oczka i-

tego oraz j-tego jest taka sama jak oczka j-tego oraz i-tego, tzn. Z; = Z ;. Macierz Z jest wigc

macierza symetryczna.

Element k-ty wektora wymuszen napigciowych E jest réwny sumie wszystkich napig¢
zrodtlowych wystepujacych w k-tym oczku. Przy zatozonej orientacji oczka napigcie zrodtowe
dodaje si¢ ze znakiem plus jesli jego zwrot jest identyczny z ta orientacja a ze znakiem minus
jesli ten zwrot jest przeciwny. Sposéb tworzenia opisu oczkowego zilustrujemy na

przyktadzie obwodu z rys. 4.12.
Przyktad 4.5

Dla obwodu przedstawionego na rys. 4.12 napisa¢ réwnanie pradéw oczkowych przy

zatozeniu uktadu oczek niezaleznych jak na rysunku.
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Rys. 4.12 Schemat obwodu do przyktadu 4.5

Rozwiqzanie
Obwod zawiera 3 oczka niezalezne, stad wymiar macierzy oczkowej jest rowny 3,
podobnie jak diugos¢ wektora pradow oczkowych oraz wektora napig¢ wymuszajacych.

Korzystajac z podanej wczesniej reguty tworzenia opisu oczkowego otrzymuje sig

Z,+7Z,+7Z, -Z, -7,
Z= -Z, Z,+Z,+Z, —Z
-7, - Zs i +Z,+7Z,
—E, —E;
E=| E,;+E,
E —Eg

Biorac pod uwage ze obwdd zawiera trzy nieznane prady oczkowe tworzace wektor pradéw

T z . . ., , T
I,=[1, 1, 1I,]",réwnanieoczkowe ZI, = E stanowi zbior trzech réwnan liniowych.

Rozwigzanie tego uktadu réwnan pozwala okreslic te zmienne. Znajomo$¢ pradow

oczkowych pozwala wyznaczy¢ wszystkie prady gateziowe obwodu. Mianowicie
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I,=1,-1,
I,=1,
I,=1,-1,
Ig=-1,

Metoda pradéw oczkowych wymaga rozwiazania uktadu N réwnan, gdzie N oznacza liczbe
oczek niezaleznych. Podobnie jak w metodzie wegztowej liczba oczek jest zwykle duzo
mniejsza niz liczba elementéw obwodu, stad metoda pradéw oczkowych jest duzo bardziej

efektywna niz metoda klasyczna wykorzystujaca bezposrednio prawa Kirchhoffa.

4.7. Zasada superpozycji

Omoéwione wczesniej metody analizy symbolicznej stanowia dobry i skuteczny sposéb
rozwigzania problemu przy istnieniu w obwodzie zrodet sinusoidalnych o tej same;j
czestotliwosci, gdyz dla kazdego zrédia elementy reaktancyjne LC przedstawiaja soba te
same wartosci reaktancji. Istotna trudnos¢ wystepuje dopiero przy istnieniu w obwodzie wielu
zrodet o réznych czestotliwosciach. W takim przypadku nie istnieje pojgcie impedancji
wspdlnej dla kazdego zrédta, co uniemozliwia zastosowanie metody symbolicznej. Jedynym
rozwiazaniem pozostaje wtedy zastosowanie zasady superpozycji. Obowiazuje ona tylko dla

obwoddéw liniowych. Jej tres¢ jest nastgpujaca.

Zasada superpozycji
Odpowiedz czasowa obwodu elektrycznego liniowego przy warunkach poczqtkowych

zerowych jest rowna sumie odpowiedzi czasowych na kazde wymuszenie z osobna.

Tak ogdlnie sformulowana zasada obowiazuje zaréwno w stanie ustalonym jak i
nieustalonym obwodu. W przypadku analizy stanow ustalonych jej zastosowanie w analizie
obwodéw polega na rozbiciu danego obwodu o wielu wymuszeniach na wiele obwodéw
zawierajacych po jednym wymuszeniu, rozwigzaniu kazdego z nich oddzielnie a nastgpnie
zsumowaniu odpowiedzi czasowych kazdego obwodu. Nalezy pamigta¢ przy tym o zasadzie,
ze eliminowane zrdodla sa zastgpowane zwarciem (jesli zrodlo jest napigciowe) lub

rozwarciem (gdy zrédto jest pradowe).
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Nalezy podkresli¢, ze zgodnie z zasada superpozycji sumowanie odpowiedzi
pochodzacych od r6znych wymuszen moze odbywaé si¢ wytacznie w dziedzinie czasu.
Sumowanie wartosci zespolonych od poszczegdlnych wymuszen byloby powaznym bi¢dem,
gdyz sugerowaloby istnienie rozwigzania obwodu zawierajacego tylko jedna harmoniczna.

[lustracjg stosowania zasady superpozycji w analizie obwodéw przedstawiono na rys. 4.13.

(D Obwod T Dbwad + ‘[ Obwaod
lini lini T liri
i N oy . i Iniowy Iniowy A

Rys. 4.13. Ilustracja zasady superpozycji w obwodach liniowych

©

Przyktad 4.6

Stosowanie praktyczne zasady superpozycji zostanie zilustrowane na przyktadzie obwodu z
rys. 4.14a zawierajacego dwa zrddia, z ktoérych jedno jest state a drugie sinusoidalne. Nalezy
dokona¢ analizy obwodu stosujac zasade superpozycji. Przyja¢ nastgpujace wartosci

elementow: R=2Q, L=2H, C=1F, i(t) = IOx/Esin(a)t+45°)A, e(t)=2V, w= lﬂ.

S

I3

|, 1
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Rys. 4.14 Schematy obwodéw do przyktadu 4.6: a) schemat obwodu oryginalnego o dwu
zrédtach, b) schemat obwodu dla zrédta statego, ¢) schemat obwodu dla zrédia

sinusoidalnego

Rozwiqzanie

Ze wzgledu na wystapienie w obwodzie 2 réznych typéw wymuszen (zrédto napigciowe state
1 zrodto pradowe sinusoidalne) konieczne jest zastosowanie w analizie zasady superpozycji.
Na rys. 4.14c przedstawiono schemat obwodu przy istnieniu zrédia sinusoidalnie zmiennego
i(f) a na rys. 4.14b obwdd dla zrédta napigciowego o wartosci statej e(r) = E. Wymuszenie
stale moze by¢ rozpatrywane réwniez jak sinusoidalne o czg¢stotliwosci réwnej zeru. Biorac

pod uwagg, ze dla zrédla stalego @w =0, reaktancja cewki staje si¢ zerowa (X, =wL =0) a
reaktancja kondensatora rowna nieskonczonosci (X, =1/@wC = o). Oznacza to, ze z punktu

widzenia wymuszenia stalego w stanie ustalonym cewka stanowi zwarcie a kondensator
przerwe.

Dla obwodu o wymuszeniu sinusoidalnym warto$ci reaktancji indukcyjnej i
pojemnosciowe] sa odpowiednio réwne: X, =wL=2Q, X.=1/wC =1Q. Rozwiazujac

obwdd przy wymuszeniu sinusoidalnym otrzymuje si¢

L _1 + 1 +l+l:1+j0,5
Zpe JX, —-JX. R R
z =L 0804

me =05 T

UL =1Z,,. =10e"5(0.8— jO.4) = 8,48 + j2,83 = 8,94
) _ URLC _ . _ —j162°
I = TR —4,24— jl4=4,47e

10 = Yue _ 5831 j848=80940"

- JXc

10 =Yue 141 jana=aa70m
X,

U I
[ =2re - g

Warto$ciom zespolonym pradu towarzysza nastgpujace postacie rozwigzania w czasie
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i (1) = 4,472 sin(ax —162°)
i (1) = 8,94+/2 sin(ex +108°)
iD (1) = 4,472 sin(@x — 71,6")

i (1) = —4,47/2 sin(ax —162°)

Rozwiazanie obwodu z rys. 4.14b przy wymuszeniu staltym nie wymaga stosowania metody
symbolicznej, gdyz jest to obwdd rezystancyjny, dla ktérego mozna od razu podac

rozwiazanie w czasie. Poszczegdlne prady rownaja si¢

P =iP(n===1

£
R
0

(E (E
9@ =i" ()=

Calkowite rozwiazanie na prady w obwodzie jest suma rozwiazan obwodu dla wymuszenia

sinusoidalnego oraz stalego. Stad

i, (1) = 1+ 4,472 sin(ar —162°)A
i, (1) = 8,94+/2 sin(ax +108°)A
iy (1) = 1+ 4,472 sin(ar — 71°)A

i, (1) = —4,47\2 sin(ar —162°)A

Nalezy podkresli¢, ze odpowiednio do zasady superpozycji sumowanie odpowiedzi
pradowych na wymuszenie state i sinusoidalne mogto odby¢ si¢ wylacznie w dziedzinie

czasu.

Zadania sprawdzajace

Zadanie 4.1

Stosujac metod¢ Thevenina obliczy¢ prad w gatezi AB obwodu przedstawionego na rys. 4.15.

Dane liczbowe elementéw: R, =4Q, R, =8Q ,R, =2Q R, =2Q e(t) = 30v/2sinar V.
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Rys. 4.15 Schemat obwodu do zadania 4.1

Rozwiqzanie

Impedancja z zaciskow AB obwodu (rys. 4.16a) jest réwna

o

A Ry R3 W 1 s R

R R R Ry
a)

p— =1 F
I B
) (e
Z 8 b)

Rys. 4.16 Schematy obwodu do obliczania: a)impedancji Z4p, b) napigcia Uap, ¢) pradu I

RR, | RR,

= =293
R+R, R,+R,

AB

Prady w obwodzie z rys. 4.16b:
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R +R, ©
E 30
12 = =— =
R,+R, 10
Napigcie Uag

Uy=RI,—RI =4

Poszukiwany prad I z obwodu zastgpczego Thevenina (rys. 4.16¢)

I, =—22=136A

AB

N|S

Zadanie 4.2

Napisa¢ rownanie potencjatow weztowych dla obwodu przedstawionego na rys. 4.17

1 1‘-;5; o “v_"z 3 ‘-EN
— — |

D D, Qo[

Rys. 4.17 Schemat obwodu do zadania 4.2

Rozwiqzanie
Przy podanych na rysunku oznaczeniach potencjaléow weztéw mierzonych wzgledem wezta
odniesienia bezposrednie zastosowanie prawa pradowego Kirchhoffa do wszystkich weztow

obwodu i wyrazenie pradow poprzez potencjalty weztowe pozwala uzyska¢ réwnanie

wezlowe w postaci
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Zadanie 4.3

Napisa¢ macierzowe rownanie oczkowe dla obwodu przedstawionego na rys. 4.18

E.
fﬁ’iﬁ Ei1

La ID?.s‘ Ls e
1 -
l
E. () (DEE— Zs
IDZ } IG3 :
| O
| S |
Z;

Rys. 4.18 Schemat obwodu do zadania 4.3

Rozwiqzanie
Z prawa napigciowego Kirchhoffa zastosowanego do trzech oczek zaznaczonych na rysunku
po wyrazeniu pradoéw gateziowych poprzez prady oczkowe otrzymujemy réwnanie oczkowe

0 postaci

Z+Z,+7Z, -7, —Z+r|I
-7, Z,+Z, 0 |I1,|=|E,-E,
-Z, 0 Z+Z |1, E,

Zadanie 4.4
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Wyznaczy¢ rozwigzanie obwodu z rys. 4.19 stosujac zasadg superpozycji. Przyja¢

d
i(1) = 242 sin(ax +90°) A, e(t)=E=5V, R=1Q, L=1H , C=05F , o=1"2<
)
F i L
—
. IR
Iqu ar

i(t@ ——C R U

e(t)=E

Rys. 4.19 Schemat obwodu do zadania 4.4

Rozwiqzanie
A) Rozwiqzanie obwodu dla sktadowej statej (zrodto E)

Obwdd dla sktadowej statej przedstawiono na rys. 4.20a. Cewka w stanie ustalonym dla

sktadowej statej jest zwarciem a kondensator przerwa.

R
rl: ' —
{E)

R o
a) b)

Rys. 4.20 Schemat obwodu dla poszczegdlnych zrédet: a) zrédto napigcia statego,

E

b) zrédto pradu sinusoidalnego

Dla pradu stalego tylko jeden prad, i\”, jest rézny od zera. Jego warto$¢ jest réwna

e _E _
i, =—=5
R
H(E) _ H(E) _
i, =i, =0

B) Rozwiqzanie obwodu dla sktadowej zmiennej (Zrodto i(t))
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Obwdd dla sktadowej sinusoidalnej przedstawiono w postaci symbolicznej na rys. 4.20b.
Parametry ~ symboliczne  obwodu sa  nastepujace: [ =2¢""", Z, = jol=jl,

Z. =1/ joC =—j2. Impedancja zastgpcza cewki 1 kondensatora jest réwna

— ZLZC —
oz 4z,

Napigcie i prady w obwodzie:

Uy =Z,1=-4
()

Iél) — UAB — _]2
ZC

Uy _ .
IS :_ZAB = j4

L

0 _
I;"=0
Wartosci pradéw wyrazone w postaci czasowe;j:

ilh (1) = 24/2 sin(r —90°)
i (1) = 42 sin(z +90)

i()=0
Calkowite rozwiazanie obwodu jest suma obu sktadowych:

i () =iP @) +i" (1) = 24/2sin(t —90°) A
i, =iP () +i (1) = 42 sin(t +90°)A

$(E)

i, () =i @) +i (1) =5A
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Lekcja 5. Analiza obwodow sprze¢zonych magnetycznie

Wstep

Interesujace zjawiska powstaja w obwodach zawierajacych cewki potozone blisko siebie, w
ktorych strumienie magnetyczne obu cewek zachodza na siebie. Nastgpuje wowczas zjawisko
sprzg¢zenia magnetycznego obu obwodéw 1 przenoszenia energii z jednego obwodu do
drugiego.

W lekcji piatej dokonamy analizy zjawisk powstajacych w obwodach sprz¢zonych
magnetycznie. Wprowadzone zostana metody analizy takich obwoddéw, wykorzystujace
eliminacj¢ sprzgzen magnetycznych. Sprz¢zenia magnetyczne umozliwiaja budowg
urzadzenia zwanego transformatorem, transformujacego poziom napigcia wejSciowego w
wyjsciowe o innej wartosci. Ostatnia czgs¢ lekcji poswigcona bedzie analizie transformatora
powietrznego i transformatora zbudowanego na rdzeniu ferromagnetycznym. W tym ostatnim
przypadku mamy do czynienia z obwodem nieliniowym, do ktérego stosuje si¢ specjalne

metody analizy.

O

5.1. Zjawiska fizyczne przy sprzeieniu magnetycznym cewek
Przyjmijmy, ze dwie cewki sa potozone blisko siebie w taki sposob, ze strumien magnetyczny
jednej cewki obejmuje réwniez druga. Calkowity strumien skojarzony z dana cewka

(strumien skojarzony jest suma strumieni ¢ kazdego zwoju cewki, co przy z zwojach o
identycznym strumieniu daje ¥ = z¢) jest wtedy suma obu strumieni jesli ich kierunki sa

zgodne lub ich réznica, jesli kierunki strumieni sa przeciwne. Strumienie obu cewek

zapiszemy wowczas w postaci.

P =P P, (5.1)
P =P, P, (5.2)

Strumien ¥,, wytworzony jest w cewce pierwszej od pradu tej cewki a strumien ¥,

wytworzony w cewce pierwszej pochodzi od pradu cewki drugiej skojarzonej z pierwsza.
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Podobnie strumien ¥,, wytworzony jest w cewce drugiej od pradu tej cewki a strumien ¥,,

wytworzony w cewce drugiej pochodzi od pradu cewki pierwszej skojarzonej z druga.
Uwzgledniajac pojecie indukcyjnosci wilasnej 1 wzajemnej wprowadzone w rozdziale

pierwszym dla cewek liniowych sprzgezonych magnetycznie obowiazuja nastgpujace relacje:

¢ Indukcyjnosci wtasne

¥
L==" (53)
L
L,= ﬁ (5.4)
)
¢ Indukcyjnosci wzajemne
¥
M,=—% (5.5)
)
M, = & (5.6)

Dla srodowisk o tej samej przenikalno$ci magnetycznej obie indukcyjnosci wzajemne sa
sobie rowne, to znaczy M,, = M,, = M . Dla dwu cewek sprzgzonych magnetycznie definiuje
si¢ wspolczynnik sprzezenia jako $rednia geometryczna wspoétczynnikow sprzgzenia obu
cewek, przy czym wspoélczynnik sprz¢zenia jednej cewki z druga jest okreslany jako stosunek
strumienia gléwnego cewki pochodzacego od pradu wiasnego do strumienia catkowitego
cewki. Wspoétczynnik sprz¢zenia cewek oznacza¢ bedziemy litera k. Spetnia on nastgpujaca

relacjg

M =k\LL, 5.7

z ktérej wynika, ze wspotczynnik sprzgzenia k jest réwny

M
LL,

k = (5.8)
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Przy idealnym (pelnym) sprzgzeniu cewek wartos¢ wspotczynnika sprzgzenia jest réwna
jeden (k=1). Indukcyjnos¢ wzajemna jest wowczas S$rednia geometryczna indukcyjnosci
wlasnych obu cewek. Przy braku sprz¢zenia magnetycznego migdzy cewkami wartos¢ k=0.
Sprzgzenie magnetyczne powoduje indukowanie sig napigcia w cewce od zmian pradu
wlasnego cewki i1 od zmian pradu cewki z nia sprz¢zonej. Wzory okreslajace odpowiednie

napigcia na cewkach sprz¢zonych magnetycznie dane sa woéwczas w postaci

w =T g Ay, dh (5.9)
b dr ' dt dt
u, = g Ay g i (5.10)

dt ° dt dt

Znak plus lub minus wystgpujacy we wzorze odpowiada sprz¢zeniu badz dodatniemu (znak
plus) badz ujemnemu (znak minus). Rodzaj sprzezenia zalezy od kierunku pradu cewki
wzgledem poczatku uzwojenia. Rys. 5.1 przedstawia sytuacje odpowiadajace sprzgzeniu

dodatniemu a rys. 5.2 ujemnemu.

i |_1 i |—1
1 YV L LI
Cu{ i
2 vy 2, ~ve
L, La
a) b

Rys. 5.1. Ilustracja sprzezenia dodatniego dwu cewek

i L, ) L4
1 T T |1 -~
¢ M
2 e I e e
L
a) : b) L

Rys. 5.2. Ilustracja sprz¢zenia ujemnego dwu cewek
Zauwazmy, ze przy istnieniu sprzgzenia magnetycznego w cewce generowane jest napigcie na

cewce nawet przy pradzie wlasnym cewki réwnym zeru. Oznacza to przenoszenie si¢ energii

z jednego obwodu do drugiego droga magnetyczna.
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5.2. Analiza obwodow magnetycznie sprzeionych przy wymuszeniu sinusoidalnym

5.2.1. Rownania symboliczne elementow sprzezonych magnetycznie

Analiza obwodéw ze sprz¢zeniami magnetycznymi w stanie ustalonym przy wymuszeniu
sinusoidalnym moze by¢ przeprowadzona przy zastosowaniu metody symbolicznej, w ktorej
w miejsce rozniczkowania wprowadza si¢ dzialania na liczbach zespolonych. Dla
wymuszenia sinusoidalnego wzory rézniczkowe upraszczaja si¢ do zaleznosci algebraicznych
typu zespolonego, ktére podobnie jak dla indukcyjnosci wilasnych wyprowadzonych w

rozdziale drugim mozna zapisa¢ w postaci

U, = joLl + joMI, (5.11)
U, = jolL,1, * joMI, (5.12)

Znak plus obowiazuje dla sprzezenia dodatniego (strumienie magnetyczne obu cewek
sumuja si¢) a znak minus dla sprze¢zenia ujemnego (strumienie magnetyczne obu cewek
odejmuja si¢). Jak wida¢ z powyzszych wzoréw cewki sprz¢zone magnetycznie reprezentuja
soba reaktancje, przy czym mozna tu wyrézni¢ dwa rodzaje reaktancji: reaktancje
indukcyjna wlasng (zwana dotad reaktancja indukcyjna) i reaktancje indukcyjng

wzajemng. Wprowadzmy nastgpujace oznaczenia

X, =wM  -reaktancja indukcyjna wzajemna

Z, = jwM -impedancja indukcyjna wzajemna.

Napigcie skuteczne zespolone na cewkach sprzgzonych mozna woéwczas opisac

nastgpujacymi wzorami

U =2,1+Z,1,=joLl * joMI, (5.13)

U,=2,,1,*7,1 = joLl, * joMI, (5.14)
w ktérych Z, oraz Z,, oznaczaja impedancje indukcyjnosci wlasnych cewki pierwszej i

drugiej, Z,, = joL,, Z,, = joL,. Dla wyznaczenia wartosci skutecznej napigcia na cewce

sprz¢zonej musza by¢ znane zaréwno warto$¢ skuteczna pradu jednej cewki jak i drugie;j,
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sprz¢zonej z nig. Znak sprzg¢zenia (plus lub minus) powoduje zmniejszanie (sprz¢zenie
ujemne) lub zwigkszanie (sprzgzenie dodatnie) napigcia danej cewki.

Najwazniejszym elementem analizy obwoddéw ze sprzgzeniami magnetycznymi jest
wyznaczenie pradow poszczegdlnych galgezi w obwodzie. Bezpo$rednie zastosowanie
poznanych dotad metod analizy obwodéw (metoda weztowa, oczkowa, Thevenina czy
Nortona) wymaga w pierwszej kolejnosci wyeliminowania sprzgzenia magnetycznego cewek,

a wigc pozbycia si¢ wptywu pradu jednej cewki na napigcie cewki drugiej.

5.2.2. Eliminacja sprzezen magnetycznych
Eliminacja sprzezen magnetycznych jest mozliwa bezposrednio na podstawie analizy
struktury obwodu 1 uwzglednienia potozenia poczatkéw uzwojen cewek wzgledem weziow
wspOlnych (lub uznanych za wspdlne przy braku ich bezposredniego potaczenia). W tym
przypadku mozna wyrézni¢ dwa rodzaje pofaczen:

e dwie cewki sprzg¢zone magnetycznie maja jednakowo usytuowane poczatki uzwojen

wzgledem wezla - takie cewki uwaza¢ bedziemy za jednoimienne (rys. 5.3)

o YTV oYY

- M

a) b)

Rys. 5.3. Cewki jednoimienne

e dwie cewki sprz¢zone magnetycznie maja przeciwnie usytuowane poczatki uzwojen

wzgledem wezla - takie cewki uwazac bedziemy za réznoimienne (rys. 5.4).

VY Y
o Y'Y I YTV ™Y T
a) b)

Rys. 5.4. Cewki r6znoimienne

W przypadku cewek jednoimiennych eliminacja sprz¢zenia magnetycznego prowadzi do

obwodu zastgpczego przedstawionego na rys. 5.5..
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Rys. 5.5. Eliminacja sprz¢zenia magnetycznego cewek jednoimiennych

)

W gateziach zawierajacych cewki pojawita si¢ impedancja wzajemna ze znakiem minus a w
galezi wspdlnej impedancja wzajemna ze znakiem plus. Latwo mozna pokazac, ze przy takim
sposobie eliminacji sprzgzeh magnetycznych napigcia na zaciskach zewngtrznych 1, 2 1 3 przy
niezmienionych pradach zewngtrznych w obu obwodach réwnaja sig¢ sobie (co jest warunkiem
rownowaznosci).

Schemat z rys. 5.6 odpowiada eliminacji sprz¢zenia w przypadku dwu cewek

réznoimiennych.
a
) L, b) L, +M
] o— YV e ' M
YR ey = |~ s
Ve YTV 5 N
|_2 |_2 +]

Rys. 5.6. Eliminacja sprzezenia magnetycznego cewek réznoimiennych

)

W galeziach zawierajacych cewki pojawita si¢ impedancja wzajemna ze znakiem plus a w

galezi wspdlnej impedancja wzajemna ze znakiem minus. Latwo udowodni¢, ze przy takim
sposobie eliminacji sprz¢zen napigcia na zaciskach zewngtrznych 1, 2 1 3 w obu obwodach
(oryginalnym i po eliminacji sprzezenia) przy tych samych pradach zewnetrznych réwnaja si¢
sobie (co jest warunkiem réwnowaznosci).

Przy eliminacji sprz¢zen magnetycznych przyjety zwrot pradow nie ma zadnego

wptywu na koncowa posta¢ obwodu bez sprz¢zen. Ma na nia wpltyw jedynie usytuowanie
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poczatkéw uzwojen cewek wzgledem wspdlnego wezla, czyli jednoimienno$¢ lub
réznoimienno$¢ cewek sprzezonych magnetycznie.

W obu przypadkach otrzymuje si¢ obwody bez sprzgzen, rownowazne oryginalnym
jedynie pod wzgledem pradowym. Napigcia w obu obwodach w czgsci podlegajace]
przeksztatlceniu sa calkowicie rdézne. Rzeczywiste napigcia panujace na elementach
podlegajacych transformacji powinny by¢ okreslane bezposrednio na podstawie obwodu
oryginalnego i powinny uwzglednia¢ sprzgzenie magnetyczne (wzory 5.13 1 5.14).

Nalezy podkresli¢, ze przy wielu cewkach sprzgzonych ze soba, eliminacja kazdego
sprzgzenia miedzy dwoma wybranymi cewkami moze zachodzi¢ niezaleznie od pozostatych

sprze¢zen, co znakomicie utatwia przeprowadzenie procesu eliminacji sprz¢zen.

Przyktad 5.1

Na rys. 5.7a przedstawiony jest obwdd zawierajacy trzy cewki sprzgzone magnetycznie ze
soba. Stosujac metode eliminacji sprzezen do kazdej pary cewek sprzgzonych ze soba
otrzymuje si¢ schemat obwodu bez sprzezen, réwnowazny pod wzgledem pradowym

obwodowi ze sprz¢zeniami (rys. 5.7b).

—

%—Mu

i, -
Ly My 5-Mos L+, oM, 5

LS-M1 3-[»123

a) né b 3®

Rys. 5.7. Przyktad eliminacji sprz¢zen magnetycznych wielu cewek: a) obwod oryginalny,

b) obwdd po eliminacji sprzgzen

Przy analizie obwodow elektrycznych zawierajacych sprzgzenia magnetyczne

pierwszym krokiem jest eliminacja sprz¢zen magnetycznych zgodnie z zasadami podanymi
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wyzej. Dzigki temu kazdy element obwodu staje si¢ uzalezniony jedynie od swojego pradu.
Schemat obwodu po eliminacji sprzezen jest rownowazny obwodowi oryginalnemu jedynie
pod wzgledem prgdowym. Stad obwdd taki moze stuzy¢ wylacznie obliczeniu pradéw. Dla
wyznaczenia napi¢¢ gal¢ziowych nalezy wréci¢ do obwodu pierwotnego ze sprz¢zeniami
magnetycznymi. Napiecia na elementach sprzezonych oblicza¢ nalezy uwzgledniajac

sprz¢zenia migdzy cewkami przy wykorzystaniu wzoréw (5.13) 1 (5.14).

Przyktad 5.2
Obliczy¢ rozptyw pradéw 1 rozklad napie¢ na poszczegdlnych elementach obwodu
elektrycznego ze sprzezeniami magnetycznymi, przedstawionego na rys. 5.8. Nalezy przyjac

nastgpujace wartosci elementéw: R, =10Q, L, =2H, L,=2H, M =1H, C =0,02F oraz

wymuszenie napigciowe sinusoidalne e(t) = 100\/5 sin(10r +45°) V.

M , L2
e WY e
¥’
e
L'I
| 2
2
e(t) (D = —
(I

Rys. 5.8. Schemat obwodu elektrycznego do przyktadu 5.2

Rozwiqzanie
Dla podanych wyzej wartosci parametrow obwodu impedancje zespolone odpowiadajace

poszczegbdlnym elementom sa rowne:

=10

Z, = jal, = j20

Z, = jwL, = j20

Z, = joM = j10
Z.=—-jl/wC =—j5

E =100e’*
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Pierwszym etapem analizy jest eliminacja sprzezenia magnetycznego migdzy cewkami.

Schemat obwodu po eliminacji przedstawiony jest na rys. 5.9.

Lo+
A A
- =
m:'_
| — 1
E T 2 I

Rys. 5.9. Schemat obwodu po eliminacji sprz¢zen magnetycznych
Rozwiazanie tego obwodu wzgledem pradéw gateziowych uzyskamy redukujac obciazenie
zrodla do jednej impedancji zastgpczej. Stanowi ja polaczenie szeregowe impedancji
indukcyjnej 1 pojemnosciowe;j
Z,.=j30-j5=j25

oraz uktadu réwnolegtego rezystora i cewek

_j30-(10— j10) _
K 10+ j20

18- j6

Impedancja zastgpcza jest wigc réwna

Z=Zy+7Z,.=18+j19

Prad I w obwodzie okreslony jest wzorem

ja5°
j=E 100 585 010
Z 18+ 19
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Spadek napigcia na potaczeniu rownolegtym elementéw jest rowny

U,=Z,  1=6813—j2477

Prady w gateziach réwnolegtych sa rowne

I, =&:—O,83— J2,27
j30

I, =L=4,64+ Jj2,17
10— ;10

W nastgpnym etapie po obliczeniu pradéw mozna przej$¢ do obliczenia napigé postugujac sig
schematem oryginalnym obwodu (ze sprz¢zeniami magnetycznymi). Korzystajac z prawa

Ohma i zaleznosci definicyjnych sprzgzenia magnetycznego otrzymuje si¢

U, =101, = 46,45+ j21,68
U, =Z1+2Z,I, =247+ j63,3
U,,=Z,1,+Z,] =46,45+ j21,68
U.=Z.I=-052-j19,10

5.3 Transformator

5.3.1 Podstawy fizyczne dziatania transformatora
Transformator jest uktadem przetwarzajacym napigcie wejSciowe w napigcie wyjsciowe za
posrednictwem strumienia magnetycznego przy braku bezposredniego potaczenia
galwanicznego migdzy obu zaciskami (wejSciowymi i wyjsciowymi). Transformatory moga
by¢ stosowane do réznych celow, ale podstawowym ich zadaniem jest zmiana wartosci
napigcia wejsciowego na inng warto$¢ napigcia wyjsciowego. Moze to by¢ zaréwno
podwyzszenie jak i obnizenie wartosci. Przy zmianie napigcia ulegaja odpowiedniej zmianie
rowniez prady w uzwojeniach transformatora.

W analizie teoretycznej przyjmowac bedziemy transformator idealizowany, czyli taki w
ktorym nie ma strat energii, nie istnieje zjawisko rozpraszania strumienia magnetycznego

(wspotczynnik sprzgzenia magnetycznego k=1), nie wystgpuja efekty pasozytnicze (np.
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pojemnosci migdzyzwojowe), nie uwzgledniona jest rezystancja uzwojen, zjawiska pradéw
wirowych itp..

Przekazywanie energii elektrycznej z jednego obwodu do drugiego nastgpuje za
posrednictwem pola elektromagnetycznego (strumienia magnetycznego). Na rys. 5.10
przedstawiono pogladowy schemat transformatora zasilanego napigciem U, i obciagzonego po

stronie wtérnej impedancja Z,.

. D,

|

iR

i1
(D) w7
TP

at

g z
d | u 0
—5 2
(:_\_‘_"—‘——.
el d .

D,

Rys. 5.10. Pogladowy schemat transformatora

Uzwojenie, do ktérego jest zazwyczaj doprowadzone zrédto energii elektrycznej, nazywamy
uzwojeniem pierwotnym, natomiast uzwojenie, do ktérego jest dotaczony odbiornik,
nazywamy uzwojeniem wtérnym. Zaciski uzwojenia pierwotnego stanowia wejscie uktadu,
a zaciski uzwojenia wtérnego - wyjscie. Odpowiednie napigcia i prady w transformatorze
nazywamy pierwotnymi lub wtérnymi. Wszystkie wielkoSci 1 parametry zwiazane z
uzwojeniem pierwotnym opatrzymy wskaznikiem 1, a wielkosSci 1 parametry zwiazane z
uzwojeniem wtérnym — wskaznikiem 2.

Do uzwojenia pierwotnego przylozone jest napigcie sinusoidalnie zmienne o wartosci
chwilowej u;(f). Warto$¢ chwilowa pradu w uzwojeniu pierwotnym oznaczymy przez i,(t).
Pod wplywem zmiennego w czasie pradu i;(f) w przestrzeni otaczajacej uzwojenie powstaje
zmienny strumien magnetyczny ¢, bedacy superpozycja strumieni ¢, i ¢@,. Przy zatozeniu

jego réwnomiernego rozktadu na przekroju S, strumien jest iloczynem indukcji magnetycznej
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B 1 przekroju S, ¢ = BS. Strumien ten kojarzy si¢ zaréwno z uzwojeniem pierwotnym
wytwarzajac strumien skojarzony W, = z,¢, jak i uzwojeniem wtérnym wytwarzajac w nim
strumien skojarzony W, =z,¢. Zgodne z prawem indukcji elektromagnetycznej pod

wplywem zmiennego w czasie strumienia magnetycznego indukuje si¢ napigcie u(t)

d¥
S 5.15
wny=— (.15)

Jesli do uzwojenia wtérnego dolaczymy odbiornik, to pod wpltywem napigcia
zaindukowanego w tym uzwojeniu poptynie prad ix(?).

W zaleznosci od $rodowiska w jakim zamyka si¢ wytworzony wokét uzwojen strumien
magnetyczny rozrézniamy transformatory powietrzne (korpus transformatora wykonany z
dielektryka o przenikalnosci magnetycznej wzglednej bliskiej jednosci) 1 transformatory z
rdzeniem ferromagnetycznym (korpus wykonany z rdzenia ferromagnetycznego). Zanim
przejdziemy do omodwienia obu rodzajéow transformatoréw, przedstawimy zalezno$ci

obowiazujace dla transformatora idealnego.

5.3.2 Transformator idealny

Wyidealizowanym typem transformatora jest tak zwany transformator idealny, w ktérym
zaklada si¢ pelne sprz¢zenie magnetyczne, brak strat (wszystkie rezystancje réwne zeru) i
pominigcie  zjawisk pasozytniczych. Symbol graficzny transformatora idealnego

przedstawiono na rys. 5.11.

i
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Rys. 5.11. Symbol graficzny transformatora idealnego
W schemacie tym pomija si¢ zwykle symbol sprzezenia magnetycznego pozostawiajac

jedynie oznaczenie poczatkéw uzwojen transformatora. Transformator idealny jest w pelni

opisany poprzez tak zwana przekladni¢ zwojowa, okreslajaca stosunek napigcia pierwotnego
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do wtornego (przekladni¢ napi¢ciowa) na podstawie liczby zwojéw pierwotnych i wtérnych.
Przektadnia napigciowa transformatora idealnego niezaleznie od sposobu wykonania i od

obciazenia, powinna by¢ rowna przektadni zwojowej okreslonej wzorem

n=2 (5.16)
Z,
Oznacza to, ze relacja miedzy napigciem pierwotnym i wtérnym jest nast¢pujaca
Uiy =4y, (5.17)
U, 2y

Wobec zatozenia o braku strat w samym transformatorze idealnym moc dostarczona na
zaciski pierwotne rowna si¢ mocy na zaciskach wtornych, to jest S, =S, (podobnie jest z

moca czynng 1 bierng). Przy oznaczeniu przekltadni transformatora idealnego przez n, z

warunku réwnosci mocy wejsciowej 1 wyjsciowe]
* *
Ul =U,l,

wynika relacja migdzy pradem pierwotnym i wtérnym transformatora. Mianowicie

=11, (5.18)

Obie zaleznos$ci (5.17) 1 (5.18) mozna zapisa¢ w nastgpujacej postaci macierzowe;j

vl [ Ofu,
e

n
Powyzsze réwnanie macierzowe nazywane jest rOwnaniem fancuchowym transformatora
idealnego. Wykonanie transformatora idealnego w praktyce nie jest mozliwe, jednak
wspotczesne realizacje techniczne transformatoréw zwlaszcza transformatory z rdzeniem

ferromagnetycznym sg bliskie ideatu.
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5.4 Transformator powietrzny

Dziatanie transformatora zasadniczo nie zalezy od tego w jakim Srodowisku zamyka sig
strumien skojarzony z uzwojeniem transformatora. Sposéb analizowania transformatora
powietrznego i transformatora z rdzeniem ferromagnetycznym jest jednak nieco inny. W tym
punkcie ograniczymy si¢ do transformatora powietrznego. Przyjmiemy, ze Kkorpus
transformatora wykonany jest z materialu nieferromagnetycznego.

Transformator powietrzny jest ukladem dwu cewek magnetycznie sprzezonych,
nawinigtych na korpusie wykonanym z dielektryka o wzglednej przenikalno$ci magnetyczne;j
bliskiej jednosci. Model idealnego transformatora powietrznego (bez uwzglednienia

rezystancji uzwojen) obcigzonego impedancja Z, jest przedstawiony na rys. 5.12.

O M L

Rys. 5.12. Model idealnego transformatora powietrznego

Indukcyjnosci wlasne uzwojen oznaczone sa przez L, i L, a indukcyjno$¢ wzajemna przez M,
przy czym M =k, L,L, . Sprzgzenie magnetyczne tego typu transformatora nie jest zbyt

dobre i charakteryzuje si¢ stosunkowo duzym wspoéiczynnikiem rozproszenia, a zatem matym
wspotczynnikiem sprzg¢zenia k (k <<1).

Napigcie zasilajace wywotuje w obwodzie pierwotnym prad /;, wytwarzajacy strumien
magnetyczny. Energia obwodu pierwotnego przenosi si¢ do obwodu wtérnego poprzez
sprz¢zenie magnetyczne, zaznaczone symbolicznie jako indukcyjnos¢ wzajemna M. Pod
wptywem zaindukowanego napigcia przy zamknigtym obwodzie wtérnym ptynie prad Iy,
odktadajac na impedancji odbiornika napigcie Us.

Rozr6zniamy trzy zasadnicze stany pracy transformatora: stan jatowy - gdy zaciski
wtérne sg rozwarte, stan zwarcia - gdy zaciski wtorne sa polaczone bezimpedancyjnie oraz
stan obcigzenia - gdy do zaciskéw wtérnych jest dolaczony odbiornik o skonczonej

impedancji.
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Analizujac transformator w stanie ustalonym przy wymuszeniu sinusoidalnym
zastosujemy metode¢ symboliczng. Z definicji sprzezenia magnetycznego obu cewek przy
zatozonym zwrocie pradow 1 przyjeciu poczatkdw uzwojen jak na rys. 5.12 wynikaja

nastgpujace rownania opisujace obwod
Uy =X+ jX 1, (5.20)
Uy ==[iX o1, + X, 1], (5.21)

Znak minus wystgpujacy we wzorze na U, wynika z kierunku U, zaznaczonego na rysunku

5.12. Z réwnania (5.20) i (5.21) wynika nastgpujacy wzor okreslajacy prad wejsciowy uktadu

1= Xuly (5.22)
JX 0
Podstawiajac wyrazenie na prad do réwnania drugiej cewki otrzymuje si¢
. X .
U, =—{JXL212 + (U, —JXMIZ)} (5.23)
JX 1

Po przeksztalceniu tego rOwnania otrzyma¢ mozna zalezno$¢ napigcia wyjsciowego

transformatora przy obcigzeniu Z, od napigcia zasilajacego obwdd oraz od pradu obcigzenia

2
U2=—{);‘Zl U1+12(jXL2—j§—’L”J:| (5.24)
Zauwazmy, ze nawet dla wyidealizowanego transformatora powietrznego wspoétczynnik
sprzezenia k<<l, stad X, =kX, X,, << X,,X,,. Oznacza to, 7e napigcie wyjsciowe
transformatora zalezy bardzo silnie od pradu obciazenia, co jest cecha niepozadana, gdyz
oznacza duze wahania napigcia wyjsciowego przy zmianie obcigzenia.

Jedynie w przypadku stanu jatowego transformatora, dla ktérego 7, =0, przektadnia

transformatora nie zalezy od obcigzenia. W takim przypadku
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X
U, =2y (5.25)
XLl

Jesli uwzglednimy, ze reaktancje cewek sa proporcjonalne do liczby zwojow wedlug relacji
X, =Kz}, X,,=Kz;, X, =Kz,z, gdzie K oznacza pewna stala konstrukcyjna, to z

zaleznosci (5.24) wynika

U, ==2U ==, (5.26)

Z powyzszej zaleznosci widaé, ze jedynie w stanie jalowym transformatora powietrznego
stosunek napigcia pierwotnego transformatora do napigcia wtérnego jest réwny stosunkowi
liczby zwojéw pierwotnych do wtérnych (z doktadnoscia do znaku), a wigc przektadni

zwojowej (transformator idealny)

1
U__&u__, 5.27
U (5-27)

Jest to cecha bardzo pozadana z punktu widzenia praktycznego, gdyz pozwala w bardzo
prosty sposéb zmienia¢ poziomy napi¢¢ zaréwno w gére (liczba zwojow wtérnych wigksza
od liczby zwojow pierwotny) jak i w dot (liczba zwojéw wtérnych mniejsza niz liczba
zw0jOw pierwotnych).

Zauwazmy, ze pozadana relacja napigciowa migdzy napigciami pierwotnym i wtérnym
transformatora idealnego jest dokladnie realizowana przez transformator powietrzny jedynie
w stanie jatowym. Niestety obcigzenie transformatora powietrznego powoduje znieksztatcenie
tej relacji przez prad obciazenia. W zwiazku z powyzszym transformator powietrzny w stanie

obciazenia nie moze by¢ uwazany za transformator idealny.

5.5 Transformator 7 rdzeniem ferromagnetycznym

5.5.1 Podstawowe prawa obwodow magnetycznych
Ogromna popraweg wiasnosci transformatora uzyskuje si¢ przy zastosowaniu zamiast cewek
powietrznych cewek z rdzeniem ferromagnetycznym (zelazem). Rdzen ferromagnetyczny

tworzy zamknigty obwdd magnetyczny, stanowiacy drogg o matej opornosci dla strumienia
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magnetycznego ¢, powstatego w wyniku dziatania zrédta pola magnetycznego. Zrédlem pola

magnetycznego moze by¢ albo uzwojenie, przez ktére przeptywa prad elektryczny albo
magnes trwaty, bedacy cialem ferromagnetycznym, w ktérym pole powstato i trwa nadal,
mimo ze w obszarze na zewnatrz ciata prad nie plynie.

W wyniku przeptywu pradu przez cewke transformatora powstaje pole magnetyczne o
indukcji B i natezeniu H (B i H sa wielko$ciami wektorowymi). Jednostka indukcji
magnetycznej jest tesla (17 = 1%) a nat¢zenia magnetycznego amper na metr (%). w
materiale ferromagnetycznym kierunki wektorow B i H sa zgodne. Zalezno$¢ miedzy
indukcja B 1 nat¢zeniem pola H okreslona jest w ogdlnosci w postaci petli histerezy (rys.
15.3).

B 4

Rys. 5.13 Pierwotna krzywa magnesowania zelaza

W  przypadku transformator6w ograniczamy si¢ zwykle do pierwotnej Kkrzywej
magnesowania (krzywa przechodzaca przez poczatek uktadu wspétrzednych), nie
uwzgledniajac niejednoznacznos$ci procesu magnesowania (p¢tli histerezy). Wektory indukcji
1 natgzenia pola magnetycznego w zelazie mozna woéwczas powigza¢ jednoznacznym

rOwnaniem nieliniowym opisujacym krzywa magnesowania pierwotnego

B=uH=pu,uH (5.28)
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gdzie u jest przenikalnoscia magnetyczng bezwzgledna $rodowiska, bedaca funkcja

nat¢zenia pola H wyrazona w —, 4, - stala magnetyczna prézni (przenikalno$¢
m

magnetyczna prozni) rowna 47[-10_7£ a u, - przenikalnoscia magnetyczna wzgledna,
m

wskazujaca ile razy przenikalno$¢ danego srodowiska jest wigksza od przenikalnos$ci prézni.
Dla materialéw ferromagnetycznych przenikalno§¢ magnetyczna w zakresie liniowym
krzywej magnesowania osigga bardzo duze wartosci rzgdu tysigcy a nawet setek tysigcy w
przypadku specjalnych materialéw ferromagnetycznych. Niestety przy duzych warto$ciach
natezenia pola magnetycznego nastgpuje nasycenie wartosci indukcji (patrz krzywa
magnesowania na rys. 5.13) i w efekcie znaczne zmniejszenie wartosci przenikalnosci
wzglednej. W zastosowaniach praktycznych punkt pracy transformatora potozony jest zwykle
w czesci liniowej 1 dlatego mozna z duzym prawdopodobienstwem zatozy¢ bardzo duza
warto$¢ wspotczynnika przenikalno$ci wzgledne;.

W rozpatrywanym rdzeniu ferromagnetycznym o polu przekroju poprzecznego S

zamyka si¢ strumien magnetyczny ¢, powiazany z indukcja magnetyczna B zaleznos$cia

¢ = IBdS (5.29)

Przy zatozeniu réwnomiernego rozkladu strumienia ¢ w polu przekroju poprzecznego
(B = B = const) powyzsze wyrazenie upraszcza si¢ do postaci ¢ = BS . Jednostka strumienia

magnetycznego w uktadzie SI jest weber (1Wb=1Vs).

W przypadku obwodéw magnetycznych rozgatezionych strumien ¢ spetnia tzw.

prawo Kirchhoffa dla strumieni w we¢zle, zgodnie z ktérym suma algebraiczna strumieni
magnetycznych (z uwzglednienie ich zwrotu), w kazdym wezle obwodu magnetycznego jest

rowna zeru, czyli

> ¢.=0 (5.30)

Przyklad interpretacji tego prawa dla jednego wezta obwodu magnetycznego przedstawiony

jestnarys. 5.14
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Rys. 5.14. Schemat we¢zta obwodu magnetycznego

Réwnanie Kirchhoffa dotyczace strumieni w tym wezle przyjmuje postaé
¢1 + ¢2 - ¢3 =0

Strumien magnetyczny ¢ w transformatorze jest skojarzony z kazdym zwojem cewki.

Calkowity strumien skojarzony ze wszystkimi z zwojami cewki okreslony jest wigc wzorem
Y =z¢ (5.31)

Drugim podstawowym prawem obwodéw magnetycznych jest prawo przeptywu Ampera,
zgodnie z ktérym catka liniowa wektora natgzenia pola magnetycznego H po krzywej
zamknigtej / w polu magnetycznym réwna si¢ pradowi przenikajacemu przez powierzchnig

ograniczona ta krzywa, czyli

fHA = z,1, (5.32)

W ogélnym wzorze Ampera uwzgledniono wiele uzwojen wzbudzajacych o liczbie zwojow

z, 1 pradach I,. Przy jednym uzwojeniu cewki zawierajacym z zwojow, przez ktore

przeptywa prad I i zatozeniu, Zze nat¢zenie pola na calej drodze [ jest jednakowe i réwne H,

prawo Ampera upraszcza si¢ do postaci skalarnej

Hl =zl (5.33)
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Iloczyn natg¢zenia pola magnetycznego H na odcinku pola o dlugosci / przez dlugos$¢ tego
odcinka nazywany jest napigciem magnetycznym, a iloczyn pradu I przez liczbg z zwojow
cewki — sifa magnetomotoryczng, oznaczang zwykle w postaci ® = z/ .

Zaleznos¢ (5.33) wiaze bezposrednio wektor nat¢zenia pola magnetycznego z pradem
elektrycznym obwodu wzbudzajacym to pole. Przy znanym wymuszeniu pradowym i

wymiarach cewki pozwala ona okresli¢ warto$¢ nat¢zenia pola magnetycznego

H== (5.34)

Prawo przeptywu Ampera wyrazone zaleznoscia (5.32) moze by¢ napisane dla dowolnego
oczka obwodu magnetycznego, przyjmujac posta¢ tzw. drugiego prawa Kirchhoffa dla
obwodu magnetycznego. Zgodnie z tym prawem dla kazdego oczka obwodu magnetycznego
suma algebraiczna napig¢ magnetycznych wszystkich elementéw oczka jest réwna sumie

algebraicznej sit magnetomotorycznych zawartych w tym oczku. Zapiszemy to w postaci

Y HI =Yz, (5.35)
k k

We wzorze tym zostalo zalozone, ze obwdd magnetyczny tworzy wiele galg¢zi o dtugosci /i
kazda, przy czym w kazdej galezi natgzenie magnetyczne przyjmuje wartos¢ Hy. Przyktadowo

rownania Kirchhoffa dla obwodu magnetycznego przedstawionego na rys. 5.15 zawierajacego

@, - ,
l4 o
o L -:> 3 Cr }
b 2 b 2
1
< < ?
S—— > e —— -")
Hala (P
H,l, H, 1,

Rys. 5.15. Przyktad obwodu magnetycznego o dwu oczkach
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dwa niezalezne oczka, przy zalozonych oznaczeniach jak pokazano na rysunku mozna
zapisa¢ w postaci:

¢ rdwnania napi¢¢ magnetycznych

Hl +H.l, =z1,

H.l,—H,l, = z,1,
e rownanie strumieni
¢1 - ¢2 - ¢3 =0

Strumienie i natgzenia pola magnetycznego powiazane sa za posrednictwem Kkrzywej
magnesowania zelaza ¢, =S, B, =S,f(H,) dla k=1, 2, 3. Ze wzgledu na nieliniowy
charakter krzywej magnesowania réwnania powyzsze tworza wigc uktad réwnan
nieliniowych.

Istotnym pojeciem w teorii obwodéw magnetycznych jest pojgcie reluktancji, czyli
oporu jaki jest stawiany strumieniowi magnetycznemu na drodze przeptywu. Jesli wezmiemy
pod uwage fragment obwodu magnetycznego o przekroju S i dtugosci [ ktérym przeptywa

staly strumiefi ¢ , to z definicji napigcia magnetycznego U, wynika

v,=H=21="4 (5.36)
us uS
Wielkos¢
R, =L (5.37)
Iz ,US .
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nazywana jest reluktancja (oporem magnetycznym). W  przypadku rdzenia

ferromagnetycznego warto$¢ przenikalnosci magnetycznej 4 jest bardzo duza, co oznacza, ze
op6ér magnetyczny na tej drodze jest maty. Z kolei w przypadku powietrza (= 4, przyjmuje

warto$¢ bardzo mata, co powoduje, ze opér magnetyczny na takiej drodze jest bardzo duzy.
Oznacza to, ze dla cewki zbudowanej na rdzeniu ferromagnetycznym strumien
rozproszenia (czg$¢ strumienia zamykajaca si¢ przez powietrze) jest pomijalnie maly, a
prawie caty strumien zamyka si¢ przez zelazo. Przy dwu cewkach umieszczonych na takim
rdzeniu strumien jednej cewki przenika wigc prawie catkowicie druga cewke co powoduje, ze
sprz¢zenie magnetyczne jest idealne, a wspoiczynnik sprzgzenia magnetycznego k bliski

jednosci.

5.5.2 Analiza transformatora z rdzeniem ferromagnetycznym

Rdzen ferromagnetyczny ma zdolno$¢ skupiania pola magnetycznego i zmniejszania w ten
sposOb strumienia rozproszenia zamykajacego si¢ przez powietrze otaczajace cewke. Wynika
stad, ze wspotczynnik sprzgzenia magnetycznego k dla dwu cewek umieszczonych na
wspolnym rdzeniu jest bliski maksymalnej wartosci rownej jeden (k = 1). Oznacza to, ze dla

cewek z rdzeniem ferromagnetycznym indukcyjno$¢ wzajemna jest w przyblizeniu Srednig
geometryczng indukcyjnosci wilasnych obu cewek (M = ,/L L, ). Ta cecha zdecydowata o

zastosowaniu cewek z rdzeniem ferromagnetycznym do budowy transformatoréw, ktére
zblizaja si¢ swoim zachowaniem do transformatoréw idealnych.

Jesli zalozymy punkt pracy transformatora z rdzeniem ferromagnetycznym w czgsci
liniowej charakterystyki magnesowania to uktad taki moze by¢ traktowany jako transformator
liniowy, analogicznie do transformatora powietrznego, ale o warto$ci wspotczynnika
sprz¢zenia k bliskim jedno$ci. Schemat zastgpczy takiego transformatora przy pominigciu
rezystancji uzwojen jest identyczny jak w przypadku transformatora powietrznego (rys. 5.12).

Oznacza to, ze ma tu zastosowanie wzor (5.24) okreslajacy relacje migdzy napigciem
pierwotnym i wtérnym transformatora, ktéry wobec zaleznosci M = \/L,L, mozna przepisac

tutaj w postaci

X , X X
Uzz—[ 9 U1+I{]XL2—]—H=— Yy, (5.38)

L1
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Jak wida¢ z powyzsze] zaleznosci dla transformatora z rdzeniem ferromagnetycznym
przektadnia napigciowa nie zalezy od pradu obciazenia (pod warunkiem ze punkt pracy
polozony jest w liniowej czgSci charakterystyki magnesowania a wspéiczynnik sprz¢zenia
magnetycznego jest rowny jednosci). Oznacza to, ze niezaleznie od obciazenia relacja migdzy

napigciem pierwotnym i wtérnym dana jest w postaci

X
0] =" |U1|=i—2|U1| (5.39)
1

L1

Napigcie wtorne transformatora jest zalezne wytacznie od przektadni zwojowej 1 napigcia
wejsciowego uktadu. Jest to zatem realizacja podstawowej zalezno$ci charakterystycznej dla
transformatora idealnego. Przy pominigciu strat w transformatorze relacja migdzy pradem
pierwotnym i wtérnym spetnia réwniez druga zalezno$¢ transformatora idealnego (wzor
5.17). Wynika stad wniosek, ze transformator z rdzeniem ferromagnetycznym jest dobrym

przyblizeniem transformatora idealnego.

4.1 Zadania do samodzielnego rozwiqzania

Zadanie 5.1
Narysowac obwody zastgpcze bez sprzgzeh magnetycznych odpowiadajace obwodom ze

sprzgzeniami przedstawionym na rys. 5.16a,b.

5 s Y MW
K
3 e ["."1-1 3 I 25

11° /
0= 3 2

a bj

Rys. 5.16. Schematy obwodéw ze sprzgzeniami magnetycznymi do zadania 5.1
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Rozwiqzanie
Na rys. 5.17a,b przedstawiono obwody zastepcze nie zawierajace sprzezen magnetycznych.

Odpowiadaja one obwodom oryginalnym z rys. 5.16 pod wzgledem pradowym.

L1+M
1 o— Y T

L,+M
2 — Y e

3 °—£|— M1z \)- M 23
< 5\
0 I ’ ?
a) b)
Rys. 5.17 Obwody bez sprz¢zen magnetycznych odpowiadajace rys. 5.16
Zadanie 5.2

Wyznaczy¢ rozptywy pradéw w obwodzie przedstawionym na rys. 5.18.

.
o@ [ 7Y

Rys. 5.18 Schemat obwodu elektrycznego ze sprz¢zeniem magnetycznym do zadania 5.2
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Przyja¢ nastepujace wartosci parametréw elementéw obwodu: R=5Q, L,=2H, L,=2H, M=1H
oraz i(t) =5sin(t+45") A.

Rozwiqzanie

Posta¢ obwodu po eliminacji sprz¢zenia magnetycznego przedstawiono na rys. 5.19

|_1 - LE-[ﬂ =0

| @ R

Il

B

Rys. 5.19 Obwdd bez sprzgzen magnetycznych odpowiadajacy schematowi z rys. 5.18.

Wielkosci symboliczne charakteryzujace elementy obwodu:

Iz%ejw

Z, =jo(L,—M)=j1
Z,=jo(L,—M)=0
Z, = jaM = jl

Impedancja zastgpcza obwodu wobec Z, =0

RZ, _ 1

“R+z, 2°

Napigcie Uyp

U,y =ZI = j5

Prady:
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le=—f =7

1,=0

Q:Q:gﬁ=5
ZM

Napigcia na elementach rownolegtych w obwodzie oryginalnym i zast¢pczym sa sobie réwne
1 wynosza U ,, = j5. Mozna to tatwo sprawdzi¢ w obwodzie oryginalnym obliczajac napigcia

na cewkach sprzezonych. Mianowicie

U, = joLl, + joMI, = j5

U, = jaLl,+ jeMI, = ;5

Zadanie 5.3

Wyznaczy¢ rozwiazanie obwodu z rys. 5.20 zawierajacego transformator idealny o przektadni

zwojowej rownej n=2. Przyjac¢ nastgpujace wartosci parametrow obwodu:

e(t) = 10v/2 sin(ar) V, @ =1rad/s, R =5Q, C=0,2F.

— ] n:l =

Rys. 5.20. Schemat obwodu do zadania 5.3

Rozwiqzanie

Wielkosci symboliczne charakteryzujace elementy obwodu:

E=10
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Z.=—jllaC =—j5

— RZC

= =25-j25
¥ R+Z. /

Uktad réwnan opisujacych obwdd:

E=RI +U,
U =nU,

=11,
n

Uy =172y
Po wstawieniu wartosci liczbowych otrzymuje si¢

10=5I,+U,
U, =2U,

1
Il 2512

U,=125-j2,5)
Po uproszczeniu tego uktadu réwnan otrzymuje si¢

10=(5+1042¢7 ),

Stad

1, =0,45+ j0,30
1,=21,=090+ j0.60
U, =Z,.I,=379- j0,76
U =2U,=1758-jl5

U .
I,="2=075-j05
1,=% 015+ 076

C
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I, 1 U
Latwo sprawdzi¢, ze stosunek pradu 1, do pradu /I, I—l = > podczas gdy U—l =2,
2 2
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Lekcja 6. Rezonans w obwodach elektrycznych

Wstep
Lekcja szosta poswigcona bedzie analizie zjawisk rezonansowych w obwodzie RLC.

Zjawiskiem rezonansu nazywamy taki stan obwodu RLC, w ktérym prad 1 napigcie sa ze soba
w fazie. W stanie rezonansu przesunigcie fazowe pradu i napigcia jest zerowe, co oznacza, Ze
argument impedancji lub admitancji zespolonej obwodu jest takze réwny zeru. Obwod nie
pobiera zadnej mocy biernej a $cis$le méwiac nastepuje zjawisko kompensacji tej mocy. Moc
bierna indukcyjna obwodu jest réwna mocy pojemnosciowej. Poniewaz znaki mocy biernej
indukcyjnej 1 pojemnosciowej sa przeciwne, w warunkach rezonansu catkowita moc bierna
jest zerowa.

W obwodzie RLC zjawisko rezonansu wymaga, aby reaktancja wypadkowa obwodu (lub
jej odwrotno$¢ zwana susceptancja) byta rowna zeru. Czgstotliwos¢, przy ktorej reaktancja
lub susceptancja obwodu znika jest nazywana czgstotliwoscia rezonansowa. Podane zostana
odpowiednie wzory pozwalajace na wyznaczenie wartosci tej czestotliwosci, jak rowniez
wprowadzone zostang inne pojecia wazne dla zjawiska rezonansu, takie jak dobro¢,
rozstrojenie bezwzgledne 1 wzgledne, pasmo przepustowe, rezystancja charakterystyczna.
Analizie zostang poddane charakterystyki czgstotliwosciowe obwodéw rezonansowych.

Rezonans wystapi¢ moze w dowolnej konfiguracji elementéw RLC, tym nie mniej bada
si¢ szczegdlne potaczenia elementéw prowadzace do tego zjawiska. Rezonans wystepujacy w
obwodzie, w ktorym elementy R, L, C sa polaczone szeregowo nazywamy rezonansem
napie¢ lub rezonansem szeregowym. W przypadku, gdy rezonans dotyczy obwodu

réwnoleglego R, L, C taki rezonans nazywamy rezonansem pradow lub rezonansem

O

réwnoleglym.
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6.1. Rezonans szeregowy

Przyjmijmy, ze do potaczenia szeregowego elementéw R, L, C przedstawionego na rys. 6.1.

Rys. 6.1. Obwdd rezonansowy szeregowy RLC

jest przytozone napigcie sinusoidalnie zmienne o wartosci skutecznej zespolonej U 1 pulsacji

o =27f . Przy zastosowaniu metody symbolicznej w analizie tego obwodu mozna napisac
nastgpujace rownanie napigciowe Kirchhoffa

U=U,+U,+U,=RI+ jX,I—jX I=I[R+j(X, —X_)] 6.1)
Zjawiskiem rezonansu nazywamy taki stan obwodu RLC, w ktérym prad 1 napigcie sa ze soba
w fazie. Zgodnie z ta definicja warunek rezonansu obwodu wymaga, aby prad / oraz napigcie
U byly ze soba w fazie. Osiagnie si¢ to, jesli cze$¢ urojona powyzszej zalezno$ci begdzie
réwna zeru, czyli

X, =X,

Uwzgledniajac, ze X, =@wL oraz X.=1/wC z powyzszego warunku otrzymuje si¢ wWzoOr

okreslajacy pulsacj¢ rezonansowa @, w postaci

o = (6.22)

Czestotliwos¢ rezonansowa obwodu wynosi zatem
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1

) = 27JLC

(6.2b)

Rownos¢ reaktancii indukcyjnej 1 pojemnosciowej oznacza, ze w stanie rezonansu napigcia na

cewce 1 kondensatorze sa rowne co do modutu ale przeciwnie skierowane, czyli
|UL| - _|UC|

Zmiana czgstotliwosci zmienia oczywiscie relacje migdzy napigciami na tych elementach
reaktancyjnych (przeskalowanie wartosci). Dla czg¢stotliwosci mniejszych niz rezonansowa
napigcie na kondensatorze jest wigksze niz na cewce (przy mniejszej czgstotliwosci
impedancja kondensatora jest wigksza), a przy czg¢stotliwosciach wigkszych niz rezonansowa
napigcie na cewce wigksze niz na kondensatorze (impedancja cewki ro$nie wraz ze wzrostem
czgstotliwosci a impedancja kondensatora maleje). Na rys. 6.2 przedstawiono wykresy
wektorowe pradu i napie¢ w obwodzie szeregowym RLC dla czg¢stotliwosci mniejszych niz
rezonansowa (rys. 6.2a), dla czestotliwosci rezonansowej (rys. 6.2b) oraz dla czgstotliwosci

wigkszych niz rezonansowa (rys. 6.2c).

A
U|_ N
Up
Uc
|
u,
® Ugr U
UC |
>
U=UR
P |
o>
U Ur
y c
a) b) c)

Rys. 6.2 Wykresy wektorowe obwodu rezonansowego RLC: a) stan przed rezonansem,
b) stan rezonansu, ¢) stan po rezonansie

119



7. przesunie¢ katowych migdzy wektorami widoczne jest, ze przed rezonansem obwdd
szeregowy RLC ma charakter pojemnosciowy, w czasie rezonansu — rezystancyjny, a dla

czegstotliwosci wigkszych niz rezonansowa — indukcyjny.
6.1.1 Parametry rezonansu szeregowego

Rezonans moze by¢ scharakteryzowany wieloma parametrami, z ktérych najwazniejsze to
czestotliwos¢ rezonansowa, dobro¢ obwodu rezonansowego, rezystancja charakterystyczna,
rozstrojenie obwodu oraz pasmo przenoszenia czg¢stotliwosci.

Czgstotliwos¢ rezonansowa obwodu szeregowego RLC zostata zdefiniowana powyzej

jako f =——=". Jest ona jednoznacznie okreslona jako funkcja indukcyjnosci L oraz
V4

pojemnosci C. Rezystancja R nie ma zadnego wptywu na warto$¢ czgstotliwosci obwodu
szeregowego RLC.

Drugim waznym parametrem obwodu rezonansowego jest dobro¢ Q okreslana zwykle
w punkcie rezonansowym (dla czgstotliwosci rezonansowej). W obwodzie szeregowym RLC
dobrociag nazywamy stosunek napigcia na elemencie reaktancyjnym (kondensatorze lub
cewce) do napigcia na elemencie rezystancyjnym w czasie rezonansu. Stad warto$¢ dobroci

moze by¢ wyznaczona ze wWzoru

Q=|UL|=|UC| ol 1
U U]l R @RC

(6.3)

Po uwzglednieniu wzoru na pulsacj¢ rezonansowa, dobro¢ Q mozna wyrazi¢ w jednoznacznej

postaci uzaleznionej wytacznie od parametrow obwodu RLC

f
_Vc
0= (6.3)

Wielkos¢ wystepujaca w liczniku nazywana jest rezystancja charakterystyczng p

120



p= (6.5)

L
C
Rezystancja charakterystyczna obwodu rezonansowego szeregowego RLC jest uzalezniona
wyltacznie od wartosci indukcyjnos$ci i pojemnosci.
6.1.2 Charakterystyki czgstotliwo$ciowe rezonansu
Charakterystykami czestotliwosciowymi obwodu rezonansowego nazywac¢ bedziemy

zaleznos¢ pradu 1 napie¢ od czegstotliwosci (pulsacji). Dla otrzymania charakterystyk

czegstotliwosciowych z rownania (6.1) wyznaczmy prad [ jako funkcj¢ pulsacji

lo)=—— (6.6)
R+ joL—- jl/wC
Przepisujac powyzsza zalezno$¢ zespolona w postaci wyktadniczej otrzymujemy wzor
(@) =I(w)]e’"” (6.7)

w ktérym |I (a))| oznacza modut pradu a ¢(w) - fazg uzalezniona od czgstotliwosci napigcia

zasilajacego. Wielkosci te opisane sa nastgpujaco

()| = bl (6.8)
JR +(aL—1/oC)
o(w) = —arctng_T}/wc (6.9)

Zalezno$¢ modutu od czegstotliwosci (pulsacji) nazywamy charakterystyka amplitudowa
rezonansu a zaleznos¢ fazy od czgstotliwosci (pulsacji) — charakterystyka fazowg. Na rys.
6.3a przedstawiono charakterystyke modutu pradu a rys. 6.3b — fazy pradu w funkcji pulsacji

a.
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Rys. 6.3 Charakterystyki czgstotliwosciowe pradu w obwodzie rezonansowym:
a) charakterystyka amplitudowa, b) charakterystyka fazowa

Wartosci elementéw symulowanego obwodu byty réwne: L=/H, C=I1F, R=1,8Q. Dla
punktu rezonansowego @, =1 charakterystyka przyjmuje warto$¢ maksymalna a faza wartos¢
Zerowa.

Wraz ze zmiang pradu zmieniaja si¢ réwniez napigcia na pozostalych elementach
obwodu RLC. Dla wyznaczenia tych zalezno$ci mozna wykorzysta¢ prawo Ohma, zgodnie, z
ktérym przy zastosowaniu podejscia symbolicznego otrzymuje si¢

¢ dla indukcyjnosci

U,(w)=joLl(w) (6.10)
¢ dla pojemnosci
1(w)
=—j—= A1
Uc@)=—j- - (6.11)
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Podstawiajac do powyzszych zaleznosci wzor okreslajacy prad mozna otrzymaé wyrazenia na
moduty i fazy napigcia na cewce i kondensatorze. Charakterystyki amplitudowe tych napigé

sq wyrazone w postaci

U (@)= et (6.12)
JR + (L -1/ o)
Uc(@)|= i (6.13)

wC\R* + (0L -1/ &)

Na rys. 6.4 przedstawiono przyktadowe charakterystyki czgstotliwosciowe amplitudowe
napigcia na cewce i kondensatorze w obwodzie RLC o podanych wcze$niej parametrach przy

pulsacji rezonansowej rownej jeden i dobroci obwodu Q =0,55.

L]

Jak wida¢ dla czestotliwos$ci rezonansowej obwodu napigcia na reaktancjach sa sobie rowne.
Charakterystyki fazowe napi¢¢ na cewce i kondensatorze, jak wynika ze wzoréw

(6.10) 1 (6.11) roznia si¢ od charakterystyki fazowej pradu tylko o warto§¢ 7/2 1 sa

przesunigte na osi pionowej badz w doét badz w gorg. Latwo pokazaé, ze sa one okreslone

nastgpujaco

123



e Charakterystyka fazowa napigcia cewki

0,(®) = % _ arctng_T}/wC (6.14)

e Charakterystyka fazowa napigcia kondensatora

0. (@) = —% —arctng_—;/wC 6.15)

Ksztalt charakterystyk fazowych napigcia na cewce 1 kondensatorze jest identyczny z
charakterystyka fazowa pradu. Jedynym wyjatkiem jest przesunigcie tych charakterystyk w
osi pionowej o wartos¢ kata réwna =90 .

Ogromny wplyw na charakterystyki czgstotliwosciowe zaréwno amplitudowa jak i
fazowa wywiera dobro¢ obwodu. Im wyzsza jest dobro¢ tym charakterystyka pradu w funkcji
czestotliwo$ci  jest bardziej stroma. Zmniejszenie dobroci powoduje splaszczenie

charakterystyki pradu (gorsza selektywnos¢ obwodu rezonansowego).

1l
e

Rys. 6.5 Ilustracja wptywu dobroci na charakterystyke amplitudowa pradu

Rys. 6.5 przedstawia wpltyw dobroci na charakterystyke amplitudowa pradu przy stalej
wartosci amplitudy napigcia zasilajacego. Im wigksza dobro¢ tym charakterystyka

amplitudowa jest bardzie stroma i we¢zsza.
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Na rys. 6.6 zilustrowano wptyw dobroci na charakterystyki amplitudowe napigcia
cewki i kondensatora dla tych samych wartosci czestotliwosci rezonansowej i dobroci jak na

rys. 6.6.

| 4

Rys. 6.6 Charakterystyki amplitudowe napigcia na cewce i1 kondensatorze

Zaobserwowa¢ mozna pojawienie si¢ maksimum w charakterystyce zarbwno napigcia

cewki jak i kondensatora. L.atwo mozna udowodni¢, ze punkt maksymalny obu charakterystyk
1
pojawia si¢ jedynie przy dobrociach obwodu wigkszych niz ﬁ . Dobro¢ Q = % odpowiada

najbardziej ptaskiemu przebiegowi charakterystyk amplitudowych.
Dla wprowadzenia nastgpnego parametru obwodu rezonansowego, jakim jest

rozstrojenie bezwzgledne, napiszmy wyrazenie na napigcie rezystora R w postaci

Ui(w) R

— : (6.16)
U R+ j(wL—-1/@C)
ktora przeksztatcimy nastgpujaco
UR (w) — l efjarctgx (617)

U VI+ X7

Wielko$¢
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_X _aL-1/aC

R R (6.18)

X

nosi nazwe¢ rozstrojenia bezwzglednego obwodu rezonansowego RLC. Rozstrojenie
bezwzgledne jest proporcjonalne do wartosci catkowitej reaktancji obwodu przy okreslonej
czgstotliwosci. Rozstrojenie jest rowne zeru tylko dla punktu rezonansowego. Rozstrojenie
bezwzgledne jest pewnego rodzaju wskaznikiem odstrojenia obwodu od rezonansu.
Przyjmuje wartosci z przedziatu (-oo, o).

Stopien odstrojenia pulsacji od warto$ci rezonansowej okresla poza rozstrojeniem

bezwzglednym, réwniez rozstrojenie wzgledne, definiowane za pomoca wzoru

O0=——— (6.19)

Mozna tatwo pokazaé, ze rozstrojenie bezwzgledne x obwodu RLC jest powiazane z

rozstrojeniem wzglednym & relacja
v=05=P (6.20)

Zalezno$¢ ta wskazuje, ze przy tym samym rozstrojeniu bezwzglednym x w obwodzie
o wigkszej dobroci Q wystepuje mniejsze rozstrojenie wzgledne. W wigkszosci zastosowan
charakterystyki rezonansowe obwodu wykorzystywane sa w bliskim otoczeniu pulsacji
rezonansowej. W takich warunkach mozna zastosowa¢ nastgpujace przyblizone wzory na

rozstrojenie wzgledne 1 bezwzgledne

a +a )\ —w a —w
0_o _@ro)e-o)_, ’ (6.21)
) 0o, w

a

-w
g (6.22)
1)

r

x=08=20

Istotnym parametrem obwodu rezonansowego jest pasmo przepustowe. Pasmem

przepustowym (przepuszczania) szeregowego obwodu rezonansowego RLC nazywamy
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przedzial czestotliwosci (f;, f) w otoczeniu czgstotliwos$ci rezonansowej f,, na krancach
, y . L v
ktérego wartos¢ skuteczna sygnatu napigcia na rezystorze R w obwodzie jest rtéwna U, = E

Ul
Y]

maksymalnej). Jest to tak zwane pasmo 3 decybelowe. Oznacza to, ze w pasSmie

0 3dB w stosunku do wartoS$ci

(spadek wartosci charakterystyki logarytmicznej 20log,,

przepustowym zachodzi zaleznos¢

Ul
]

1
> — (6.23)
V2
Mozna udowodni¢, ze 3 decybelowe pasmo przepustowe (f>-fi) obwodu rezonansowego

okreslone jest zalezno$cia

f
Q

Im wyzsza dobro¢ Q obwodu tym jest ono wezsze, natomiast zmniejszenie dobroci obwodu

fHL-fh= (6.24)

rozszerza to pasmo.

Zjawiska w obwodzie rezonansowym odgrywaja wazna rol¢ w technice przetwarzania
sygnatow. Uktady rezonansowe wchodza w sktad zaréwno generatoréw harmonicznych jak i
filtrow elektrycznych 1 elektronicznych. Dzigki wlasciwosci przenoszenia lub tlumienia
sygnatéw w okreslonym pasmie czgstotliwosci wykorzystuje si¢ je jako uktady dostrajajace w
radioodbiornikach i telewizorach. W liniach teletransmisyjnych uklady rezonansowe
umozliwiaja przekazywanie wielu sygnalow za pomoca jednej linii przesylowej przy

zastosowaniu réznych czgstotliwosci.

6.2 Rezonans rownolegly

Rezonans pradow zwany réwniez rezonansem rownoleglym moze wystapi¢ w obwodzie
zawierajacym potaczenie réwnolegle elementéw RLC. Istnieje wiele struktur obwodéw, w
ktéorych moze powsta¢ rezonans pradéw. Warunkiem jest pojawienie si¢ réwnoleglego
polaczenia cewki i kondensatora, przy czym zaréwno cewka jak i kondensator moze by¢ w

uktadzie potaczen z innymi elementami rezystancyjnymi.
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6.2.1 Zaleznos$ci podstawowe rezonansu pradow

Narys. 6.7 przedstawiono przyktadowy najprostszy obwdd rezonansu rownolegtego RLC.

QNG

Rys. 6.7 Obwdd rezonansowy réwnolegty RLC

Podobnie jak w przypadku obwodu szeregowego przyjmiemy wymuszenie sinusoidalne o
zmiennej czg¢stotliwosci, ale tym razem zalozymy je w postaci zrédla pradowego
i(t)=1, sin(wt). Wykorzystujac w opisie obwodu metodg symboliczng réwnanie pradowe

Kirchhoffa dla tego obwodu przyjmie posta¢
I=1,+1,+1.=GU + jaCU - jU/wL=U[G + j(wC —1/aL)) (6.25)

Warunkiem rezonansu rownoleglego jest przyjecie przez kat fazowy migdzy pradem [ oraz
napigciem U warto$ci rownej zeru. Nastapi to wtedy, gdy czg$¢ urojona zaleznosci (6.25)

przyjmie wartos¢ zerowa, czyli gdy

oC=t oL (6.26)

Warunek powyzszy bedzie spelniony, gdy czgstotliwo$¢ zasilania przyjmie wartos¢

czgstotliwosci rezonansowej okreslonej zaleznos$cia

1

I = oaiie

(6.27)
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Jak wida¢ czegstotliwo$¢ rezonansowa w obwodzie réwnolegltym z rys. 6. 7 jest okreslona
identycznym wzorem jak w obwodzie szeregowym RLC. W odréznieniu od obwodu

szeregowego w obwodzie réwnolegtym dobrocia nazywamy stosunek pradu 7, lub . (sa

sobie rowne w chwili rezonansu) do pradu /, w elemencie rezystancyjnym 1/,

Q=rH_rtd_Zr__ (6.28)

Po uwzglednieniu G =1/R i wzoru (6.27) na czgstotliwo$¢ rezonansowa otrzymuje sie
relacj¢ okreslajaca dobro¢ réwnolegtego obwodu rezonansowego RLC o strukturze

przedstawionej na rys. 6.7 w postaci
R

Q:F
C

Tym razem dobro¢ obwodu jest wprost proporcjonalna do wartosci rezystancji a odwrotnie

(6.29)

proporcjonalna do rezystancji charakterystycznej. Dobro¢ obwodu wzrasta wigc ze wzrostem
wartosci rezystancji, odwrotnie niz to mialo miejsce w obwodzie rezonansu szeregowego

(przy wigkszej rezystancji rownoleglej ptynie przez nia mniejszy prad uptywnosciowy).

6.2.2 Charakterystyki czgstotliwosciowe obwodu rezonansowego roéwnolegtego

Dobro¢ Q, podobnie jak w obwodzie rezonansu szeregowego, ma ogromny wplyw na
charakterystyki czgstotliwosciowe obwodu RLC. Zauwazmy, ze z rOwnania (6.25) mozna

wyznaczy¢ napigcie na elementach R, L, C w postaci

)= !
G+ jwC—jl/aL

=|U ()|’ (6.30)

w ktérym |U (a))| oznacza modul napigcia a ¢@(w) - fazg uzalezniong od czgstotliwosci pradu

zasilajacego. Wielkosci te opisane sa nastgpujaca funkcja
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1

U (@)= - (6.31)
JG* +(wC -1/ al)
¢(w) = —arctg a)C—Tl/a)L (6.32)

Na rys. 6.8a przedstawiono charakterystyke¢ modutu napigcia (charakterystyke amplitudowa) a
rys. 6.8b wykres fazy napigcia (charakterystyke fazowa) w funkcji pulsacji @ dla obwodu

rezonansowego o @, =1 1 dobroci 0=0,6.

U] i i ! i i i i !
L T I S R S
0 i i i i i i i -
0 045 1 1.5 2 25 3 3ha 4
i}
I
) =Ty S R R N —— A E— —— .
Of----- PR R RGh EGGEET EEEEELEEEEE R -
S0p----- b oo dodolboooo b ----- 2

O
-
m
—_—
—
m
R
rJ
m
L
L
m
= L

Rys. 6.8 Charakterystyka amplitudowa (a)
1 fazowa (b) napigcia w obwodzie rownolegtym RLC

W punkcie rezonansowym (czg¢stotliwos$¢ zasilania rowna czgstotliwos$ci rezonansowej)
charakterystyka amplitudowa przyjmuje wartoS¢ maksymalna a faza warto$¢ zerowa.
Charakterystyki te sa analogiczne do charakterystyk dla obwodu szeregowego przy
uwzglednieniu formalnych zmian wystgpujacych we wzorach (prad w obwodzie szeregowym
odpowiada napigciu na potaczeniu réwnolegtym elementéw). Zmiana ksztattu charakterystyk

czestotliwosciowych obwodu réwnoleglego na skutek zmian dobroci jest réwniez identyczna
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jak miato to miejsce w obwodzie szeregowym RLC. Odpowiednikiem napigcia na elementach
L i C w obwodzie szeregowym jest prad tych elementéw w obwodzie réwnolegltym.
Zachowanie si¢ tych charakterystyk w funkcji pulsacji wynika z prawa Ohma dla cewki i1
kondensatora, to jest
[.(w) = joCU (w)
oraz
I, (w)=—jU(w)! wL

Ograniczajac si¢ jedynie do charakterystyk amplitudowych mozna latwo wykaza¢, ze

charakterystyki te opisuja si¢ nastgpujacymi wzorami

(@) = flec (6.33)
JG* +(@C-1/aL)
1, ()= 1 (6.34)

WL\G* +(wC —1/ L)
Na rys. 6.9 przedstawiono charakterystyki amplitudowe pradu cewki i kondensatora w funkcji
pulsacji dla dobroci Q < % wynikajace z relacji (6.33) 1 (6.34).

!

08 :
06
0.4
0.2 . 1 1' |
; i i : =
0 Je 2 3 4

Rys. 6.9 Charakterystyki amplitudowe pradu cewki i kondensatora
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Zmiana dobroci obwodu wptywa w zasadniczy sposéb na przebieg tych charakterystyk.

. . 1 U
Mozna tatwo udowodni¢, ze dla dobroci Q>ﬁ pojawiaja si¢ punkty ekstremalne

(maksima) w obu charakterystykach, podobnie jak przy rezonansie szeregowym, przy czym

wystegpuje przesunigcie tych maksiméw wzgledem punktu rezonansowego. Przesunigcie to

. . . . . . 1
maleje wraz ze zwigkszaniem si¢ dobroci. Przy dobroci Q < ﬁ punkty ekstremalne w obu

charakterystykach nie wystgpuja a przebieg charakterystyk amplitudowych staje sig
monotoniczny.

Rezonans réwnolegly podobnie jak szeregowy ma gtéwnie zastosowanie w uktadach
filtr6w 1 generatoréw, gdzie pelni rolg¢ uktadu wzmacniajacego sygnaly w okreslonym

zakresie czgstotliwosci 1 ttumigcego w pozostatym.

Zadania sprawdzajqce

Zadanie 6.1

Okresli¢ warunek rezonansu w obwodzie przedstawionym na rys. 6.10 przy zatozeniu
wymuszenia sinusoidalnego. Wyznaczy¢ czgstotliwosé, przy ktérej w obwodzie nastapi
rezonans. Przyja¢ nastgpujace znormalizowane warto$ci parametrow obwodu: R=10Q, L=1H

oraz C=1F.

C -

O

et

Rys. 6.10 Schemat obwodu do zadania 6.10

Rozwiqzanie

Impedancja zastgpcza obwodu okreslona jest wzorem

o1 jelR 100 99w’ ~100
Toc TR+ joL 100+0° 100+ @

7 =
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Warunek rezonansu:

Im(Z)=0—99®° —100=0

Stad czgstotliwos¢, przy ktdrej wystapi rezonans jest okreslona wzorem

100
o, = 1/—
99

F=L 1946,
27\ 99

Zadanie 6.2

Wyznaczy¢ pojemnos¢ C, przy ktérej w obwodzie z rys. 6.11 zachodzi rezonans szeregowy.

et

Rys. 6.11 Schemat obwodu do zadania 6.2

Wymuszenie w obwodzie dane jest w postaci e(t)zSOx/E sin(4000¢). W warunkach

rezonansu wyznaczy¢ prady i napigcia w obu obwodach. Przyja¢ nastgpujace wartosci

parametréw obwodu: R=1000€2, L=0,25H, L,=0,5H.

Rozwiqzanie

Impedancja zastgpcza obwodu okreslona jest wzorem

o - -1
_ j@LR +J s
joL, + R

1
oL — j——
/ ]a)C

133



Po wstawieniu warto$ci parametrow otrzymuje si¢

j1000  32-10°C—800 = .16-10°C —1400

Z =800+ j400— _ N
T 0 c-1T 4100c-1 )T 410°C-1

Jak z powyzszego wzoru wynika, w obwodzie mozliwy jest zaréwno rezonans szeregowy jak
i rownolegly. W przypadku rezonansu szeregowego wymaganego w tresci zadania warunek

jest nastgpujacy

Im(Z)=0—16-10°C -1400=0
Stad

o M0
16-10

W warunkach rezonansu poszczegdlne impedancje obwodu wynosza

Z,, =800+ j400
Z,. =—j400

Prady i napigcia w obwodzie:

E

= =0,0625A
ZRL + ZLC

U, =Zg I =50+ j25

1, = l']i =0,0125- 0,025
JoL,

I, = % =0,05+ ;0,025

U, =2, 1=-25j

U
I, =—*<=-0,025
joL

I, = U_ch =0,0875

oC
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Lekcja 7. Analiza obwodéw RLC przy wymuszeniu niesinusoidalnym

Wstep

W tej lekcji zajmiemy si¢ analiza obwodéw liniowych RLC w stanie ustalonym przy
wymuszeniach okresowych niesinusoidalnych. Odpowiedzi takich obwodéw sa w ogdlnosci
rowniez funkcjami okresowymi niesinusoidalnymi. Wiele urzadzen elektrycznych generuje
sygnaty okresowe o ksztalcie r6zniacym si¢ od sinusoidy. Moga to by¢ prostowniki diodowe
lub tyrystorowe, transformatory przecigzone pracujace w zakresie nieliniowosci krzywej
magnesowania, generatory uniwersalne napie¢ prostokatnych, pitoksztattnych itp. Okresowe
przebiegi niesinusoidalne nazywac¢ bedziemy réwniez odksztalconymi, uznajac przebiegi
sinusoidalne za najbardziej elementarne przebiegi okresowe.

Istnieje konieczno$¢ opracowania metodyki analizy obwodéw zawierajacych sygnaty
niesinusoidalne. Podstawowym problemem w analizie tych obwodéw jest wyrazenie
przebiegdéw niesinusoidalnych poprzez funkcje sinusoidalne, dla ktérych analiza jest bardzo
prosta. Metoda powszechnie stosowana jest rozwinigcie funkcji czasowych opisujacych
przebieg niesinusoidalny w szereg Fouriera.

Zostanie pokazane, ze dowolne okresowe wymuszenie rézne od sinusoidalnego moze by¢
przedstawione jako suma wielu wymuszen harmonicznych (sinusoidalnych) o
czgstotliwosciach  bedacych wielokrotnos$cia czestotliwosci  podstawowej. Rozwinigcie
szeregu Fouriera zostanie zaprezentowane tutaj w postaci trygonometrycznej oraz
wyktadniczej. Wprowadzone zostanie twierdzenie Parsevala, pozwalajace wyrazi¢ wartos¢
srednia za okres iloczynu dwu funkcji okresowych poprzez wspétczynniki rozwinigcia
wyktadniczego Fouriera obu funkcji. Podane zostana wzory na warto$¢ skuteczna przebiegéw
niesinusoidalnych oraz na moce wystgpujace w obwodzie o przebiegach niesinusoidalnych.
Wprowadzone zostanie nowe pojgcie mocy — moc odksztatcenia (deformacji). Poznamy
metod¢ analizy obwodéw ze zrddtami niesinusoidalnymi w stanie ustalonym przy

zastosowaniu zasady superpozycji.

O
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7.1. Szereg Fouriera

7.1.1. Wprowadzenie

Zgodnie z twierdzeniem Fouriera funkcj¢ okresowa f(f) o okresie T (czg¢stotliwos¢ f=1/T)
mozna przedstawi¢ w postaci szeregu utworzonego ze skladowej stalej oraz funkcji
sinusoidalnych o czgstotliwosciach kf jesli funkcja ta spetnia tak zwane warunki Dirichleta.

Niech dana bedzie funkcja okresowa f{t) okreslona w przedziale 0-7, gdzie T oznacza
okres tej funkcji. Zat6zmy, ze funkcja ta spetnia warunki Dirichleta, to znaczy, ze w

przedziale O-T jest bezwzglednie catkowalna, czyli

[l @lde < oo (7.1)

ma skonczong liczb¢ maksiméw i miniméw a w przedziale 0-7 co najwyzej skonczona liczbg
punktow nieciaglosci #, przy czym w kazdym punkcie nieciagtosci istnieja skonczone granice
prawostronna i lewostronna a warto$¢ funkcji w tym punkcie przyjmuje si¢ jako srednig

arytmetyczng granicy lewo- i prawostronnej, to jest
1
=2l a0+ f )] (7.2)

7.1.2. Postac trygonometryczna szeregu Fouriera
Kazda funkcja okresowa spetniajaca wymienione warunki Dirichleta moze by¢ wyrazona za
pomoca nieskonczonego, zbieznego szeregu Fouriera. Suma tego szeregu dla dowolnego

punktu czasu ¢ jest rOwna wartos$ci funkcji f{?), co znaczy

f@)=F,+ i F, sin(kax+y, ) (7.3)
lub
f()y=A, + i [A, cos(kax)+ B, sin(kax)] (7.4)
k=1
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Szereg po prawej stronie réwnan (7.3) i (7.4) nazywa¢ bedziemy szeregiem

trygonometrycznym Fouriera. W szeregu tym wyrézni¢ nalezy nastgpujace parametry

k - rzad harmonicznej (k=1, 2, 3,...)

F, - amplituda k-tej harmoniczne;j

F,=A, - sktadowa stata przebiegu

v, - faza poczatkowa k-tej harmonicznej
=27 = 277[ - pulsacja harmonicznej podstawowej

F, sin(wt+y,) - podstawowa harmoniczna przebiegu

F, sin(kat +y,) - k-ta harmoniczna przebiegu (k=1, 2, 3, ...)

Nalezy podkreslic, ze czgstotliwo$s¢ harmonicznej podstawowej jest identyczna z
czgstotliwoscia przebiegu niesinusoidalnego f(t). Czgstotliwosci kolejnych harmonicznych sa

wielokrotnoscia czgstotliwo$ci harmonicznej podstawowej, czyli @, = k@ . Wspolczynniki

rozwinigcia trygonometrycznego Fouriera wyznacza si¢ z nastgpujacych wzoréw

1 T+t,
Ay=— [ fdr 75
Ak:?-if@quMuyﬁ (7.6)
B, =% j Of(t)sin(ka)t)dt (71.7)

Chwila czasowa fyp moze by¢ wybrana dowolnie a jej wybdr nie ma wpltywu na wynik
transformacji. Obie postacie szeregu Fouriera (7.3) i (7.4) sa sobie réwnowazne, jesli

spetnione sa nastgpujace warunki

F, =, Al +B; (7.3)
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A
v, = arcth—" (7.9)

k

W ogélnosci szereg Fouriera zawiera nieskonczenie wiele harmonicznych. W praktyce
wigkszo$¢ harmonicznych maleje do zera przy zwigkszajacym si¢ rzedzie tych
harmonicznych. Stad w obliczeniach uwzglednia si¢ jedynie niewielka liczbg¢ tych
harmonicznych uzyskujac zadowalajace przyblizenie. Metode¢ rozktadu przebiegu

niesinusoidalnego na szereg Fouriera zilustrujemy na przyktadzie przebiegu prostokatnego.

Przyktad 7.1

Wyznaczy¢ rozwinig¢cie Fouriera dla przebiegu prostokatnego okresowego o okresie T

przedstawionego na rys. 7.1

Ty T t

Rys. 7.1. Przebieg prostokatny okresowy

Rozwiqzanie
Dla przebiegu podanego na rys. 7.1 pulsacja @=2x/T. Poszczegdlne wspdtczynniki

rozwinigcia trygonometrycznego Fouriera opisane sa wzorami

172 10 T
=— Ndt =— | Adt =2A-L
A= [FO Tl .

=T/2

2 T 2 2A T
A == t)cos(kar)dt == | Acos(kan)dt = ——sin(27 - k—
k Ti{o (kar) TL (kax)ds =——-sin(z k1)
) T/2 o) T
B, =— t)sin(kax)dt =— | Asin(kax)dt =0
. rif) (kax) Ti (kar)
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Z uzyskanych wzoréw na wspélczynniki Fouriera wynika, Zze zadany przebieg czasowy

prostokatny opisa¢ mozna w postaci nieskonczonej sumy harmonicznych o postaci

L[ 24 okl
f(t) = ZA? + kZ;L[ P sin(2k7 ; )}cos(ka)t)

Wyrazenie o postaci sinusoidalnej stojace przy cos(kot) oznacza amplitude k-tej
harmonicznej. Jak wida¢ wartos¢ tej amplitudy maleje wraz ze wzrostem k. W ogdlnym
przypadku przy dowolnej wartosci 77 rozwinigcie w szereg Fouriera zawieraC moze
wszystkie harmoniczne, przy czym amplitudy tych harmonicznych sa modulowane funkcja
sinusoidalna.

Szczegblnie prosta forme przyjmuje rozwinigcie w szereg Fouriera przy wypetnieniu

impulséw prostokatnych w stosunku 1:1. Wtedy 7, =7 /4 a rozwinigcie f{t) upraszcza si¢ do

postaci
A 2A 2A 2A 2A
f(t) =—+—-cos(an) ———cos(Bax) + — cos(Sax) ———cos(7ax) +...
2 7 3z Sz ¥

W tym przypadku szereg Fouriera zawiera jedynie harmoniczne nieparzyste a amplituda k-tej
harmonicznej jest k-krotnie mniejsza niz harmonicznej podstawowej. Kolejne sktadniki
rozwinigcia roznig si¢ znakiem (znak minus odpowiada wprowadzeniu przesunigcia fazowego

o kat 180°). Rys. 7.2 przedstawia wykres amplitudy i fazy poszczegdlnych sktadowych

rozktadu Fouriera (w przypadku fazy przyjeto cosax = sin(a)t + %] ).

-

0 [0 2o 3w 4w 5w 6w Tw @
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Rys. 7.2. Wykres amplitudy (a) i fazy (b) sktadowych rozktadu Fouriera

Rozktad przebiegu niesinusidalnego na skladowe harmoniczne oznacza jego
aproksymacj¢ poprzez nieskonczona sumg skladnikow. Kazde ograniczenie tej sumy do
liczby skonczonej wprowadza pewien biad aproksymacji, a wigc przyblizenie przebiegu
rzeczywistego przez funkcje aproksymujace. Na rys. 7.3 przedstawiono efekty przyblizania
przebiegu prostokatnego przez ograniczona sume¢ harmonicznych przy coraz wigkszej ich

liczbie uwzglednianej w aproksymacji (N=2, N=3, N=4 uwzgledniajac sktadowa zerowa).
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Rys. 7.3. Przyblizenie impulsu prostokatnego przez skonczona sumg harmonicznych

Jak wida¢ pomimo uwzglednienia w rozwinigciu jedynie 4 harmonicznych przyblizenie jest
do$¢ doktadne 1 odzwierciedla podstawowy ksztalt impulsu. Zwigkszenie liczby

harmonicznych uwzglednione w sumie zwigksza doktadnos¢ odwzorowania impulsu.
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7.1.3. Posta¢ wyktadnicza szeregu Fouriera

W pewnych zastosowaniach posta¢ trygonometryczna (7.3) szeregu Fouriera nie jest
wystarczajaca 1 dlatego wprowadza si¢ komplementarna posta¢ wykladnicza, bedaca
rozwinigciem funkcji trygonometrycznych w funkcje wyktadnicze. Korzysta si¢ przy tym z

definicji funkcji sinusoidalnej 1 cosinusoidalnej, zgodnie z ktérymi

sin(ar)=S—% (7.10)
2j
jar —jor
cos(ar) = % (7.11)

Po zastosowaniu elementarnych przeksztatcen wzoru (7.4) otrzymuje si¢

= (A, —jB. ) . <A +jB)
f(t)=A0+Z(—k 2J k}-ﬂ‘%r (—k 2J kje’k“” (7.12)
k=1 k=1

Wprowadzmy oznaczenia
(7.13)
oraz

X, = (7.14)

Ze wzgledu na parzystos¢ funkcji cosinusoidalnej i nieparzystos¢ funkcji sinusoidalnej

stuszne sa nastgpujace réwnosci

A=A, (7.15)

B, =-B_, (7.16)
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Oznacza to,ze
X, (7.17)

gdzie znak * oznacza sprz¢zenie liczby zespolonej. Uwzglednienie tej zaleznosci we wzorze

(7.12) prowadzi do wyniku

ft)y=A,+ iXkeﬂ“"' + iXkejk"” (7.18)

k=-1

ktéry moze zosta¢ zapisany w skrécie jako

f)=A+ iXkejk“’ (7.19)

k=—c0

k#0

Jest to tak zwana posta¢ wyktadnicza szeregu Fouriera, w ktorej wartosci wspotczynnikow
rozwinigcia X; sa zespolone w odroznieniu od rzeczywistych wartosci wspoiczynnikéw
szeregu trygonometrycznego. Wspoélczynniki te moga by¢ otrzymane z rozwinigcia

trygonometrycznego badz bezposrednio z relacji

to+T

1 _jkar
X =— j f(te ™ dr (7.20)

Wykres |X k| okreslony dla dyskretnych warto$ci k reprezentujacych soba dyskretne

czgstotliwosci nazywany jest widmem amplitudowym funkcji f(r). Ze wzgledu na to, ze

wspotczynniki  rozwinigcia wykltadniczego spelniaja  warunek |X k| =|X n

,  widmo

amplitudowe jest symetryczne wzgledem osi rz¢gdnych (wartosci widma amplitudowego dla
dodatnich 1 ujemnych czg¢stotliwosci sg identyczne). Z kolei wykres arg X , = —arg X, , czyli
widmo fazowe jest symetryczne wzgledem poczatku uktadu wspétrzednych (wartosci kata

fazowego dla czestotliwosci ujemnych sa przeciwne wzgledem tych samych wartosci dla

czestotliwosci dodatnich).
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Rozwinigcie funkcji f(f) w posta¢ wyktadnicza oznacza rozklad energii sygnalu w zakresie
czestotliwosci dodatniej i ujemnej. Jesli rzeczywista warto$¢ amplitudy k-tej harmoniczne;]

wynosi Ay, to k-ty prazek widma amplitudowego szeregu wyktadniczego Fouriera przyjmie

wartos¢ 7]‘ dla czgstotliwos$ci dodatniej 1 identyczng wartos$¢ dla czgstotliwosci ujemne;.

Przyktad 7.2

Wyznaczy¢ posta¢ wyktadnicza szeregu Fouriera, jesli
f({)=5+10cos(ar) + Ssin(wt) + 7 cosBawt) +12sin(Sax)

Rozwiqzanie

Dla uzyskania postaci wyktadniczej szeregu Fouriera skorzystamy z zaleznoS$ci definicyjnych

e/ —e e’ +e
funkcji sinusoidalnej i kosinusoidalnej: sin(ax) = 5 cos(ax) = - Po
J

jor
wstawieniu tych zalezno$ci do szeregu Fouriera otrzymujemy
jax jor —jor 3o —j3ax jser __—jser

I 4 e e’ —e e’ +e e e

f)=5+10% S+ 17 +12

Uwzgledniajac, ze j=e’"'* i grupujac odpowiednie sktadniki otrzymujemy

f(t)=6e""2e 7 +%ej3” +(5+25)e ™ +5+(5-25))e’ +%ej3“’r +6e /" e

Po sprowadzeniu liczb zespolonych do postaci wyktadniczej otrzymuje si¢ nastgpujaca postac

wyktadnicza szeregu Fouriera
f(t)=6e"" e +35¢7 " +5,607 ™ +5+5,6e77 /™ +3,5¢7” + 67" &/
Charakterystyka amplitudowa szeregu wyktadniczego Fouriera opisujacego funkcje f(¢)

przedstawiona jest na rys. 7.4a, natomiast charakterystyka fazowa na rys. 7.4b.
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7.1.4 Twierdzenie Parsevala

IFsl

=2

4 3 2 4 o001 2 3 4 5 ;:"
A
';p.l't,
— | — >
4 a3 2 4 0 |1 2 3 4 s .

opisujacego funkcje f(7) z przyktadu

Przedstawmy je w postaci wyktadniczej Fouriera

F=Y et

k=—oc0

g(n=>Y g

k=—oco0
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Rys. 7.4 Charakterystyka amplitudowa (a) i fazowa (b) szeregu wyktadniczego Fouriera

Czgstotliwos¢ zmienia si¢ w zakresie od —oo do oo. Prazki amplitudowe 1 fazowe zostaty
roztozone w sposéb symetryczny w obu zakresach, przy czym charakterystyka amplitudowa
jest funkcja parzysta a charakterystyka fazowa - nieparzysta. Energia sygnatu utozsamiona z
amplituda zostata zatem rozdzielona na dwie réwne czg¢s$ci. Amplituda k-tej harmonicznej jest

rowna podwojonej wartosci amplitudy k-tego prazka z zakresu dodatniego lub ujemnego.

Rozpatrzmy dwie funkcje f(r) i g(#) o tym samym okresie T spelniajace warunki Dirichleta.

(7.21)

(7.22)



. . ) .. 2 .
w ktoérej pulsacja podstawowa  jest okreslona poprzez okres funkcji @ = ?ﬂ Przy takich

zatozeniach twierdzenie Parsevala mozna sformutowac nastgpujaco.

Twierdzenie Parsevala
Jesli funkcje f(t) 1 g(r) sa okresowe o tym samym okresie 7" i1 obie spetniaja warunki

Dirichleta, to wartos¢ srednia z iloczynu tych funkcji za okres okreslona jest zaleznoscia

tog+T

Fos@= [ fwewdi=Y figi= e fi (7.23)

k=—o0 k=—o0

w ktorej f, 1 g, oznaczaja rozwinigcie wyktadnicze funkcji zadanych f(t) 1 g(7) a znak *

oznacza operacj¢ sprz¢zenia liczby zespolone;.

Twierdzenie Parsevala okre§la warto$¢ srednia za okres iloczynu dwu funkcji
okresowych f(f) 1 g(f) o tym samym okresie. Z twierdzenia wynika, ze warto$¢ $rednia tworza
jedynie iloczyny sktadnikéw rozktadu wyktadniczego o tym samym rzedzie. Sktadniki sumy
pochodzace od iloczynéw sktadowych réznego rzedu sa réwne zeru. W szczegdlnym

przypadku gdy f(r)=g(t) wzor Parsevala upraszcza si¢ do postaci

to+T

[ rroa= Y5 (7.24)

gdyz mnozenie liczby zespolonej przez sprz¢zona oznacza kwadrat modutu liczby zespolonej,

2 . . .. . , . . . ;. .
| Ostatni wzér wiaze si¢ bezposrednio z obliczeniem wartos$ci skutecznej

fkfk* :|fk .

przebiegu niesinusidalnego, rozwinigtego w szereg Fouriera.

7.2 Wartos¢ skuteczna napiecia i prqdu niesinusoidalnego

W przypadku analizy obwodéw o przebiegach niesinusoidalnych okresowych sygnat pradu i
napigcia w obwodzie przedstawiany jest zwykle w postaci szeregu trygonometrycznego

Fouriera
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u(t)=U,+ D U, sin(kax +y,) (7.25)

i)=1,+ 1, sinkax +y, —,) (7.26)
k

w ktorych U,,, oraz I,, sa amplitudami k-tej harmonicznej odpowiednio napigcia u() 1 pradu

i(r). W, jest faza poczatkowa k-tej harmonicznej a @, jest katem przesunigcia fazowego k-tej
harmonicznej pradu wzgledem k-tej harmonicznej napigcia.

Korzystajac z twierdzenia Parsevala mozna udowodni¢, ze wartos¢ skuteczna
przebiegu sktadajacego si¢ z sumy wielu harmonicznych moze by¢ obliczona na podstawie
wartosci skutecznych kazdej harmonicznej z osobna. Biorac pod uwage zaleznos¢ (7.24) i
uwzgledniajac relacj¢ migdzy wartoscia maksymalna 1 skuteczna mozna pokazac, ze wartos¢
skuteczna przebiegu niesinusoidalnego jest pierwiastkiem z sumy kwadratow wartosci
skutecznych poszczegdlnych harmonicznych. W przypadku napigcia i pradu opisanych

zaleznosciami (7.25) i (7.26) wzory na modul warto$ci skutecznej przyjmuja postac

ul= >l =\/|Uo|2 +Ho | +|u,[ +.. (7.27)
k

1= ST =i+l 729
k

w ktérej U, oraz [, oznaczaja wartosci skuteczne odpowiednio napigcia i pradu k-tej

harmonicznej. Warto$¢ skuteczna (modut) napigcia i pradu niesinusoidalnego jest réwna
pierwiastkowi kwadratowemu z sumy kwadratéw moduléw wartosci skutecznych wszystkich
harmonicznych oraz sktadowe;j stale;j.

W przypadku wystapienia w przebiegu wielu harmonicznych waznym wskaznikiem
odksztatcenia tego przebiegu od sinusoidy jest wspétczynnik zawartosci harmonicznych /.
Wspoélczynnik ten definiuje si¢ jako stosunek wartosci skutecznej przebiegu f(f) po usunigciu
z niego skladowej stalej i pierwszej harmonicznej do wartosci skutecznej przebiegu po
usunigciu z niego jedynie sktadowej stalej. Przy oznaczeniu wartosci skutecznych
odpowiednich harmonicznych przez F; wzér na wspdtczynnik zawartosci harmonicznych

mozna zapisa¢ w postaci
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. \/|F2|2 F|F+ ]+ 720

|Fl|2 +|F2|2 +|F3|2 F...

Jesli badany przebieg zawiera jedynie skltadowa podstawowa (pierwsza) to jak tatwo
zauwazy¢ wspotczynnik zawarto$ci harmonicznych jest réwny zeru, co oznacza brak

odksztatcenia krzywej od postaci sinusoidalne;.

7.3. Moc przy przebiegach niesinusoidalnych

Niezaleznie od charakteru zmienno$ci w czasie przebiegdw pradu 1 napigcia moc
chwilowa w obwodzie jest wyrazona tym samym wzorem p(t)=u(t)i(t). Korzystajac z tej
zaleznosci oraz uwzgledniajac twierdzenie Parsevala wyrazajacego iloczyn dwu sum
harmonicznych mozna udowodnié¢, ze moc czynna P jako warto$¢ $rednia z iloczynu pradu i

napigcia w obwodzie

P= % j u(t)i(t)dt (7.30)

0

przy wystapieniu wielu harmonicznych jest rowna sumie mocy czynnych poszczegdlnych

harmonicznych, wiaczajac w to sktadowa stata
P=U,l,+ Y |UJI|cosp, (7.31)
k=1

Analogicznie jak dla przebiegéw sinusoidalnych réwniez przy przebiegach odksztalconych
istnieje pojecie mocy biernej, jako sumy mocy biernych pochodzacych od poszczegdlnych

harmonicznych, czyli

0=l sing, (7.32)
k=1
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Analogicznie do obwodéw z przebiegami sinusoidalnymi réwniez dla przebiegéw
niesinusoidalnych wprowadza si¢ pojecie modulu mocy pozornej jako iloczynu wartosci

skutecznej napigcia odksztalconego przez wartos$¢ skuteczng pradu odksztatconego, czyli

|5|=|U||1|=\/§,|Uk|2 ;Ilklz (7.33)

Nalezy zaznaczy¢, ze tak zdefiniowana wielko$¢ oznacza modul mocy pozornej a nie moc
pozorna zespolona. Z poréwnania wzoréw (7.31), (7.32) 1 (7.33) wynika, ze w odréznieniu od
przebiegéw sinusoidalnych suma kwadratéw mocy czynnej i mocy biernej nie jest réwna
kwadratowi mocy pozornej. Dla zachowania bilansu mocy wprowadza si¢ w zwiazku z tym
nowy rodzaj mocy, zwanej moca odksztalcenia lub deformacji. Moc t¢ oznacza¢ bedziemy
litera D. Jej wartos¢ musi by¢ tak dobrana aby wszystkie rodzaje mocy bilansowaty si¢. W

zwiazku z powyzszym przyj¢to nastgpujacy zwiazek migedzy poszczegdlnymi rodzajami mocy
S| =P?+ 0%+ D? (7.34)
Oznacza to, ze moc deformacji definiuje rownanie
D=.s|-0*- P (7.35)

Stosunek mocy czynnej do mocy pozornej nazywamy, przez analogi¢ do przebiegéw

sinusoidalnych, wspétczynnikiem mocy i okreslamy wzorem

P
CoOSV =— (7.36)

]

Wspoétczynnik mocy obwodu przy wymuszeniu niesinusoidalnym tylko z definicji
przypomina wspoétczynnik mocy obwodu przy wymuszeniu harmonicznym. W rzeczywistosci

jego interpretacja jest pozbawiona sensu fizycznego jaka posiada cos ¢ .
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7.4. Metodyka rozwiqzania obwodow przy wymuszeniu niesinusoidalnym

W przypadku wystapienia w obwodzie RLC wymuszenia niesinusoidalnego obliczenie
odpowiedzi w stanie ustalonym musi uwzgledni¢ fakt istnienia wielu harmonicznych
(teoretycznie nieskonczenie wielkiej liczby) rézniacych sig czgstotliwoscia. Zatézmy, ze do
obwodu RLC przytozono okresowe napigcie niesinusoidalne u(t) jak to przedstawiono na rys.

rys. 7.5.

U
1o obwéd ’ obwad abwad T abwad
liniowy | ~ T liniowy |+ W) liniowy | +. .+ liniowy

a) b)

Rys. 7.5. Ilustracja zastosowania zasady superpozycji przy rozwiazywaniu obwodow o
wymuszeniu napigciowym niesinusoidalnym: a) obwdd o wymuszeniu niesinusoidalnym,

b) superpozycja obwodéw o wymuszeniu sinusoidalnym

Napigcie to mozna przedstawi¢ w sposéb przyblizony za pomoca skonczonej sumy n

harmonicznych

u(t)=U, + iUkm sinfkax +y, ) =U, +u, (t) +u,(t) +u,(t) +...+u, (1) (7.37)

k=1

w ktérej n jest najwigksza wartoscia harmonicznej uwzglednionej w rozwinigciu Fouriera.
Wobec liniowosci obwodu mozna zastosowaé zasade¢ superpozycji i obliczy¢ prady od
poszczegblnych zrédet oddzielnie (rys. 7.5b). Przy wymuszeniu typu napigciowego zrodia
eliminowane z obwodu zwiera sig.

W przypadku wystapienia w obwodzie zrodet wymuszajacych pradowych

i(=1,+ anlkm sin(kax +y,) = I, +i (1) + i, (t) + i, () + ...+ i (£) (7.38)

k=1
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postepuje si¢ podobnie, analizujac obwdd dla kazdej harmonicznej oddzielnie (rys. 7.6).
Poniewaz zrédta harmoniczne typu pradowego sa potaczone réwnolegle eliminacja danego

zrodia polega na rozwarciu jego zaciskow.

. obwad obwad obw od obwad
l(ﬂ@ liniowy | = liniowy |+ . linicwy | +. . + ®i,,litll liniowy

a) b)

Rys. 7.6 Ilustracja zastosowania zasady superpozycji przy rozwigzywaniu obwodow o
wymuszeniu pradowym niesinusoidalnym: a) obwdd o wymuszeniu niesinusoidalnym,

b) superpozycja obwodéw o wymuszeniu sinusoidalnym

Nalezy przy tym pamigta¢, ze kazde zrédlo ma inna czestotliwos¢, bedaca
wielokrotnoscia czgstotliwosci podstawowej 1 wynoszaca @, =k@ . Poniewaz zaréwno
reaktancja pojemnosciowa X! jak i indukcyjna X! jest funkcja czestotliwosci, zatem

reaktancje te dla harmonicznej rz¢du £ wynosza odpowiednio

X =koL=kX, (7.39)

X =11koC=X_1k (7.40)

gdzie X, =aL jest reaktancja indukcyjna dla skladowej harmonicznej podstawowej a
X.=1/wC - reaktancja pojemnosciowa dla harmonicznej podstawowej. Dla kazdej

harmonicznej wymuszenia nalezy przeprowadzi¢ oddzielna analize odpowiedniego obwodu
przy zastosowaniu jednej z poznanych wczesniej metod (metoda praw Kirchhoffa, oczkowa,
weztowa, Thevenina itp.). Wynikiem analizy s warto$ci pradow i napi¢¢ poszczegdlnych
galezi obwodu oraz odpowiednie moce: czynna i bierna dla kazdej harmonicznej. Po
wyznaczeniu odpowiedzi dla kazdej harmonicznej oddzielnie nalezy wyznaczy¢ wypadkowe

wartosci skuteczne odpowiednich pradéw i napige¢ oraz mocy wedlug wzoréw podanych
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wczesniej] w tej lekcji. Sposéb postgpowania przy analizie obwodéw z przebiegami

niesinusoidalnymi zostanie zilustrowany na przyktadzie.

Przyktad 7.3
Rozwazmy schemat obwodu poddanego analizie przedstawiony na rys. 7.7. Przyjmijmy
nastgpujace wartosci liczbowe parametréw obwodu: R, =1Q, R, =2Q, L, =1H, L, =2H ,

C,=1/4F, C, =1/2F. Wymuszenie napigciowe e(f) opisane jest suma harmonicznych

e(t) =10+ 20\/5 sin(ax) + 10\/5 sin(2ax) V, przy czym @ = lrad/s.

o ol
RADT Yt P (Y
o(t) (1 R[] =& ELQ
Cs

m

Rys. 7.7. Schemat obwodu do przyktadu 7.3

Rozwiqzanie
Ze wzgledu na istnienie w wymuszeniu trzech harmonicznych nalezy dokona¢ trzech analiz
obwodu, za kazdym razem zakladajac jedno wymuszenie i eliminujac pozostale (wobec

wymuszenia napigciowego zrédla eliminowane ulegaja zwarciu).

e  Harmoniczna zerowa (sktadowa stata)

Harmoniczna zerowa przedstawia soba wymuszenie state (czgstotliwo$¢ wymuszenia
zerowa). Oznacza to, ze w tym przypadku impedancje cewek sa réwne zeru (Z,=jwlL=0) a
impedancje kondensatoréw réwne nieskonczonosci (Zc=1/jwC)=c0). Obwodd dla

harmonicznej zerowej przedstawiony jest na rys. 7.8 (wszystkie cewki zwarte, kondensatory

rozwarte).

179



—L

= (D ol

Rys. 7.8 Posta¢ obwodu dla harmonicznej zerowej (sktadowej statej)

©'=0 oraz

Wobec przerwy w obwodzie prad sktadowej stalej nie moze ptyna¢, stad i
S© =0, ul=E,=10.Pozostate prady i napigcia w obwodzie sa zerowe. Wszystkie moce

obwodu wobec zerowych wartosci pradow sa takze rowne zeru.

®  Harmoniczna podstawowa
Schemat obwodu dla harmonicznej podstawowej jest identyczny ze schematem ogélnym

przedstawionym na rys. 7.7, z tym, ze zamiast napigcia e(f) uwzgledniona jest sktadowa
podstawowa e, () =202 sin(ax) . Przy jednostkowej pulsacji wymuszenia @=1 reaktancje

indukcyjna i pojemnosciowa obwodu dla harmonicznej podstawowej sa odpowiednio rowne:

Xy =l =1
X =wl,=2
Xo =l/oC, =4

XY =1wC,=2

Impedancja potaczenia réwnoleglego elementéw jest réwna Z =R, =2 (rezonans

rownolegly elementéw). Kolejne obliczenia mozna przedstawi¢ w nastgpujacej formie:

S 20

= =47 =1
1+ j1—j4+2 2

U =2Z1" =9.4¢""
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(1)
@ _ UAB
IL2 -
JA 1o

- jas®
=4/7e"’

U(l) e
— = —47¢®

—JAc2

) _
IC2 -

SO =EI" =20-47¢7" =66,7- j66,7

e  Harmoniczna druga
Harmoniczna druga reprezentuje sobg rowniez wymuszenie sinusoidalne o czgstotliwosci
dwukrotnie wigkszej niz czg¢stotliwos¢ podstawowa. Schemat obwodu dla tej harmoniczne;j

jest identyczny ze schematem ogdlnym obwodu przedstawionym na rys. 7.7, z tym, Ze
zamiast napigcia e(f) przylozona jest jego druga sktadowa ez(t)=10\/5 sin(2ax) . Przy
pulsacji wymuszenia harmonicznej drugiej @, =2w =2, reaktancje indukcyjna 1

pojemnosciowa dla harmonicznej drugiej sa rOwne:

X =0l =2
X2 =L, =4
X&=1w,C =2

X8 =1wcC, =1

Impedancja potaczenia rownoleglego elementow jest teraz rowna Z, =Y—, gdzie

r

Yr:i+;(2)+;(2)20,5+]‘0,75.
R, JjX,, JX&

Z =111,

Kolejnos¢ dalszych obliczen w obwodzie jest nastgpujaca:

1+ j2—j2+111e 7

=5,37¢°
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UG =21%=597¢7*

(2) UE&? —jle’
ILZ :.—(2):1,496 ’
JX5
U® o
132) =— 5 =5.97¢'*
XC2
(2)
@ _Uip _ -j26°
1) =248 =2 98¢

>
SP =E,1?" =10-537¢ 7% =46,7— j26,5
Wartosci skuteczne pradéw w obwodzie sa rowne:
1] =4,7> +5.37% =7,13A,
1o =477 +2,98% =557A
|1,,] =477 +1,497 =4934

1oy =4477 +597° =7.62A

Wartos¢ skuteczna napigcia zrddta jest rowna

|E[= 107 +20% +10° = 24,5V
Moc pozorna (modut) wydawana przez zrédto jest rowna

S =|E|1]=174,65vVA
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Catkowita moc czynna i bierna wydana przez zrédto sa réwne odpowiednio

P=P?P + PV 4+ P? =66,7+46,7=1134W

oraz

0=0"+0"% =-66,7-26,5=-93,2var

Moc odksztalcenia

D=4/S>—P?—Q* = 174,65 —113.4> —93,2% =94,64VA

W obwodzie powstata bardzo duza moc odksztalcenia. Wytlumaczeniem tego faktu jest
wystgpowanie zjawiska rezonansu zaréwno dla harmonicznej podstawowej (cewka druga i
kondensator drugi) jak i dla harmonicznej drugiej (cewka pierwsza i kondensator pierwszy).
Moc bierna wypadkowa w elementach reaktancyjnych w stanie rezonansu jest zerowa co
pomniejsza moc bierng catego obwodu dla tych harmonicznych. Z drugiej strony wszystkie
harmoniczne tworza wartosci skuteczne zarOwno pradu jak 1 napigcia, stad ich iloczyn
tworzacy modul mocy pozornej przyjmuje duza wartos¢. W bilansie mocy wplywa to na

znaczne zwigkszenie mocy deformacji.

Zadania sprawdzajqce

Zadanie 7.1

Przedstawi¢ funkcje
f(t) =10+ 20sin(awt)+ 16 cos(Sar) + 8 cos(7ar)
w postaci wyktadniczej szeregu Fouriera.

Rozwiqzanie

Z definicji funkcji sinus i cosinus wynika nast¢pujaca zaleznos$¢

183



joo _ —jox jSar | —jSar T | il
F()=104204——C 416& T ,g¢ *¢
2] 2 2

Stad posta¢ wyktadnicza szeregu Fouriera dana jest zaleznoscia

fO)=4e7"" +8¢77 +10e” e /™ +10+10e " /™ + 8¢ + 477"

Zadanie 7.2

Zapisa¢ twierdzenie Parsevala dla dwu przebiegéw czasowych danych w nastgpujacej postaci

f(t)=5+10sin(wt) +16cosRar) +12cos(3wt)
g(t)=2+8sin(wr) +10cos(2awt) + 12 cos(Sawr)

Rozwiqzanie
Z. definicji funkcji sinus i cosinus otrzymuje si¢ nast¢pujace postaci wyktadnicze szeregu
Fouriera dla obu funkcji

jox —jar j2ar —j2am j3ar

e e +e e +e

f()=5+10% ; +16 +12
J

—j3ax

F(t)=6e " 4872 1567 ¢TI £ 54 567 I 1 8o 4 G

jor _ p-jer j2ar —j2ar jsar

g(t)=2+8% ; +10 +12
J

—jSax

g(1) = 6e " 572 4 467 ¢TI £ 2 4 4N I 45072 4 G

Dziatania okres$lone twierdzeniem Parsevala przyjma wigc postac

fOgt)=5-2+5""" -4¢7" +8-5+6-0+0-6+5¢ 7" -4¢’ +8-5+6-0+0-6=130
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Zadanie 7.3

Wyznaczy¢ wskazania przyrzadow pomiarowych w obwodzie z rys. 7.9.

o® o |Ir

Rys. 7.9 Schemat obwodu do zadania 7.3

Przyja¢ nastgpujaca posta¢ wymuszenia e(t) =10+ 2042 sin(t) + 15v/2 sin(2¢) . Warto$ci

parametréw obwodu sa nastgpujace: R=2Q, [=0,5H, C=0,5F.

Uwaga: Woltomierze i amperomierze wlqczone w obwodzie mierzq moduly wartosci

skutecznych odpowiednio napiecia i prqdu.

Rozwiqzanie
Poniewaz wymuszenie zawiera trzy harmoniczne, nalezy rozwiaza¢ obwod trzy razy dla

kazdego wymuszenia oddzielnie.

®  Harmoniczna zerowa (sktadowa stata)
Obwéd dla sktadowej statej E” =10 przedstawiony jest na rys. 7.10 (cewka zwarta,

kondensator przerwa)

|(0) U =0
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Rys. 7.10. Obwdd dla harmonicznej zerowe;j

1o =_EI;°) =5
U =0

®  Harmoniczna podstawowa (W =1)

Kolejnos¢ obliczen jest nastepujaca:

E" =20
Z\" = jol = jO,5
ZY =-jlaC=-j2

o _ J05=]2)

= = j0,667
LC — 15 J

E(l)
@ — _ :
7Y
LC

U =z21" =2+ j6

e  Harmoniczna druga (w=72)

Kolejnos¢ obliczen jest nastgpujaca:

E® =15
Z,) = joL=jl

Z2 =—jloC =-j1

2=
1”=0
Uy =15

Wskazania amperomierza i woltomierza (moduty odpowiednich wielkosci) sa rowne:

1=l 1+ =10724
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| =0 + [+ <1628V

Zadanie 7.4
Wyznaczy¢ moce: czynna, bierna, pozorna i odksztalcenia w obwodzie przedstawionym na

rys. 7.11.

Rys. 7.11 Schemat obwodu do zadania 7.4

W obwodzie wystgpuje wymuszenie pradowe i(f) dane w nastgpujacej postaci

it)y=5+ 2\/5 sin(z) + \/E sin(3¢) . Przyja¢ warto$ci parametréw: R=5Q, L=1H, C=1/9F.

Rozwiqzanie
Ze wzgledu na wystgpowanie w wymuszeniu trzech harmonicznych nalezy zastosowac

superpozycj¢ zrodel. Zgodnie z ta metoda obliczamy kolejno.

®  Harmoniczna zerowa (sktadowa stata)
Obwdd dla harmonicznej zerowej przedstawiony jest na rysunku 7.12 (cewka zwarta,

kondensator przerwa).

=4
|II') T

Rys. 7.12 Schemat obwodu dla harmonicznej zerowe;j
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1 =5

1(0) — I(U) =5
L

I =1 =0
R

Ul =0

SO =UGI" =0

®  Harmoniczna podstawowa (W =1)

Kolejnos¢ obliczen jest nastepujaca:

V=2
Z\" = joL= jl
ZP =—jlaC =-j9

I 1 1

YO =— 4 —+——=0,2- 70,89
RLC T g jl —j9 /
&
RLC
U(l)
1) _ AB __ 1
1V = Z;g =2,14- ;0,48
U
I =~ =024+ j0,053
ZC
U
1) = % =0,096 + 0,43

SY=UGI" =096+ j4,28

e  Harmoniczna trzecia (@ =3)

Kolejnos¢ obliczen jest nastgpujaca:

19 =1
Z) = joL=j3
Z0 =—jlaC=-;3

Z,(fL)C =R =35 (rezonans pradow)
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Uiy =RI" =5

U(3)

3) _ Y AB _ .

I; __Zf) =—j5/3
U(S)

3) _ >~ AB _ -

177 = ZS) = j5/3

SO =UDY =15+ jo

Wartosci skuteczne pradéw i napiec sa nastgpujace:

=l + | +[19] =548

2

2 2
I8 =\/1,§°> +IP I =1,09 A

1,|= \/If’) Hrf +ref =570 A

2 2

1.|= \/ 1OF +10] +18] =1,68A

Ul =S +u s+ =546V

Moce w wydzielone przez zrédlo w obwodzie:

IS|=[U 1[7] = 29.90 VA
P=P%+PV+P¥=1596W

0=0"+0" +0% =428 var

D=,|s[ -P*-Q* =2492VA
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Lekcja 8. Uklady trojfazowe

Wstep

Do najwazniejszych, z punktu widzenia praktycznego, naleza uktady tréjfazowe, zawierajace
generator ztozony z trzech zrddet sinusoidalnych o tej samej czgstotliwosci 1 przesunigtych w
fazie oraz odbiornik tréjfazowy sktadajacy si¢ z trzech impedancji potaczonych badz w
trojkat badz w gwiazdg. Uklady takie sa powszechnie stosowane w technice i z tego powodu
analiza zjawisk w takich uktadach jest szczegdlnie wazna.

Lekcja 6sma poswigcona jest teorii obwodow trdjfazowych. Wprowadzone zostang
podstawowe pojecia, takie jak generator tréjfazowy, odbiornik tréjfazowy, wykresy
wektorowe pradéw 1 napigc tréjfazowych a takze relacje migdzy pradami i mocami przy
polaczeniu odbiornika w gwiazde i tréjkat. Rozwazone zostana uktady pomiarowe mocy w
obwodach tréjfazowych tréjprzewodowych 1 czteroprzewodowych. Pokazemy, ze w
trojfazowym ukladzie cewek rozmieszczonych przestrzennie mozliwe jest uzyskanie wektora
natezenia pola magnetycznego o niezmiennej amplitudzie, wirujacego ze stata predkoscia
katowa, zdolnego do wykonania pracy. Zjawisko to jest podstawa budowanych wspétczesnie

maszyn elektrycznych tréjfazowych.

8.1. Pojecia wstegpne

8.1.1. Definicja uktadu tréjfazowego

Uktadem tréjfazowym nazywamy uklad trzech obwodéw elektrycznych, w ktérych istnieja
trzy zrddta napigc¢ sinusoidalnych o jednakowej czgstotliwosci, przesunigte wzgledem siebie o
okreslony kat fazowy 1 wytworzone w jednym generatorze zwanym generatorem
trojfazowym. Poszczegdlne obwody generatora tréjfazowego nazywaé bedziemy fazami i
oznaczac¢ literami A, B, C lub kolejnymi cyframi 1, 2, 3. Przyktad potaczenia 3 faz generatora

w jeden uktad gwiazdowy przedstawiony jest na rys. 8.1.
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Rys. 8.1. Uktad faz generatora tréjfazowego potaczonego w gwiazde

Punkt wspdlny wszystkich trzech faz generatora oznaczony jest cyfra 0. Poszczegélnym
napigciom fazowym przypisuje si¢ wskazniki A, B, C lub w przypadku oznaczenia
liczbowego cyfry 1, 2, 3. Uklad napie¢ zrédtowych generatora tréjfazowego nazywac

bedziemy symetrycznym, jesli napigcia kolejnych faz sa przesunigte wzgledem siebie o kat
120° (Eﬂj a amplitudy ich sa sobie rowne. Wartosci chwilowe poszczegdlnych napigé

fazowych uktadu symetrycznego mozna zapisa¢ w postaci

e, (1) =|E,|sin(ax + ) (8.1)
ey (1) =|E, [sin(ax + ¥ —120") (8.2)
e.(t)=|E, |sin(ar +¥ +120") (8.3)

w ktorej E,, oznacza amplitude, @ pulsacje wspdlna dla wszystkich faz (przy generacji napigc
trojfazowych w jednym generatorze jest to zapewnione automatycznie) a kat W jest
poczatkowym katem fazowym napigcia w fazie A. W normalnym systemie tréjfazowym
przyjmuje si¢ tzw. kolejnos$¢ wirowania zgodng, w ktérej faza B opdznia si¢ wzgledem fazy
A o kat 120° a faza C (op6zniona wzgledem fazy B o kolejny kat 120”) wyprzedza fazg A o
kat réwny 120°.
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Rys. 8.2. Przebiegi czasowe napig¢ trojfazowych

Na rys. 8.2 przedstawiono przebiegi czasowe napig¢ trojfazowych przy kacie poczatkowym ¥
rownym zeru. Napigcia sa zmienne sinusoidalnie przy czym wystgpuja regularne przesunigcia

o kat 120” migdzy poszczegdlnymi sinusoidami.

8.1.2. Uktad napigc¢ fazowych

Wobec sinusoidalnej postaci wymuszen w analizie ukladéw tréjfazowych zastosujemy
metod¢ symboliczng. Zgodnie z ta metoda napigcia sinusoidalne zastgpuje si¢ ich postacia

zespolona, ktéra dla przyjetych funkcji sinusoidalnych moze by¢ zapisana nastgpujaco

g B (8.4)
A \/5 .
E _ |Em ej(‘P—lZO”) _ E e—leOU (8 5)
B \/_ — A .
2
Em JOP+1207) j120°
E =1, —E,e (8.6)

oy

W praktyce wobec nieustannej zmiany wartosci napi¢¢ w czasie faza poczatkowa ¥ moze by¢

przyjeta dowolnie. Najczgsciej dla wygody zaktada¢ bedziemy, ze jest rowna zeru. Wykres
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wektorowy napig¢ tréjfazowych opisanych zaleznosSciami (8.4) - (8.6) dla kata fazowego W#0

przedstawiony jest narys. 8.3.

v A E
B
\“x\ 3 v
f .0 7 v
AT
=T
: H/'Hﬂ/%ﬂ

Rys. 8.3. Wykres wektorowy napiec tréjfazowych generatora

Punkt wspdlny napig¢, odpowiadajacy wspolnemu punktowi polaczenia faz generatora
oznaczony jest cyfra 0. Na koncach napi¢¢ fazowych zaznaczone sa oznaczenia faz (A, B, C).
Napigcie fazowe generatora to napigcie migdzy punktem koncowym wektora a punktem
zerowym. Wirowanie faz (zmiana pozycji wektora w czasie) w generatorze tréjfazowym

odbywa si¢ w przyjetym uktadzie wspotrzednych przeciwnie do ruchu wskazowek zegara.

270

Rys. 8.4. Wektory napig¢ tréjfazowych wirujace w czasie
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Rys. 8.4 pokazuje wektory napie¢ generatora tréjfazowego wirujace w czasie. Wektory fazy B

i C nadazaja za wektorem A, przy czym przesuni¢cia fazowe migdzy nimi sa stale i réwne
doktadnie 120°. Wazna cecha tréjfazowego generatora symetrycznego jest zerowanie Si¢

sumy napi¢¢ fazowych
E,+E,+E.=0 (8.7

Warto$¢ zerowa sumy wynika bezposrednio z symetrii poszczegdlnych napig¢¢. Mianowicie

E,+E,+E.=E,+E.e '™ +E "™ :EA[l_O’S_j%_O’5+ j?Jﬂ)

8.1.3. Uktad napie¢ migdzyfazowych

Oprécz napig¢ fazowych wyrdznia si¢ uktad napie¢ miedzyfazowych, zwanych réwniez
liniowymi, czyli napi¢¢ panujacych miedzy punktami zewngtrznymi poszczegdlnych faz. Przy
trzech napigciach fazowych mozna wyr6zni¢ trzy napigcia migdzyfazowe: E,,, E,. oraz

E.,,przy czym

E,=E,-E, (8.8)
E,. =E,-E, (8.9)
E,=E.-E, (8.10)

Z. definicji napie¢ migdzyfazowych wynika, ze niezaleznie od symetrii ich suma jest zawsze
rowna zeru gdyz wszystkie napigcia tworza trojkat zamknigty. Rys. 8.5 pokazuje uktad napigc
migdzyfazowych generatora tréjfazowego z przyjetymi oznaczeniami. Symbol Exp 0znacza,
ze strzatka wektora napigcia na wykresie jest skierowana w strong pierwszego wskaznika w

oznaczeniu (u nas litera A).
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Rys. 8.5. Uktad napie¢ miedzyfazowych na tle napig¢¢ fazowych

©

Z symetrii napig¢ fazowych wynika bezposrednio symetria napie¢ migdzyfazowych. Napigcia

te sa réwne i przesunigte wzgledem siebie o kat 1207, czyli

E,;,=E,—Eg

_ - j120°
Epe =E ge

_ j120°
Ecy=E e

Uktad napie¢ migdzyfazowych symetrycznych tworzy wigc trojkat réwnoboczny.
Wykorzystujac relacje obowiazujace dla tego trdjkata tatwo jest udowodni¢, Ze napigcie
miedzyfazowe jest NE) razy wigksze niz napiecie fazowe, co zapiszemy w ogdlnosci jako

E,,|=~3|E,| (8.11)

gdzie ‘E f‘ oznacza modut napigcia fazowego a ‘Emf‘ modut napigcia migdzyfazowego.
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8.2. Analiza uktadow trojfazowych

8.2.1. Potaczenia tréjfazowe generatora i odbiornika
Uktad napigc¢ fazowych generatora moze by¢ potaczony badz w gwiazdg¢ badz w trojkat.

Schemat obu potaczen przedstawiony jest na rys. 8. 6

b}

a)

Rys. 8.6. Potaczenia faz generatora tréjfazowego w a) gwiazdg, b) tréjkat

Przy potaczeniu tréjkatnym generatora odbiornik jest zasilany napigciem migdzyfazowym

trojprzewodowym. Przy potaczeniu generatora w gwiazdg napigcie zasilajace jest napigciem

fazowym a liczba przewodéw moze by¢ réwna trzy badz cztery (przy czterech przewodach

zasilajacych jednym z nich jest przewdd zerowy, zwany réwniez przewodem neutralnym).

W uktadzie tréjfazowym odbiornik zawiera rowniez trzy fazy, przy czym moze by¢ on

polaczony w gwiazde¢ lub w tréjkat. Oba sposoby potaczenia odbiornika przedstawione sa na

rys. 8.7.

a)

Rys. 8.7. Odbiornik tréjfazowy potaczony w a) gwiazdg, b) trojkat
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W zaleznosci od sposobu potaczenia generatora i odbiornika mozna w uktadach tréjfazowych
wyrézni¢ cztery rodzaje potaczen. Sa to:

e generator i odbiornik potaczone w gwiazde (uktad gwiazdowy)

e generator i odbiornik potaczone w tréjkat (uktad tréjkatny)

e generator potaczony w gwiazdg a odbiornik w tréjkat

e generator potaczony w trojkat a odbiornik w gwiazdg.

Z punktu widzenia metodyki analizy obwodéw istotne sa tylko dwa pierwsze rodzaje
polaczen. Dwa pozostate sa wtérne wzgledem pierwszych i nie wnosza nowych elementéw do

metody analizy.

8.2.2. Uktad gwiazdowy faz generatora i odbiornika

Rozpatrzmy ukiad potaczen gwiazdowych odbiornika i generatora (gwiazda-gwiazda) z

oznaczeniami pradow 1 napigc¢ przedstawionymi na rys. 8.8.

Rys. 8.8. Uktad tréjfazowy gwiazdowy

Punkt 0 oznacza punkt wspdlny faz generatora. Punkt N jest punktem wspdlnym impedancji
fazowych odbiornika. Zaktadamy symetri¢ napi¢¢ fazowych generatora i dowolne wartosci
impedancji odbiornika. Przyjmijmy do analizy uklad czteroprzewodowy z impedancja

przewodu zerowego rowna Z,, . Wartos¢ impedancji Z, moze by¢ dowolna, w szczeg6lnosci

zerowa (bezposrednie zwarcie punktéw wspdlnych generatora i odbiornika) lub nieskofczona
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(uktad tréjprzewodowy bez przewodu zerowego). Napigcie migdzy punktem zerowym
odbiornika i generatora oznaczymy przez Uy 1 nazywaé bedziemy napigeciem
niezréwnowazenia.

Uktad napig¢ tréjfazowych odbiornika tworza napigcia na poszczegdlnych jego

fazach, czyli U ,,U,,U.. W efekcie w obwodzie tréjfazowym o potaczeniu gwiazda-gwiazda
wyroznia si¢ dwa uklady napig¢ trojfazowych gwiazdowych: generatora E,,E, E. 1
odbiornika U ,,U,,U...

Dla obliczenia pradéw w obwodzie nalezy wyznaczy¢ uktad napie¢ odbiornikowych.
Najlepiej dokonal tego wyznaczajac napigcie Uy. Zastosujemy metodg potencjalow
weztowych przy zatozeniu, ze punkt O jest wezlem odniesienia a poszukiwany potencjat

weztowy jest rowny Uy. Zgodnie z metoda potencjatow weztowych otrzymuje sig

EY,+EY,+EY.=U,(Y,+Y,+Y.+Y,) (8.12)

Stad
_EY, +EY, +EY, (8.13)
YooY +Y, Y +Y,)

N o o 1 1 1
gdzie wielkoSci oznaczone symbolem Y s3 admitancjami: Y, = 7 Y, = 7 Y. =— oraz

A B C
Y, = 7 Wyznaczenie wartosci napigcia Uy pozwala obliczy¢ wartosci napigc

N

odbiornikowych. Z prawa napigciowego Kirchhoffa napisanego dla trzech oczek w obwodzie

wynika

U,=E,-U, (8.14)
U,=E,-U, (8.15)
U.=E.-U, (8.16)

Przy znanych wartos$ciach admitancji odbiornika obliczenie pradu polega na zastosowaniu

prawa Ohma. Mianowicie
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1,=YU, (8.17)

1,=Y,U, (8.18)
I.=Y.U, (8.19)
I, =Y,U, (8.20)

Suma pradéow w wezle N jest rowna zeru, zatem I, +1, +1.=1,. Moce wydzielone w

odbiorniku tréjfazowym oblicza sig jako sum¢ mocy wydzielonych w poszczegdlnych fazach

odbiornika, czyli

S, =P, +j0,=U,I, (8.21)
S,=P,+j0,=U,I, (8.22)
S.=P.+jO.=U_I (8.23)

Moc wydzielona na impedancji przewodu zerowego oznacza moc strat. Jest ona rowna

Sy =P, +jO,=U,I, (8.24)

Otrzymane wyniki mozna zinterpretowa¢ na wykresie wektorowym pradéw i napig¢ w

obwodzie. Rys. 8.9 przedstawia przypadek obcigzenia niesymetrycznego.
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Rys. 8.9. Wykres wektorowy pradéw i napi¢¢ obwodu tréjfazowego przy obciazeniu

niesymetrycznym

Widoczne sa dwie gwiazdy napig¢ fazowych: generatora o srodku w punkcie 0 1 odbiornika o

srodku w punkcie N. Dla obu gwiazd obowiazuje jeden trdjkat napie¢ mig¢dzyfazowych.

Przesunigcie potencjatu punktu N wzgledem O (napigcie Uy rézne od zera) jest spowodowane

niesymetrig odbiornika. Napigcie Uy jest nazywane rOwniez napi¢ciem niezréwnowazenia.
W pracy uktadu tréjfazowego gwiazdowego mozna wyrdézni¢ kilka szczegdlnych

przypadkow:

¢ odbiornik symetryczny z dowolna wartoscia impedancji przewodu zerowego

e odbiornik niesymetryczny przy zwartym przewodzie zerowym

e zwarcie fazy odbiornika przy przerwie w przewodzie zerowym.

Odbiornik symetryczny

W przypadku symetrii obciazenia impedancje wszystkich faz odbiornika sa réwne sobie

200



Z,=2,=Z7.=Z (8.25)

Podstawiajac te wartosci do wzoru na napigcie Uy otrzymuje si¢

Y(E,+E, +E_)

U. =
N 3Y +7,

=0 (8.26)

gdzie admitancja Y=1/Z. Ze wzgledu na symetri¢ napi¢¢ generatora suma jego napigc
fazowych jest réwna zeru (wzor (8.7)), stad napigcie niezréwnowazenia Uy w przypadku
symetrii jest zerowe. Oznacza to, ze gwiazdy napie¢ odbiornikowych i generatorowych
pokrywaja si¢ ze soba. Prady fazowe w tym przypadku wyznacza si¢ wigc szczegdlnie prosto
na podstawie uktadu napig¢ generatora, bez potrzeby obliczania napigcia niezrownowazenia

Un.

1,=YE, (8.27)
1, =YE, (8.28)
1. =YE, (8.29)

Wobec réwnych warto$ci admitancji poszczegdlnych faz, suma pradéw fazowych
I,=Y(E,+E,+E.)=0 (8.30)

jest zerowa, ze wzgledu na zerowanie si¢ sumy napi¢¢ fazowych generatora. Prad w
przewodzie zerowym nie plynie, niezaleznie od wartosci impedancji Zy tego przewodu. Na
rys. 8.10 przedstawiono wykres wektorowy pradéw 1 napie¢ w ukladzie tréjfazowym
symetrycznym. Wszystkie prady i napigcia tworza uklad symetryczny o jednakowych

amplitudach i jednakowych przesunigciach poszczegdlnych wektoréw wzgledem siebie.
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Odbiornik symetryczny jest jednym z czgsciej wystgpujacych przypadkéw w praktyce.
Przyktadami takich odbiornikow sa: silniki elektryczne tréjfazowe czy piece grzejne

trojfazowe (zwykle o duzej mocy).

e Odbiornik niesymetryczny przy zwartym przewodzie zerowym

Znaczne uproszczenia wystgpuja w analizie jesli punkt O i N uktadu tréjfazowego sa
potaczone bezimpedancyjnie (Zy=0). W takim przypadku napigcie niezrownowazenia Uy = 0
niezaleznie od symetrii impedancji odbiornika. Prady fazowe sa woOwczas okreslane

bezposrednio na podstawie uktadu napig¢ generatorowych

I,=Y,E, (8.31)
I, =Y,E, (8.32)
I.=Y.E, (8.33)
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Suma tych pradéw w ogélnym przypadku odbiornika niesymetrycznego jest rézna od zera
Iy=1,+1,+1, (8.34)
Wykres wektorowy pradow i napie¢ w uktadzie trjfazowym niesymetrycznym przy zwarciu

bezimpedancyjnym punktéw wspdlnych odbiornika i generatora przedstawiony jest na rys.

8.11.
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® Zwarcie fazy odbiornika przy przerwie w przewodzie zerowym

Interesujacy przypadek polaczenia tréjprzewodowego migdzy odbiornikiem 1 generatorem
uktadu tréjfazowego powstaje w stanie awaryjnym odbiornika przy zwarciu jednej z faz.
Rys. 8.12 przedstawia posta¢ obwodu tréjfazowego w rozwazanym przypadku przy zwarciu

fazy A odbiornika (Z4=0).
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Rys. 8.12. Przypadek zwarcia jednej fazy odbiornika tréjfazowego

Jak wida¢ z rysunku napigcie Uy réwna si¢ napig¢ciu fazowemu generatora w fazie zwarte;j.

Dla schematu z rysunku mamy

U, =E, (8.35)

Ten sam wynik mozna otrzyma¢ réwniez ze wzoru ogoélnego (8.13) po podstawieniu

1 L —
Y, = — = oco. Odpowiednie prady fazowe odbiornika w rozwazanym przypadku sa okreslone

A

wzorami

1,=Y,(E,-E,) (8.36)
Ic :YC(EC _EA) (8.37)

Prad fazy A nie moze by¢ okreSlony z prawa Ohma, gdyz zaréwno napigcie na fazie
odbiornika jak i jego impedancja sa réwne zeru. Prad ten moze by¢ okreslony jedynie z prawa

pradowego Kirchhoffa, zgodnie z ktérym

I,=-1,-1, (8.38)

Wykres wektorowy pradéw i napie¢ w ukladzie tréjfazowym dla tego przypadku

przedstawiony jest na rys. 8.13.
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C B
Rys. 8.13. Wykres wektorowy pradéw i napie¢ w uktadzie tréjfazowym

przy zwarciu fazy A odbiornika

Przyktad 8.1

Obliczy¢ prady i napigcia poszczegdlnych faz odbiornika w uktadzie przedstawionym na rys.
8.14. Przyja¢ zasilanie tréjfazowe symetryczne o napigciu fazowym réwnym 400V. Wartosci
parametréw obwodu sa nastgpujace: R=40Q, X=30Q, X;=60Q, X;,=10Q, X»3=20Q,
X31=20Q.
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Rys. 8.14. Schemat uktadu tréjfazowego do przyktadu 8.1
Rozwiqzanie
Ze wzgledu na wystgpowanie sprz¢zenia magnetycznego pierwszym etapem rozwigzania jest

eliminacja tych sprzezen. Uktad odbiornika po likwidacji sprz¢zen magnetycznych jest

przedstawiony na rys. 8. 15

Rys. 8.15. Schemat odbiornika tréjfazowego po likwidacji sprzgzen magnetycznych

Przyjmijmy uktad napigc¢ fazowych generatora w nastgpujacej postaci

E, =400e"°
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E, = 400¢ /"

E. =400e"

Impedancje poszczegdlnych faz odbiornika z rys. 8.15 sa rowne

Z, =40+ j40 = 404/2¢7*
Z, = j60 = 60e’"
Z,. =0

Wobec zwarcia w fazie C odbiornika (Z¢ = 0) nie zachodzi potrzeba stosowania wzoru (8.13)
do wyznaczenia napigcia niezréwnowazenia, gdyz Uy = Ec. W tej sytuacji poszczegdlne

prady fazowe sa rowne

E —-U _ j120° Y
IA _ A N _ 400 400€ . — 5\/§€_J75 — 1,8_ J6,8
Z, 40327
E —-U —-j120° j120°
; ~Ea=Uy _400¢ 4000 _ |

Z, 60e”*"

Io=-1,-1,=98+ 68

Po obliczeniu pradéw na podstawie schematu zastgpczego bez sprz¢zen magnetycznych dla
wyznaczenia napi¢e¢ w uktadzie nalezy powrdci¢ do obwodu ze sprzezeniami. Rzeczywiste

napigcia na fazach odbiornika wynosza

U,=RI,+ jX, I,+ jX,I,+ jX;I. =322+ j263
Up=JjX Iz+ jX I+ jX I =—-18—j335

Uec=JjX 1o+ jX3l,+ jX Iy — jX 1. =-138

Zauwazmy, ze istnieje ogromna réznica mig¢dzy rzeczywistym napi¢ciem Uc w fazie C,
U, =-18, a napigciem w tej same] fazie w obwodzie po likwidacji sprzgzen, U, =0.
Obwod po likwidacji sprzgzen jest rownowazny obwodowi oryginalnemu jedynie pod

wzgledem pradowym. Napigcia na gal¢ziach zawierajacych cewki sprz¢zone nie odpowiadaja
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ich odpowiednikom w obwodzie bez sprzgzen. Na rys. 8.16 przedstawiono wykres

wektorowy pradow i napie¢ w obwodzie po likwidacji sprzezen.

Ee

"

B

Rys. 8.16. Wykres wektorowy uktadu tréjfazowego po likwidacji sprzezen magnetycznych w

przyktadzie 8.1

8.2.3 Uktad tréjkatny faz odbiornika i generatora

Schemat elektryczny potaczen elementéw obwodu tréjfazowego o odbiorniku i generatorze

pofaczonych w trojkat (uktad trojkat-trojkat) przedstawia rys. 8.17.
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Rys. 8.17. Uktad tréjfazowy tréjkatny

Przyjmijmy dla uproszczenia, ze impedancje przewodow zasilajacych poszczegdlne fazy sa
zerowe. Oznacza to, ze napig¢cia na fazach odbiornika (wtaczonych migdzyfazowo) sa

napigciami mi¢dzyfazowymi generatora, to jest

Uy =E (8.39)
Uge = Ege (8.40)
Ucr = Ecy (8.41)

Stad przy zadanych warto$ciach impedancji odbiornika prady fazowe tego odbiornika sa

okres$lone wzorami

L =Y, pE (8.42)
Ige =YycEpe (8.43)
Iey =Y,Ec, (8.44)

Prady przewodowe zasilajace obwdd tréjkatny odbiornika moga by¢ wyznaczone z zalezno$ci

1,=1,-1, (8.45a)
I,=I,—1, (8.45b)
I.=1, -1, (8.45¢)

Zauwazmy, ze wobec powyzszych wzoréw suma pradéw przewodowych w uktadzie,

niezaleznie od wartosci impedancji odbiornika jest rowna zeru
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I,+1,+1.=0 (8.46)

Rys. 8.18 przedstawia wykres wektorowy pradéw i napi¢e¢ w ukladzie tréjfazowym o

polaczeniu tréjkatnym.

Rys. 8.18. Wykres wektorowy pradéw i napie¢ w uktadzie tréjfazowym o polaczeniu

trojkatnym

W przypadku pelnej symetrii generatora i odbiornika wszystkie uktady napig¢ i pradow w
ukladzie bgda réwniez symetryczne a przesunigcia migdzy pradami oraz napigciami
poszczegdlnych faz w odpowiednich uktadach beda réwne 120°. Interesujaca jest wowczas

relacja migdzy pradami fazowymi oraz liniowymi ukladu. Z wykresu wektorowego
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przedstawionego na rys. 8.18 wida¢, ze w przypadku symetrycznym moduly wszystkich
pradéw liniowych sa sobie rowne, podobnie jak moduly wszystkich pradéw fazowych przy
réwnych przesunigciach fazowych migdzy wektorami o kat 120°. Z analizy przesunigé
katowych wynika, ze kat migdzy wektorem pradu fazowego Iy oraz liniowego I, jest rowny

30?. Z zaleznosci trygonometrycznych wynika, ze

0,5

A

=cos 30’ (8.47)

1]
skad po prostych przeksztatceniach matematycznych otrzymuje si¢

1| =21 |cos 30" = /3|1 | (8.48)

W uktadzie symetrycznym prad liniowy jest V3 razy wigkszy niz prad fazowy. Jest to

identyczna relacja jaka istnieje miedzy napigciami fazowymi i migdzyfazowymi (liniowymi).

Przyktad 8.2

Obliczy¢ prady w zylach kabla zasilajacego silnik trojfazowy o mocy P = 47,5kW, cos@ = 0,9
1 napigciu liniowym (miedzyprzewodowym) rownym 380V. Zatozy¢ potaczenie faz silnika w
trojkat. Przyja¢ 80% sprawnos¢ silnika (7= 0,8). Moc silnika z uwzglgdnieniem sprawnosci

wyraza si¢ wzorem P =3nU .|I.|cos¢. Jak zmienia si¢ prady po rozwarciu jednej z faz
s

silnika, np. fazy A.
Rozwiqzanie

Schemat zastgpczy silnika w postaci trzech identycznych impedancji Z potaczonych w tréjkat

przedstawiony jest na rys. 8.19.
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Rys. 8.19. Schemat potaczen faz silnika tréjfazowego

Przy symetrycznym potaczeniu faz silnika, przez poszczegdlne fazy o roéwnej impedancji Z
przeplywaja prady o tej samej wartosci, przesunigte wzglgdem siebie o kat 120° opdznione
wzgledem odpowiednich napie¢ fazowych (silnik ma charakter indukcyjny) o ten sam kat ¢.
Napigcie fazowe odbiornika jest réwne napigciu migdzyfazowemu generatora, stad

U,=U, =380V . Uwzgledniajac wzor na moc silnika otrzymuje sig

P

n =W=57,7A

Przy pelnej symetrii polaczen faz silnika wszystkie prady liniowe zasilajace ten silnik sa
réwniez symetryczne, czyli réwne co do modutu i przesunigte w fazie o kat 120” . Oznacza to,
ze

1] =1, =|1|=~3]1,| = 1004

Na rys. 8. 20 przedstawiono wykres wektorowy pradow 1 napie¢ w silniku tréjfazowym przy

pelnej symetrii polaczen.
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Rys. 8.20. Wykres wektorowy pradéw i napie¢ silnika tréjfazowego w warunkach petnej

symetrii

W przypadku przerwy jednej z faz odbiornika, np. fazy A, prad tej fazy jest rowny zeru,
natomiast pozostalych faz jest niezmieniony. Uwzgledniajac przerwg w fazie A obwodu z
rys. 8.18, prad liniowy w fazie A i B jest teraz rowny pradowi fazowemu silnika, natomiast
prad liniowy fazy C pozostat nie zmieniony w stosunku do przypadku symetrii, to znaczy
57,7A

|IA|:‘If‘:

[1,|=|1,|=57.74

1] =+/3]1,|=1004

Najbardziej obciazonym przewodem zasilajacym jest teraz przewdd fazy C. Pozostate

przewody zasilajace przenosza prad zmniejszony w stosunku do normalnej pracy silnika.
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Oddzielnym problemem przy analizie uktadu tréjfazowego potaczonego w tréjkat jest
uwzglednienie impedancji przewodéw zasilajacych. Przypadek taki pokazany jest na rys.

8.21.

Rys. 8.21. Zasilanie odbiornika tréjfazowego tréjkatnego z uwzglednieniem impedancji

przewodow zasilajacych

Przy nieznanych pradach liniowych nie mozna obliczy¢ napig¢ panujacych na odbiorniku,
gdyz nieznane sa spadki napie¢ na impedancjach przewodow zasilajacych. To z kolei
uniemozliwia wyznaczenie pradéw fazowych tego odbiornika. Aby uzyska¢ rozwiazanie
nalezy w pierwsze] kolejnosci zamieni¢ trdjkat impedancji na réwnowazny mu uktad

gwiazdowy (rys. 8.22).

Rys. 8.22. Uklad tréjfazowy gwiazdowy réwnowazny uktadowi tréjkatnemu z rys. 8.20

W wyniku zamiany otrzymuje si¢ znany juz uktad gwiazda-gwiazda, w ktérym impedancje

fazowe oraz impedancje przewodéw doprowadzajacych sa polaczone szeregowo stanowiac
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rozszerzong impedancj¢ poszczegdlnych faz. Stosujac znana metodyke rozwigzania takiego
uktadu oblicza si¢ wszystkie prady liniowe 4, Ig oraz I.
Po obliczeniu pradéw liniowych mozna obliczy¢ napigcia migdzyfazowe w

rzeczywistym odbiorniku z rys. 8.21 jako

Uy=2Z1,-2Z,1, (8.49)
Uge =Z1,—Z,1, (8.50)
Uoy=Zd.—Z,1, (8.51)

Po obliczeniu napi¢¢ fazowych odbiornika wyznaczenie pradow odbywa si¢ na podstawie

prawa Ohma

U

Ly =2 (8.52)
AB

I, = ZBC (8.53)
BC

U

I, =< (8.54)

CA ZCA

Omoéwione tu potaczenia uktadu tréjfazowego w gwiazdg i tréjkat sa podstawowymi
uktadami pracy w systemach tréjfazowych. Jesli w analizie wystapi potaczenie mieszane, np.
gwiazda-tréjkat lub tréjkat-gwiazda nalezy w pierwszej kolejnosci droga odpowiedniej
zamiany trojkata na gwiazd¢ lub gwiazdy na tréjkat doprowadzi¢ do jednego z wcze$niej
omoéwionych uktadéw a nastgpnie wykona¢ odpowiednie obliczenia stosujac jedna z

poznanych metod.

8.3. Pomiar mocy w uktadach trojfazowych

8.3.1. Pomiar mocy czynnej w uktadzie czteroprzewodowym

Z bilansu mocy w uktadzie tréjfazowym wynika, Ze moc wytworzona w generatorze
trojfazowym réwna sumie mocy poszczegdlnych jego faz odnajduje si¢ w postaci mocy
wydzielonej w fazach odbiornika. W przypadku mocy chwilowej wydzielonej w odbiorniku

mamy
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PO =u i, +ugiy +uqi, (8.55)

Moc czynna P odbiornika jest catka po okresie 7'z mocy chwilowej. Stad

T

1 1 17 17
P= ?_([P(l)dt :?juAlAdt +?_([”Blet +?_([”clcdt (8.56)

0

Poszczegdlne sktadniki sumy odpowiadaja mocy poszczegdlnych faz. Adaptujac wzory na

moc w uktadzie jednofazowym otrzymuje si¢

P=U,|I.|cos@, +|U4|I;|cos @, +|Uc|1.|cos o, (8.57)
gdzie
|U A| , |U sls U C| - moduly wartosci skutecznych napi¢¢ fazowych odbiornika,
|I als Ugls | C| - moduly wartosci skutecznych pradéw fazowych odbiornika
@y Pus Py - katy przesunig¢ fazowych miedzy napigciami i pradami faz

Wzér okreslajacy catkowita moc czynna w ukladzie tréjfazowym mozna wigc przedstawic

jako

P=P +P,+P. (8.58)

Moc czynna pobierana przez odbiornik tréjfazowy jest réwna sumie mocy czynnych
poszczegdlnych faz. W przypadku ogdélnym obwodu tréjfazowego niesymetrycznego, w
ktorym nie ma korelacji migdzy poszczegélnymi fazami pomiar mocy czynnej wymaga
uzycia trzech watomierzy, z ktérych kazdy mierzy moc jednej fazy. Schemat potaczen trzech
watomierzy w tym przypadku przedstawiono na rys. 8.23. Cewka pradowa kazdego
watomierza zasilana jest odpowiednim pradem fazowym a cewka napigciowa mierzy napigcie

odpowiedniej fazy.
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Rys. 8.23. Pomiar mocy czynnej za pomoca trzech watomierzy w uktadzie niesymetrycznym

czteroprzewodowym

W przypadku uktadu symetrycznego ze wzgledu na réwnos¢ pradow 1 przesunigc
katowych w poszczegdlnych fazach odbiornika moc wskazywana przez kazdy watomierz
bylaby taka sama. Stad do pomiaru mocy w tym uktadzie wystarczy uzycie jednego

watomierza (rys. 8. 24)

m_:,j il
5 —
I

0o

Rys. 8.24. Pomiar mocy czynnej w uktadzie tréjfazowym symetrycznym czteroprzewodowym

za pomoca jednego watomierza

Moc catkowita P uktadu tréjfazowego jest potrojona wartoscig wskazania watomierza

P =3P, (8.59)

Wobec pelnej symetrii odbiornika watomierz moze by¢ wilaczony w dowolnej fazie,
niekoniecznie w fazie A. W kazdym przypadku watomierz wiaczony w danej fazie mierzy

prad fazy i napigcie fazowe wzglgedem punktu neutralnego.
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8.3.2. Pomiar mocy czynnej w uktadzie tréjprzewodowym

Jesli uktad symetryczny odbiornika jest zasilany trzema przewodami (brak dostgpu do punktu
zerowego) wowczas pomiar mocy jednym watomierzem wymaga utworzenia sztucznego
punktu o potencjale rownym potencjatlowi punktu zerowego. Biorac pod uwageg, ze przy
symetrycznym odbiorniku potencjat Ux=0 punkt o potencjale zerowym mozna wytworzy¢
stosujac dodatkowy uktad trzech rezystoréw i wiaczajac koncoéwke watomierza do tego

uktadu, jak to pokazano na rysunku 8.25.

A o ’;W1

NN

adbiornik
symetryczny

Rl

Rys. 8.25. Pomiar mocy czynnej w uktadzie symetrycznym tréjprzewodowym za pomoca

)

W przypadku odbiornika niesymetrycznego o trzech przewodach zasilajacych pomiar

jednego watomierza

catkowite] mocy uktadu moze by¢ dokonany przy pomocy dwu watomierzy. Dla pokazania

takiej mozliwosci przepiszemy wzor na moc chwilowg uktadu

p(t)=u,i, ‘ugi, +uci. (8.60)

W uktadzie tréjprzewodowym suma pradéw przewodowych jest réwna zeru, co znaczy, ze
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i, +i, +i.=0 (8.61)
Eliminujac prad ic¢ z zalezno$ci na moc chwilowa, uzyskuje si¢
p(t)=(u, —up)i, + Uy —u.)iy, (8.62)

Moc czynna jako warto$¢ srednia za okres z mocy chwilowej dla przebiegéw sinusoidalnych

moze wigc by¢ wyrazona w postaci

P=|U, -U|l,|cos@, +[U; —U_|I,|cos g, (8.63)

W wyrazeniu tym prady 1 napigcia dotycza modutéw wartosci skutecznych odpowiednich faz
natomiast katy @, i ¢, oznaczaja przesunigcia fazowe migdzy odpowiednio napigciem Uyc i
pradem /4 oraz migdzy napigciem Upc 1 pradem Ip. Powyzsza zaleznos¢ umozliwia podanie
schematu elektrycznego potaczen elementéw pomiarowych obwodu. Schemat pomiaru mocy

przy pomocy dwu watomierzy nosi nazwe¢ ukladu Arona i podany jest na rys. 8.26.

-
B o * |f Wl odbiarnik

niesymetryczny

Rys. 8.26. Uktad Arona do pomiaru mocy za pomoca dwu watomierzy

Cewki pradowe watomierzy wlaczone sa w dwie linie odbiornika tréjfazowego, natomiast
cewki napigciowe wilaczone sa migdzy dana faze i fazg¢ trzecia, w ktérej nie ma wiaczonego
watomierza.

Powyzszy schemat pomiarowy jest stuszny zaréwno dla uktadu niesymetrycznego jak

i symetrycznego. W przypadku ukladu symetrycznego zastosowanie go do pomiaru mocy
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czynnej umozliwia uzyskanie takze innych informacji o obwodzie tréjfazowym, w
szczegblnosci mocy biernej oraz kata przesunigcia fazowego.
Zauwazmy, ze w przypadku pelnej symetrii moduly i katy przesunigcia fazowego

pradéw wzgledem odpowiednich napig¢ fazowych w poszczegdlnych fazach sa réwne

)=l =lr =l 60

P, =0, =0 =@ (8.65)

Przy zalozeniu odbiornika gwiazdowego wykres wektorowy pradéw i napi¢¢ obwodu

przedstawiony jest na rys. 8.27.

P =P-30°

L J

® P=30+P

Is

Rys. 8.27. Wykres wektorowy pradéw i napie¢ symetrycznego uktadu tréjfazowego
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Z analizy zaleznos$ci katowych na tym rysunku wynika, ze

@, =p-30° (8.66)
@, =p+30° (8.67)

Stad wzor na moc wskazywana przez oba watomierze upraszcza si¢ do postaci

P =|UA —UC||I|cos(¢—3O”) :x/g‘Uf"I|cos((o—30”) =

(8.68)
\/E‘Uf HI|(cos @cos30” +sin ¢sin30° )
P, =[U, ~U|I|cos(p+30") =/3|U , |I|cos(p+30°) =
' (8.69)
\/g‘Uf “I|(cos @cos30” —sin @sin30° )
Suma obu wskazan watomierzy jest wigc rowna
P=P+P, = 2\/§‘Uf "I|cos @cos30’ = S‘Uf "I|cos¢ (8.70)

Jak wida¢ suma wskazan obu watomierzy jest potrojona warto$cia mocy jednej fazy, co

wobec symetrii odbiornika jest potwierdzeniem poprawnosci dzialania uktadu Arona.

8.3.3. Pomiar mocy biernej w uktadzie trjfazowym symetrycznym
Odejmujac od siebie wskazania obu przyrzadéw udowodnimy, ze r6znica wskazan jest

proporcjonalna do mocy biernej uktadu. Mianowicie

B —P, =2\3|U ,|1]sin psin30° =/3|U | 1|sin (8.71)

Biorac pod uwagg, ze moc bierna jednej fazy jest réwna Q, =‘U fHI|sin¢ z ostatniej

zaleznosci wynika nastgpujacy wzor
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Q,= (8.72)

a moc bierna catkowita uktadu tréjfazowego symetrycznego jest rowna
Q=3(R-P) (8.73)

Tak wigc zastosowanie dwu watomierzy zamiast jednego, w przypadku symetrii odbiornika,
ma t¢ zalete, ze dostarcza informacji jednoczesnie o mocy czynnej i mocy biernej uktadu.
Dodatkowo, jesli uwzglednimy, ze kat przesunigcia fazowego jest w petni okreslony przez

moc czynna 1 bierng wedtug wzoru

g =% (8.74)

na podstawie wskazan watomierzy mozna bezposrednio okresli¢ kat przesunigcia fazowego

miedzy pradami i napi¢ciami fazowymi w uktadzie

Q= arctgﬁ% (8.75)
1 2

Stad na podstawie pomiaru mocy dwoma watomierzami jest mozliwe okreslenie trzech
wielkosci jednoczesnie: mocy czynnej, mocy biernej oraz kata przesunigcia fazowego migdzy
pradami 1 napigciami w obwodzie.

Jesli interesuje nas jedynie moc bierna mozna ja zmierzy¢ stosujac tylko jeden

watomierz. Uklad pomiarowy w tym przypadku pokazany jest na rys. 8.28

A O 'f/‘nal“u“\

o

S

. adbiamilk
symetryczny

Rys. 8.28. Pomiar mocy biernej przy pomocy jednego watomierza
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Cewka pradowa watomierza mierzy prad jednej fazy a cewka napigciowa wlaczona jest
migdzy dwie pozostate fazy. Watomierz mierzy moc wynikajaca z iloczynu pradu 4, napigcia
Upc oraz kosinusa kata zawartego migdzy wektorem pradu I4 i napigcia Upc. Wykres

wektorowy pradow i napig¢ w obwodzie z zaznaczeniem poszukiwanego kata fazowego @,

migdzy pradem I, a napigciem Upc przedstawiony jest na rys. 8.29.

(P‘l EBC

\J

E. Es

Rys. 8.29. Wykres wektorowy pradéw i napie¢ w obwodzie symetrycznym z rys. 8.28

Jest oczywiste, ze kat ten jest rowny ¢, =90” —¢ . Oznacza to, ze wskazanie watomierza jest

réwne
P=|1,[U ,c[cos, =3I |U|cos(90" — ) =/3|1 |U,|sing (8.76)

Catkowita moc bierna Q symetrycznego ukladu tréjfazowego jest rowna potrdjnej mocy

jednej fazy Q = NEY3

223



8.3.4. Por6wnanie mocy w ukladzie tréjfazowym tréjkatnym i gwiazdowym

Przetaczenie impedancji odbiornika z polaczenia tréjkatnego w gwiazdowe powoduje
zmiang¢ mocy wydzielonej w odbiorniku. Zat6zmy dla uproszczenia, ze obwdd tréjfazowy jest
symetryczny o impedancji fazy réwnej Z. Schemat potaczenia trdojkatny i gwiazdowy

impedancji przedstawiony jest na rys. 8.30.

A A O
7 il
B o—— 7
B Oo—
C o +
7 z

aj

)]

Rys. 8.30. Uktady potaczen impedancji Z odbiornika symetrycznego w a) trojkat, b) gwiazdeg

Jak tatwo pokaza¢ dla uktadu tréjkatnego moc czynna P uktadu jest réwna

2 2
P=3(\/§|‘%|f‘)cos(p=9%cos(p (8.77)

natomiast w uktadzie gwiazdowym wobec Uy = 0 mamy

v,
P=3——cosg@ (8.78)

2]

Jak wynika z powyzszych wzoréw przy przetaczeniu odbiornika symetrycznego z gwiazdy na

‘2

trojkat pobor mocy czynnej wzrasta 3-krotnie. Przy tej samej wartosci impedancji w obu

potaczeniach oznacza to \/§ -krotny wzrost pradu ptynacego przez impedancjg.

8.4. Wirtualne laboratorium obwodow elektrycznych

Do obliczen pradéw, napi¢¢ i mocy w obwodach tréjfazowych zostat opracowany program

,,Obwody tréjfazowe” pozwalajacy na symulacj¢ pracy takiego uktadu.
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Wirtualne Laboratorium
Tvp obwodu: |Gwiazda-gwiazda V| Obwodow Trojfazowych

Ciblicz | Vitvkre s wekt. | Wivkres ] Fomiar mocy |

11=0,3-0,4]

Z1=1
Zn=1+0,866]

E3=-0,5+0,866]
Z3=0-1] i
E2=-0,5-0,866] /\
[3=-0,0536+0, 3828
12=-0,5-0,866]
Zridto symetryezne [v Preewid zerowy Odbiornik symetryczrey

Format licgh zespolonych: & A+Bj " MenjF

Rys. 8.31. Gtéwne okno programu ,,Obwody tréjfazowe”

Rysunek 8.31 przedstawia okno gtéwne programu. Centralne pole zajmuje schemat badanego
obwodu (dostgpne konfiguracje: gwiazda-gwiazda Y-Y, gwiazda-trojkat Y-A, trojkat-trojkat
A-A 1 trojkat-gwiazda A-Y), z symbolicznie zaznaczonym odbiornikiem 1 zasilaniem
trojfazowym. Uruchomienie programu odbywa si¢ poprzez kliknigcie w obrgbie jego ikony.
Uzytkownik moze wowczas definiowaé wilasng struktur¢ obwodu (A,Y, przewdd zerowy),
rodzaj 1 wartosci parametrow odbiornika (R, L, C), wartosci zrédet wymuszajacych,
impedancj¢ przewodu zerowego, format liczb zespolonych.

W wyniku obliczen otrzymuje si¢ wartosci pradéw, napi¢¢ i mocy w obwodzie, jak réwniez
wykres wektorowy pradéw i napigc oraz ich przebiegi czasowe. Program stanowi efektywne
wirtualne laboratorium obwodéw tréjfazowych, umozliwiajace studentowi samodzielne

badanie zjawisk zachodzacych w obwodach tréjfazowych.

8.5. Pole magnetyczne wirujqce w uktadach tréjfazowych

Waznym zastosowaniem uktadéw tréjfazowych sa maszyny elektryczne, silniki badz

generatory trojfazowe. W silnikach energia elektryczna jest zamieniana na energig
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mechaniczng, podczas gdy w generatorach odwrotnie — energia mechaniczna jest
przetwarzana na energi¢ elektryczna. Pokazemy, ze zamiana energii elektrycznej na energie
mechaniczng w postaci ruchu obrotowego jest mozliwa w uktadach tréjfazowych za
posrednictwem pola magnetycznego wytwarzanego przez uzwojenia tréjfazowe silnika. Jak
pokazano w lekcji piatej przeptyw pradu [ przez uzwojenie o z zwojach jest zwiazane z
wytworzeniem pola magnetycznego o nat¢zeniu H. Przy oznaczeniu dilugosci drogi
magnetycznej przez [ natgzenie pola magnetycznego H okresla prawo przeptywu Ampera,

zgodnie z ktérym

H= (8.79)

Przy sinusoidalnym pradzie natgzenie pola zmienia si¢ réwniez sinusoidalnie. Energia
elektryczna w pojedynczym uzwojeniu nie przetworzy si¢ zatem bezposrednio na energig
ruchu, gdyz zwoje przez ktére przeptywa prad sinusoidalny poddawane sa dziataniu pola
oscylacyjnego o zmiennym co p6t okresu kierunku. Dla wytworzenia ruchu uzwojenia musi
by¢ ono poddane dziataniu wektora o stalej amplitudzie wirujacego w czasie. Pole takie moze
zosta¢ wytworzone migdzy innymi w uktadzie tréjfazowym pod warunkiem rozmieszczenia
uzwojen przesunig¢tych wzgledem siebie w przestrzeni. Przyjmijmy, ze zwoje przez ktére

przeptywa prad tréjfazowy

i, =1, sin(ar) (8.80)
i, =1, sin(@r—120) (8.81)
i. =1 sin(@r+120") (8.82)

rozmieszczone sa symetrycznie w przestrzeni z przesuni¢ciem katowym co 120° jak to

pokazano na rys. 8.31
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Rys. 8.32. Uktad uzwojen tréjfazowych przesunigtych symetrycznie w przestrzeni

&

wytwarzajacych pola magnetyczne

Na rysunku zaznaczono kierunki wektorow natgzenia pola powstajace w poszczegdlnych
uzwojeniach. Moduty tych wektoréw wynikaja z prawa przeplywu Ampera i wobec

sinusoidalnych pradéw fazowych zmieniaja si¢ rowniez sinusoidalnie

H,(t)=H, sin(ar) (8.83)
H,(t)=H sin(a —120°) (8.84)
H_(t)=H, sin(ax +120") (8.85)

Wypadkowe pole magnetyczne wynika z sumy poszczegdlnych wektorow Hu(r), Hp(7), Hc(7)
pochodzacych od wszystkich faz uktadu tréjfazowego. Moduly wartosci tych wektoréw sa
opisane wzorami jak wyzej natomiast ich kierunki sa przesunigte symetrycznie o kat 120” jak
to pokazano na rys. 8.31.

Umies¢my wektory natgzenia pola magnetycznego na plaszczyznie zespolonej,
przyjmujac o$ rzeczywista zgodnie z kierunkiem sktadowej fazy A. Wtedy wektor

wypadkowy H(#) moze by¢ opisany wzorem

227



HO)=H,(t)+e "™ H, () +e’" " H.(t) =

H, l:sin(a)t) + [— 05— jﬁJ sin(@r —120°) + [— 0.5+ jﬁJ sin(ar +120° )} -
2 2 (3.86)

= H, |sin(ar) —sin(axr)cos120” + j\/g sin120° cos(a)t)]:

%Hm [sin(a)t) + jcos(a)t)] == %Hm [cos(a)t) — jsin(a)t)] = j%Hmej’”' = %Hme'j(9°°””)

Oznacza to, ze
e wektor wypadkowy natgzenia pola magnetycznego H(#) jest wektorem wirujacym

jednostajnie w czasie z prgdkoscia katowa rowna @ zgodnie z ruchem wskazéwek zegara

m *

¢ modul tego wektora jest staty i réwny |H(t)| = %H ,

Wytworzone przez tréjfazowy uklad uzwojen pole magnetyczne jest wigc polem wirujacym
zdolne do nadania ruchu tym uzwojeniom. Pozwala zamieni¢ energi¢ elektryczna w energi¢
mechaniczng. Kierunek ruchu wynika z przyjetego kierunku wirowania faz napigcia
zasilajacego tréjfazowego. Przy zalozonym przez nas uktadzie zgodnym kierunek wirowania
pola jest zgodny z kierunkiem wskazowek zegara. Przy zamianie kolejnosci faz w uktadzie
trojfazowym (faza B zamieniona z C) mamy do czynienia z kierunkiem przeciwnym
wirowania faz. W przypadku pola magnetycznego oznaczac to bgdzie zmiang wirowania pola
na przeciwny do ruchu wskazéwek zegara. Na rys. 8.32 zilustrowano wirowanie pola

magnetycznego powstatego w oméwionym uktadzie trzech cewek

Rys. 8.33. Ilustracja wirowania wektora wirujacego H
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Zadania sprawdzajace

Zadanie 8.1
Wyznaczy¢ prady w obwodzie tréjfazowym podanym na rys. 8.33. Przyja¢ nastgpujace

wartosci parametréw elementéw: |E, =200V , Zy= 10Q, Zy= (10510)Q, Zc= (10+j10)Q,

ZN = 5OQ
e, -
— > I
N .
U.ﬂ.
E, | Z,
-
Uﬂ
EC lC zc
(o)
‘-
zZ, U
] -
| I N
lhl
UN
Rys. 8.34. Schemat obwodu tréjfazowego do zadania 8.1
Rozwiqzanie

Przyjmujemy nastgpujace wartosci symboliczne elementow:
E, =200
E, =200e "
E. =200e"""

1
Y, =—=0,1
ZA
1 .
Y, =— =0,05+ j0,05
ZB
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Y. = —0,05- j0,05
ZC
1

Y, =— =002

N

Napigcie niezrownowazenia Uy

_EJY,+EY,+EJY,

=124,18
Y, +Y, +Y. +Y,

N

Prady fazowe:
1,=(E,~U,)Y,=1758
1,=(E,-U,)Y,=-2,55-j19,87
1,=(E,-U,)Y, =255+ j19,87

1,=U,Y, =248

Zadanie 8.2
Wyznaczy¢ prady w ukladzie tréjfazowym przedstawionym na rys. 8.34. Przyja¢ nastgpujace

wartosci parametréw elementow: ‘E f‘ =200V, R =100Q, X;=50Q, Xc=50Q.

L.

Y
A

Yo

¥

Rys. 8.35. Schemat obwodu tréjfazowego do zadania 8.2

Rozwiqzanie
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Przyjmujemy nastgpujace wartosci symboliczne elementow:

E, =200
E, =200e /"
E. =200e"""

Z,=jX,—jX,=0

1
Y, ==001
YB :L:oo

ZB

1 .
YC :Z_:JO,OZ

C

Wobec zwarcia w fazie B napigcie niezréwnowazenia Uy = Ep.

Prady fazowe:
1,=(E,~U,)Y,=3+j1,73
I.=(E.-U,)Y.=-693

I,=—(1,+1.)=393-j1,73

Zadanie 8.3
Wyznaczy¢ prady w ukladzie tréjfazowym o odbiorniku potaczonym w tréjkat

przedstawionym na rys. 8.35. Sporzadzi¢ wykres wektorowy pradéw i napigc. Przyjac

nastgpujace wartosci parametrow elementow: ‘E f‘ =200V, R=X.=Xc=10Q.
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Rys. 8.36. Schemat obwodu tréjfazowego do zadania 8.3

Rozwiqzanie

Napigcia migdzyfazowe:
-l
E,, =20043

E,. =200/3¢ "
E,, =200~/3¢""

E mf

Prady fazowe odbiornika:

Iyp = E.AB_ = 20\/§€j900
—JXc

JX.

I, = Ee _ 20+/3¢72
R
Prady liniowe uktadu:

I,=1,,—1,,=1732+ j4,64
I,=I,.—1,,=-30—j1732

I, =1, 1, =1268+ jl12,68
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Wykres wektorowy pradéw i napi¢¢ przedstawiony jest na rys. 8.36.

Rys. 8.37. Wykres wektorowy pradéw i napi¢¢ obwodu
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Lekcja 9. Skladowe symetryczne w ukladach tréjfazowych

Wstep

Lekcja dziewiata poswigcona jest sktadowym symetrycznym: zgodnej, przeciwnej i zerowej,
jako opisu obwodow tréjfazowych niesymetrycznych. Niesymetria w obwodzie tréjfazowym
jest zjawiskiem niepozadanym. Wystapienie sktadowej innej niz zgodna §wiadczy o powstatej
asymetrii. W lekcji podane zostang wzory okreslajace poszczegdlne sktadowe symetryczne
oraz ich podstawowe wlasnosci. Wprowadzone zostana uktady filtrow sktadowych
symetrycznych, pozwalajace w prosty sposéb kontrolowa¢ niesymetri¢ w ukladzie

trojfazowym.

9.1. Rozktad na sktadowe symetryczne

W dotychczasowych rozwazaniach ukladéw tréjfazowych ograniczyliSmy si¢ do analizy

uktadéw o symetrycznym zasilaniu, czyli takich w ktérych amplitudy wszystkich napigé

fazowych sa rowne, a przesunigcia katowe migdzy poszczegélnymi fazami 120°. W
rzeczywistych uktadach ze wzgledu na skonczona impedancj¢ przewodow zasilajacych przy
roznych pradach fazowych powstaja réznice w napigciach fazowych generatora

,wychodzacych” na lini¢. Oznacza to réznice zaréwno w amplitudach poszczegdlnych napigc

jak i przesunigciach fazowych w stosunku do 120°. Stad zatozenie symetrii napi¢¢ generatora
w ukladach rzeczywistych jest niedopuszczalne. Drugi aspekt niesymetrii dotyczy samych
pradéw 1 napie¢ na elementach odbiornika tréjfazowego. Nawet przy symetrycznym zasilaniu
ale zatozeniu niesymetrii odbiornika powstaje sytuacja, w ktérej zaréwno prady jak i napigcia
na gat¢ziach obwodu sa niesymetryczne. Stad powstaje potrzeba stworzenia metodyki analizy
uktadéw trojfazowych niesymetrycznych, zwilaszcza pod katem stworzenia miar
odksztatcenia od symetrii. Takim narzedziem sa sktadowe symetryczne.

Metoda sktadowych symetrycznych polega na tym, ze stosujac odpowiednie
przeksztatcenia liniowe zastgpuje si¢ uktad trzech wektoréw tréjfazowych niesymetrycznych
przez rbwnowazne mu trzy uktady trzech wektoréw symetrycznych. Niesymetryczne zrédio

zasilania tréjfazowego zostaje zastapione przez uktad trzech zZrédet tréjfazowych, z ktérych
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jedno jest o kolejnosci wirowania zgodnej (kolejno$¢ identyczna jak w uktadach rozwazanych
dotad), drugie o kolejnosci przeciwnej i trzecie o kolejnosci zerowej (brak przesunigcia

migdzy wektorami fazowymi). Ilustracja takiego rozktadu jest przedstawiona na rys. 9.1

E.F'.
E, .
E, Eo e
// |
— +
EE

B

Rys. 9.1. Ilustracja metody rozktadu niesymetrycznego uktadu napie¢ tréjfazowych na sume

trzech uktadéw napie¢ tréjfazowych symetrycznych

)

Uktadowi 3 napig¢¢ niesymetrycznych tréjfazowych przyporzadkowa¢ mozna réwnowazny

uktad trzech zrédet tréjfazowych, reprezentujacych sktadowa zerowa (brak przesunigcia
migdzy napigciami fazowymi), sktadowa zgodna (napigcie fazy B opdznia si¢ wzgledem fazy
A a napigcie fazy C wyprzedza napigcie fazy A) oraz sktadowa przeciwna (napigcie fazy B
wyprzedza napigcie fazy A natomiast napigcie fazy C opdznia si¢ wzgledem napigcia fazy A).

[lustracja takiego przeksztalcenia pokazana jest na rys. 9.2
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Rys. 9.2. Przeksztalcenie rOownowazne generatora napi¢¢ niesymetrycznych na trzy generatory
napig¢ symetrycznych

Symbolem a oznaczono wektor jednostkowy obrotu o kat 120°

e =0 A3 9.1)

Mozna tatwo pokazac, ze stuszna jest nastgpujaca zalezno$¢
l+a+a*=0 9.2)

Réwnowazno$¢ obu uktadow napig¢ z rys. 9.2 wymaga, aby spetnione byly nastgpujace

réwnosci

E,=E,+E +E, (9.3)
E,=E,+d’E, +aE, (9.4)
E.=E,+aE +d’E, 9.5)

gdzie E,, E,, E, oznaczaja skladowe kolejnosci odpowiednio zerowej, zgodnej 1 przeciwne]

(faza A odpowiedniego uktadu). Zapis macierzowy powyzszej zaleznosci przyjmuje postac
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E,l [1 1 1]E,
E,|=|1 a a|E (9.6)
E. 1 a a|E

Z zaleznosci tej na podstawie danych wartosci rzeczywistych napig¢ fazowych E,, E,, E_
otrzyma¢ mozna skladowe symetryczne E,, E;, E,. Dokonujac odwrdcenia macierzy w

powyzszej zaleznosci otrzymuje si¢

E, 1 1 1|E,

1
E |= 3 1 a da|E, 9.7)
E, 1 a a|E,

Identyczny rozktad na sktadowe symetryczne przypisa¢ mozna niesymetrycznemu uktadowi
pradéw oraz impedancji przez prosta zamiang symbolu E na symbol pradu / oraz impedancji

Z. W przypadku pradéw rozktad na sktadowe symetryczne dany jest wzorem

I, . 1 1 1|1,
I :§ 1 a a |l (9.8)
I, 1 a all,

Zaleznos¢ opisujaca rozktad na sktadowe symetryczne impedancji jest z kolei nastgpujaca

Z, 1 1 1]z,

1
Z |= 3 1 a a2z, 9.9)
Z, 1 & alZz.

Identyczne zaleznosci przyporzadkowa¢ mozna wielkosciom migdzyfazowym. W tym
przypadku wskazniki fazowe A, B, C zastgpuje si¢ wskaznikami mig¢dzyfazowymi
odpowiednio AB, BC oraz CA. Przyktadowo, w przypadku rozktadu napi¢¢ migdzyfazowych

na sktadowe symetryczne mamy
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E, | 1 1 1]E,
E, =§1 a a | Eg (9.10)
E, 1 a al|E,

Zaleznosci opisujace rozktad na sktadowe symetryczne sa identyczne dla napieé, pradéw i
impedancji mi¢dzyfazowych. Niezaleznie od tego wynik uzyskany z takiego rozktadu rézni
si¢ znacznie od siebie, szczegdlnie w przypadku wystgpowania symetrii. R6znice pokazemy

na przyktadzie.

Przyktad 9.1
Dokona¢ rozktadu na skladowe symetryczne uktadu tréjfazowego symetrycznego napigc,

gdzie E, =E, E, = Ee’™ =d’E, E.=Ee’™ =aE.

Rozwiqzanie

Zgodnie z podanymi wczesniej wzorami rozktadu na sktadowe symetryczne otrzymuje sig

E, =%(EA+EB +EC)=%E(1+a+a2)=O
E, =%(EA t+aE, +a2EC)=%E(1+a3+a3)=E

E, :%(EA +a’E, +aEC)=%E(1+a4 +a2):%E(I+a+a2):O

Rozktad na sktadowe symetryczne uktadu napig¢ symetrycznych prowadzi do spodziewanego
wyniku. Istnieje jedynie sktadowa zgodna réwna napigciu zasilajacemu, pozostate sktadowe
sa zerowe. Zerowanie si¢ sktadowych zerowej i przeciwnej $§wiadczy o symetrii uktadu
trojfazowego. Taka sytuacja obowiazuje w przypadku zaréwno napig€ jak i pradéow. Dotyczy

to wielkosci fazowych 1 migdzyfazowych.
Przyktad 9.2
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Dokona¢ rozkladu na skladowe symetryczne ukiadu trzech impedancji stanowiacych
obciazenie uktadu tréjfazowego. Przyjmiemy symetri¢ obciazenia, to znaczy Zy=Z, Zp=Z,

Zc=Z.

Rozwiqzanie
Stosujac identyczne wzory opisujace rozktad impedancji na sktadowe symetryczne otrzymuje

si¢

ZO:%(ZA+ZB+ZC):%Z(1+1+1):Z
1 2 1 2
leg(ZA+aZB+a ZC)=§Z(1+a+a )=0

Z, =%(ZA +a’Z, +aZC)=%Z(1+a2 +a)=0

Pomimo zastosowania identycznych wzoréw wynik rozktadu na skladowe symetryczne
rownych impedancji jest catkowicie rézny od rozktadu napig¢. Tym razem istnieje wytacznie
sktadowa zerowa impedancji. Pozostate sktadowe symetryczne (zgodna i przeciwna) sa rowne
zeru. Wynik ten jest zrozumialy biorac pod uwage, ze uktad identycznych impedancji stanowi

z definicji sktadowa zerowa (brak przesuni¢¢ fazowych miedzy impedancjami).

9.2. Wilasnosci sktadowych symetrycznych

Sktadowe symetryczne napig¢, pradow i1 impedancji zdefiniowane wzorami (9.7) — (9.10)
maja interesujace wlasnosci charakteryzujace niesymetri¢ wielkosci tréjfazowych.
Podstawowe wilasnos$ci mozna sformutowac nastgpujaco.

e W ukltadzie symetrycznym zgodnym napig¢¢ (pradéw) sktadowa zerowa i przeciwna
znikaja, a sktadowa zgodna jest réwna napigeciu (pradowi) fazy podstawowej. Dowdd
powyzszej wlasno$ci przedstawiony zostat w przyktadzie 9.1.

e W ukladzie symetrycznym przeciwnym napie¢ (pradéw) skladowa zerowa i zgodna

znikaja, a skladowa przeciwna jest rowna napigciu (pradowi) fazy podstawowej. Dowéd
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powyzszej wlasnos$ci przy prostej zamianie kolejnosci zgodnej na przeciwna w napigciach
oryginalnych wynika z rozwazan zawartych w przyktadzie 9.1.

Wystapienie w rozktadzie na sktadowe symetryczne napie¢ lub pradéw o kierunku
wirowania zgodnym sktadowej zerowej i przeciwnej $wiadczy o niesymetrii uktadu
badanych napig¢ lub pradow.

W uktadzie symetrycznym zerowym impedancji (wszystkie trzy impedancje rowne sobie)
sktadowa zgodna 1 przeciwna znikaja, a sktadowa zerowa jest rowna impedancji zadane;.
Dowdd powyzszej wlasnosci przedstawiony zostal w przyktadzie 9.2

W uktadzie tréjfazowym trojprzewodowym skladowa zerowa pradoéw liniowych jest
rowna zeru. Wynika to z faktu, ze suma pradéw liniowych w obwodzie tréjprzewodowym
jest z definicji rowna zeru (prad przewodu zerowego wobec jego braku musi by¢ rowny
zeru), to znaczy I, +1,+1.=31,=0.

W uktadzie tréjfazowym czteroprzewodowym prad w przewodzie zerowym jest rowny
potrdjnej wartosci sktadowej zerowej, Iy=31p. Wtasno$¢ ta wynika bezposrednio z prawa
pradowego Kirchhofa, zgodnie z ktérym I, =1,+1,+1.=31,.

Sktadowa symetryczna zerowa uktadu napie¢ migdzyfazowych jest rowna zeru. Dowdéd
powyzszej wilasnosci wynika z faktu, ze suma napi¢¢ migdzyfazowych niezaleznie od
symetrii jest z definicji réwna zeru (uklad napie¢ miedzyfazowych tworzy tréjkat
zamknigty), to znaczy E,, + E,. + E., =3E,=0.

Sktadowa zgodna 1 przeciwna napie¢ migdzyfazowych w przypadku zerowania si¢
jednego z napig¢ sa sobie rowne i rownaja si¢ napigciu fazowemu uktadu tréjfazowego.
Dowdd tej wlasnosci wynika bezposrednio z definicji rozktadu. Zauwazmy, ze przy braku
jednego napigcia migdzyfazowego dwa pozostate sa sobie réwne i przeciwnie skierowane.
JeSli przyjmiemy, ze Upc=0 oraz Usp=E,; Uca=-E,; gdzie E,; oznacza napigcie

migdzyprzewodowe to ze wzoréw na sktadowe symetryczne otrzymuje si¢

1 | | V3V 1, e

E,= %(EAB +a’Eye +aEq, ) - %Emf (1-a)= %Emf (1’5 ) ng ) %E’”f V3 = Efeijw
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Jak z powyzszego wida¢ obie sktadowe rozktadu (zgodna i przeciwna) sa réwne co do
modutu warto$ci napigcia fazowego Eri symetrycznie przesunigte wzgledem fazy zerowej
o kat +30°. Konstrukcj¢ graficzng sktadowych symetrycznych dla tego przypadku

przedstawiono na rys. 9.3

Rys. 9.3. Konstrukcja graficzna sktadowych zgodnej 1 przeciwnej uktadu napigc¢

migdzyprzewodowych przy braku jednego z napigc

W maszynach elektrycznych sktadowa zgodna pradow wywotuje pole wirujace zgodnie z
kierunkiem predkosci obrotowej maszyny a uktad przeciwny pradéw - pole wirujace
przeciwne do tej predkosci. Duza niesymetria w uktadzie tréjfazowym objawiajaca sig
przewaga skladowej przeciwnej moze wigc spowodowac¢ zmiang kierunku wirowania
maszyny.

Sktadowa przeciwna wystgpujaca w maszynie elektrycznej wirujacej w kierunku
zgodnym indukuje w maszynie prady o podwdjnej czestotliwosci. Stad wywiera ona

niekorzystny wplyw na pracg¢ maszyny (zwigkszony efekt grzania maszyny).
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9.3. Prawo Kirchhoffa dla sktadowych symetrycznych

Rozktad napig¢ 1 impedancji na sktadowe symetryczne umozliwia bezposrednie wyznaczenie
sktadowych symetrycznych pradéw w obwodzie bez konieczno$ci rozwiazywania obwodu dla
wielkosci rzeczywistych. Zaleznosci zachodzace migdzy skladowymi symetrycznymi napigc,
pradéw 1 impedancji wynikaja z tak zwanego prawa Kirchhoffa dla skladowych
symetrycznych. Prawo to odnosi si¢ do uktadu gwiazdowego. Przyjmijmy, ze skladowe
symetryczne odpowiednio napi¢¢ fazowych, pradéw fazowych i impedancji fazowych

oznaczymy w postaci E,, E,, E, (napigcia), I,, I,, I, prady) oraz Z,, Z,, Z, (impedancje).

Wtedy prawo Kirchhoffa zapiszemy w nastgpujacej formie

E] [z,+3Z, Z, Z I,
El|=| z  Z, Z,|1 (9.11)
E2 Z2 Zl Z() 12

[

Przy skofczonej impedancji przewodu zerowego wystapia wszystkie harmoniczne pradéw
fazowych. Jesli przewdd zerowy nie istnieje (Z, =oo) wowczas z definicji prad sktadowe;j
zerowej jest rowny zeru i powyzszy uktad réwnan redukuje si¢ do rz¢du drugiego (réwnanie

pierwsze jako nieokreslone odrzuca sig)

oz 2l
- (9.12)
E, Z, Zy| 1,

Nalezy podkresli¢, ze rownanie Kirchhoffa dla sktadowych symetrycznych stanowi
interesujacy z punktu widzenia teoretycznego zwiazek migdzy skladowymi symetrycznymi
napie¢, pradéw i impedancji. Jest wygodna forma bezposredniego wyznaczenia sktadowych
symetrycznych pradu. Nie nalezy go jednak traktowa¢ jako metody wyznaczania
rzeczywistych pradow w obwodzie tréjfazowym przy niesymetrycznym zasilaniu, gdyz
zwykla teoria obwodéw tréjfazowych (bez rozkiladu na sktadowe symetryczne) znacznie

szybciej i prosciej prowadzi do wyniku.
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9.4. Filtry sktadowych symetrycznych

Filtrami skladowych symetrycznych nazywamy uktady pomiarowe, ktérych zadaniem jest
wydzielenie odpowiednich sktadowych symetrycznych napigcia lub pradu wystgpujacych w
uktadzie tréjfazowym. Filtry takie petnia uzyteczna rol¢ w systemie elektroenergetycznym
informujac o wystgpowaniu niesymetrii wielkosci napig¢ lub pradow w poszczegdlnych
fazach uktadu tréjfazowego.

Rozr6zniamy filtry skladowej zerowej, przeciwnej i zgodnej. Najlatwiejsze w
budowie sa filtry sktadowej zerowej pradu i napiecia. Wynika to z faktu, ze sktadowa zerowa
stanowi jedna trzecia sumy mierzonych napig¢¢ lub pradéw niesymetrycznych. Urzadzenie
filtrujace musi zatem mierzy¢ sum¢ odpowiednich wielkosci 1 by¢ przeskalowane w stosunku
1:3. Sposréd wielu istniejacych rozwiazan filtréw przedstawimy tu 3 wybrane rozwigzania
przezentujace filtr sktadowej zerowej pradéw liniowych, filtr sktadowej zerowej napiec

fazowych oraz filtr sktadowej zgodnej i przeciwnej pradéw liniowych.

9.4.1. Filtr sktadowej zerowej pradow liniowych

W obwodzie tréjfazowym czteroprzewodowym (tylko w takim ukladzie sktadowa zerowa
moze by¢ rézna od zera) wilaczenie amperomierza bezposrednio do przewodu zerowego
pozwolitoby zmierzy¢ sum¢ pradéw liniowych, czyli réwniez sktadowa zerowa tych pradéw.
Taki sposéb nie jest jednak stosowany ze wzgledu na to, ze wymagatby ingerencji w
pracujacy system. W zamian stosuje si¢ metody nieinwazyjne polegajace na zastosowaniu
przektadnikéw pradowych, ktérych wiaczenie do sieci nie wymaga zadnych przetaczen w
obwodzie gtéwnym. Przektadnik pradowy transformuje prad pierwotny na prad wtérny
proporcjonalny do pradu pierwotnego ze wspoéiczynnikiem proporcjonalnosci k. Jesli prad
pierwotny przektadnika jest rowny /; to prad I, plynacy po stronie wtérnej przektadnika jest
rowny Ir=kI,. Schemat uktadu filtru sktadowej zerowej pradéw liniowych przedstawiony jest

narys. 9.4.
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Rys. 9.4. Uktad filtru sktadowej symetrycznej zerowej pradow liniowych
Jak fatwo pokaza¢ uzwojenia wtérne przektadnikow tworza potaczenie rownolegte a prad

ptynacy przez miernik jest rOwny sumie pradow liniowych przeskalowanych przez

przektadnig k przektadnika. W zwiazku z powyzszym wskazanie przyrzadu jest rowne

I,=k(I,+1,+1.)=3kI, (9.13)
P (9.14)
O_3k .

Zwykle przeskalowanie przyrzadu pomiarowego pradu I, pozwala na uzyskanie wskazania

rownego sktadowej zerowej pradow liniowych.

9.4.2. Filtr sktadowej zerowej napiec fazowych

Filtr sktadowej zerowej napie¢ fazowych (rys. 9.5) wykorzystuje réwniez przektadniki, tym
razem napigciowe, przetwarzajace napigcie pierwotne na napigcie wtérne zgodnie z relacja
U,=kU,, gdzie k jest przekladnia przektadnika. Dzigki zastosowaniu przektadnika mozliwe
jest obnizenie napi¢¢ pierwotnych do poziomu niskiego a jednocze$nie galwaniczne

odizolowanie toru pomiarowego od obwodu gtéwnego.
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Rys. 9.5 Filtr sktadowej zerowej napig¢ fazowych
Woltomierz pomiarowy wilaczony jest na sumg napie¢ wtérnych przektadnika. Suma napigé

sktadowej zgodnej i przeciwnej jest rowna zeru ze wzgledu na ich symetrig. Pozostaje jedynie

wskazanie od sktadowej zerowej. Woltomierz mierzac sumg napigé

U,=U0,+U,+U)k (9.15)

mierzy jednoczes$nie sktadowa zerowa, gdyz sktadowa zerowa jest réwna 1/3 tej sumy. W
zwiazku z tym sktadowa zerowa napig¢ fazowych jest proporcjonalna do wskazania

woltomierza, to jest

(9.16)

9.4.3. Filtr sktadowej zgodnej i przeciwnej prqdow liniowych

Sposréd wielu istniejacych rozwiazan filtru sktadowych zgodnych i przeciwnych pradu

omowimy uktad uniwersalny, ktéry w zaleznosci od doboru parametréw moze petni¢ rolg
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badz filtru skladowej zgodnej badz przeciwnej. Schemat uktadu filtru przedstawiony jest na

rys. 9.6.

odbiornik
niesymetryczny

Rys. 9.6 Schemat filtru sktadowej zgodnej i przeciwnej pradéw liniowych

W filtrze zastosowane sa rowniez przektadniki pradowe. Zalézmy, ze uwzgledniamy
impedancj¢ Z, amperomierza pomiarowego. Dodatkowym zalozeniem jest zasilanie

tréjprzewodowe odbiornika tréjfazowego, dla ktérego stuszna jest relacja I, +1, +1.=0.Na

podstawie prawa napigciowego Kirchhoffa dla oczka zaznaczonego na rysunku mozemy

napisac

Z A Zed,e +Z,1,=0 (9.17)

Prady Iz4 oraz I mozna wyznaczy¢ z pradowego prawa Kirchhoffa jako

I, =k, +1, (9.18)

Le=Kq+1, (9.19)
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Podstawiajac powyzsze zaleznos$ci do napigciowego prawa Kirchhoffa otrzymuje si¢

I :_kM (9.20)
! Z,+Z.+Z,

Prady przewodowe podlegajace rozktadowi na skladowe symetryczne, wobec zerowania si¢

sktadowej zerowej, mozna zapisa¢ w postaci

I,=1+1, (9.21)

I.=al +a’l, (9.22)

Po podstawieniu tych wyrazen do wzoru na prad I, otrzymuje si¢

1 +az,)+1(z, +a’Z,)

9.23
! Z,+Z.+Z, ©29)

Wz6r powyzszy wskazuje na to, ze prad pomiarowy przy odpowiednim doborze impedancji
moze by¢ proporcjonalny zaréwno do sktadowej zgodnej jak i1 przeciwnej. Jesli chcemy
mierzy¢ sktadowa zgodna pradéw, nalezy wyzerowac¢ czynnik stojacy przy pradzie sktadowe;]
przeciwnej, to jest

Z,+a’Z.=0 (9.24)

Wystarczy w tym celu dobra¢ impedancje w taki sposéb, aby

NG

Z,=-a'Z.= [0,5 + jTJZC (9.25)

Istnieje wiele rozwiazan tego rownania. Wystarczy przyjac na przyktad

Z.=R (9.26)
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z, =2+ W35 9.27)

Oznacza to, ze przy wyborze impedancji Zy 1 Z¢ okreSlonych powyzszymi wzorami

(impedancja Z¢ jest rezystancja a impedancja Z, potaczeniem szeregowym rezystancji R/2 i
indukcyjno$ci o reaktancji X, = V3 g) amperomierz wskaze prad proporcjonalny do
sktadowej zgodnej pradow liniowych, przy czym

R R R R

o JEEE NE

I = 2 2 2 i1, (9.28)
v R . =R
54‘] 3§+R+Zp

Po uproszczeniu wzoru otrzymuje si¢

= @JﬁR -, (9.29)
e +

p
Jesli zaniedbamy impedancje wewngtrzng amperomierza pomiarowego otrzymamy
I, = kl e’ (9.30)

Wskazanie amperomierza wystgpujacego w filtrze (modul mierzonego pradu) jest wigc réwne
sktadowej zgodnej pradéw liniowych uktadu, z uwzglednieniem przektadni k przektadnika
pradowego.

W analogiczny sposéb mozna otrzymac filtr sktadowej przeciwnej pradéw. W tym

celu nalezy wyzerowac czynnik przy sktadowej zgodnej pradéw we wzorze (9.23), czyli

Z,+aZ.=0 (9.31)

Warunek ten moze by¢ spetniony przy wyborze

Z.=R (9.32)



R . =R
Zy=-aZe =" - 3 5 (9.33)

Oznacza to, ze dla uzyskania filtru sktadowej przeciwnej nalezy wybra¢ impedancje Z¢

roOwng rezystancji R natomiast Z, bgdaca potaczeniem szeregowym rezystancji R/2 oraz
reaktancji pojemnosciowej X =3 5 Prad mierzony przez amperomierz begdzie teraz

rowny

1 =-2 2 _2 2 11, (9.34)

Po uproszczeniu wzoru otrzymuje si¢

— j\3R
| =— ‘ ki (9.35)
’ R vz,

Jesli zaniedbamy impedancj¢ wewngtrzng amperomierza pomiarowego otrzymamy
I, =kl,e”" (9.36)

Wskazanie amperomierza filtru (modut wartosci skutecznej zespolonej) jest wigc réwne
sktadowej przeciwnej pradéw liniowych uktadu, z uwzglednieniem przektadni k przektadnika

pradowego.

Zadania sprawdzajace

Zadanie 9.1

249



W symetrycznym uktadzie tréjfazowego generatora zamieniono koncéwki fazy A.

Wyznaczy¢ rozktad na sktadowe symetryczne uktadu napie¢ fazowych takiego generatora,

jesli |E, | =1000v .

Rozwiqzanie
Po uwzglednieniu btednego polaczenia napigcia fazy A rozklad napig¢ fazowych

przedstawiony jest narys. 9.7

Rys. 9.7. Wykres wektorowy napi¢¢ generatora tréjfazowego z zadania 9.1

Wartosci skuteczne zespolone napig¢ fazowych sa rowne:
E, =-1000
E, =1000e "
E. =1000e’™"

Sktadowe symetryczne napig¢ réwnaja si¢

E,= %(EA +E, +E.)=—666,67
1 2
E, =§(EA +aE, +d’E, )=33333

E, = %(EA +@’E, +aE, )= —666,67
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Zadanie 9.2
Zmierzono nastgpujace wartosci napi¢¢ liniowych (migdzyfazowych) w uktadzie
trojfazowym: |U AB| =200V, |U BC| =400V, |U CA| =400V . Wyznaczy¢ sktadowe symetryczne

tych napig¢.

Rozwiqzanie

Na rys. 9.8 przedstawiono trojkat napig¢ migdzyfazowych z napigciem U ,, jako podstawa.

e ' » A

Rys. 9.8 Trojkat napie¢ migdzyfazowych do zadania 9.2

Dla wyznaczenia wartosci skutecznych zespolonych tych napi¢¢ nalezy wyznaczy¢ kat ¢

zaznaczony na rysunku. Z podstawowych zalezno$ci geometrycznych wynika, ze
1
@ =arccos ﬂ =175,5°
400

Wartosci skuteczne zespolone napie¢ liniowych sa wigc rowne

U,, =200

U ye = 400e "
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U, =400e” ™

Sktadowa zerowa napig¢ liniowych jest rowna zeru, gdyz uklad tych napig¢ tworzy trojkat

zamknigty.
1
U, = E(UAB tUpc + UCA): 0
Sktadowe symetryczne zgodna i przeciwna napig¢ liniowych réwnaja si¢
- Uey)
U, =§ U,;, +aU,.+aU_, )=323,63

U,= %(UA +a’U, +aU,)=-123,53

Rys. 9.9 przedstawia konstrukcj¢ graficzna sktadowych zgodnej i przeciwnej napig¢

liniowych.
Cc
[y
Uge 1
allge a gy
Uag
c > o I
B A Ly
a)

252



b)

c
*

Rys. 9.9. Konstrukcja graficzna sktadowych symetrycznych: a) zgodnej,

b) przeciwnej napig¢ liniowych
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Lekcja 10. Metoda rownan rézniczkowych w analizie stan6w nieustalonych

w obwodach

Wstep
W wyniku przetaczen lub zmiany wartosci parametréw obwodu RLC powstaje w nim stan
nieustalony, charakteryzujacy si¢ tym, ze ksztalt odpowiedzi obwodu jest inny niz
wymuszenia. Na przyktad przy stalym wymuszeniu odpowiedz jest zmienna wyktadniczo,
badz sinusoidalnie. Z uplywem czasu odpowiedzi tego typu zanikaja i ich charakter znéw
odpowiada charakterowi wymuszenia. Z czasem powstaje wigc nowy stan ustalony w
obwodzie o zmienionej strukturze na skutek przetaczenia. W stanie nieustalonym obwodu
mozna zaobserwowac interesujace zjawiska, ktére odgrywaja ogromna role¢ w praktyce.
Analiza tych zjawisk pozwala z jednej strony unikna¢ pewnych niebezpieczenstw zwiazanych
z przepigciami, ktére moga wystapi¢ w obwodzie a z drugiej strony wykorzystac te zjawiska
do generacji przebiegéw zmiennych w czasie (np. generatory napig¢ harmonicznych).

W tej lekcji zaprezentowane zostana podstawowe metody opisu obwodéw RLC w
stanie nieustalonym przy zastosowaniu réwnan rézniczkowych. Wprowadzona zostanie
metoda réwnan stanu oraz tak zwana metoda klasyczna. Rownania stanu sg zbiorem wielu

rownan rézniczkowych pierwszego rzedu zapisanych w postaci jednego rdéwnania

. dx . ) ) .
macierzowego E:Ax+Bu. Zmiennymi stanu tworzacymi wektor X sa napigcia

kondensatoréw 1 prady cewek, dla ktérych obowiazuja tak zwane prawa komutacji,
pozwalajace na wyznaczenie warunkéw poczatkowych w obwodzie.

W metodzie klasycznej zbiér réwnan rézniczkowych pierwszego rzedu zostaje
zastapiony jednym réwnaniem rézniczkowym wyzszego rzedu wzgledem jednej zmiennej
stanu. Wprowadzone zostanie pojgcie rownania charakterystycznego oraz biegunéw uktadu,

decydujacych o charakterze rozwiazania obwodu w stanie nieustalonym.

O
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10.1 Podstawowe pojecia stanéw nieustalonych

Analizujac przebiegi czasowe procesow zachodzacych w obwodach elektrycznych nalezy

wyrézni¢ dwa stany:

e stan ustalony charakteryzujacy si¢ tym, ze posta¢ odpowiedzi jest identyczna z postacia
wymuszenia (na przyktad w odpowiedzi na wymuszenie sinusoidalne odpowiedz ustalona
jest réwniez sinusoidalna o tej samej czgstotliwosci cho¢ innej fazie poczatkowej i innej
amplitudzie)

e stan przejSciowy, w ktérym przebiegi czasowe odpowiedzi maja inny charakter niz
wymuszenie (na przykltad w odpowiedzi na wymuszenie stale odpowiedz obwodu jest

wykladniczo malejaca czy oscylacyjna).

Stan nieustalony w obwodzie RLC powstaje jako natozenie si¢ stanu przejsciowego (zwykle
zanikajacy) 1 stanu ustalonego przy zmianie stanu obwodu spowodowanego przetaczeniem.
Moze on wystapi¢ w wyniku przelaczen w samym obwodzie pasywnym (zmiana wartosci
elementéw, zwarcie elementu, wytaczenie elementu) lub w wyniku zmiany sygnatow
wymuszajacych (parametréw zrodetl napigeciowych i pradowych, w tym takze zataczeniem lub
wylaczeniem zrédia). Dowolna zmiang w obwodzie nazywac¢ bedziemy komutacjg. Zaktadaé
bedziemy, ze czas trwania komutacji jest rowny zeru, co znaczy ze wszystkie przetaczenia
odbywaja si¢ bezzwtocznie.

W obwodach elektrycznych proces komutacji modeluje si¢ zwykle przy pomocy

wylacznikow 1 przetacznikéw wskazujacych na rodzaj przetaczenia. Chwilg czasowa

poprzedzajaca bezposrednio komutacj¢ oznacza¢ begdziemy w ogdlnoSci przez ¢, (W
szczegblnosei przez 07), natomiast chwilg bezposrednio nast¢pujaca po komutacji przez ¢,

(w szczegblnosci przez 07), gdzie ¢, jest chwila przetaczenia (komutacji).

10.2 Prawa komutacji

10.2.1 Wtasnosci energetyczne cewki i kondensatora

Przejscie z jednego stanu ustalonego do drugiego, powstajacego na skutek komutacji, musi
uwzgledni¢ zasad¢ zachowania energii. Odnosi si¢ ona do elementéw gromadzacych energi¢
elektryczna, w tym do kondensatora i cewki. Powstanie stanéw nieustalonych w obwodzie

jest wigc SciSle zwiazane z wlasciwosciami gromadzenia energii w elementach
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reaktancyjnych obwodu (cewce i kondensatorze). Warto$¢ energii nagromadzonej w polu

magnetycznym cewki o strumieniu W oraz pradzie i, jest opisana wzorem

W, =%‘PiL (10.1)

Przy zalozeniu, ze warto$¢ indukcyjnosci L cewki pozostaje niezmieniona w wyniku

przetaczenia, wobec W = Li, wz0r na energig cewki moze by¢ uproszczony do postaci

W, = %Lif (10.2)

Podobnie wartos¢ energii nagromadzonej w polu elektrycznym kondensatora zawierajacego

fadunek q 1 naladowanego do napigcia u,. wynosi

1
We = quc (10.3)

Przy zalozeniu, ze warto$¢ pojemnosci C kondensatora pozostaje niezmieniona w wyniku

przetaczenia 1 wobec g = Cu,. wzlr na energi¢ kondensatora moze by¢ uproszczony do

postaci

1
W, = ECug (10.4)

7 zasady zachowania energii wynika, ze energia cewki i kondensatora nie moze zmienic¢
swojej wartosci w sposob skokowy. Z zasady ciaglosci energii w obwodzie wynikaja tzw.
prawa komutacji, ktéore méwia o ciagtosci strumienia i pradu w cewce oraz o ciagtosci
tadunku i napigcia na kondensatorze. Prawo dotyczace cewki nazywac bedziemy pierwszym

prawem, a dotyczace kondensatora — drugim prawem komutacji.

10.2.2 Pierwsze prawo komutacji
Strumien skojarzony cewki nie moze ulec skokowej zmianie na skutek przelaczenia w

obwodzie, co oznacza, ze strumien ten w chwili tuz przed komutacja jest rtOwny strumieniowi
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w chwili tuz po komutacji, co mozna zapisa¢ w postaci (w réwnaniu przyjeto, ze komutacja

zachodzi w chwili 7y=0)

YO )=P(0") (10.5)

Uwzgledniajac, ze strumien skojarzony z cewka jest rtéwny W = Li, , przy niezmienionej

wartosci indukcyjnosci pierwsze prawo komutacji mozna réwniez zapisa¢ w postaci

i,(07)=10,(0") (10.6)

Jest to najczesciej w praktyce uzywana postac¢ pierwszego prawa komutacji w odniesieniu do

cewki.

10.2.3 Drugie prawo komutacji
Ladunek zgromadzony na kondensatorze nie moze zmieni¢ si¢ w sposob skokowy na skutek
komutacji, co oznacza, ze tadunek ten w chwili tuz przed komutacja jest réwny tadunkowi w

chwili tuz po komutacji, co mozna zapisa¢ w postaci

q(07)=¢q(0") (10.7)

Uwzgledniajac, ze tadunek zgromadzony na kondensatorze jest rowny ¢g=Cu., przy

niezmienionej wartosci pojemnosci kondensatora, drugie prawo komutacji mozna réwniez

zapisa¢ w postaci

e (07)=u.(0) (10.8)

Ostatnia posta¢ prawa komutacji dotyczaca napigcia na kondensatorze jest najczesciej
uzywana w praktyce.

Nalezy zaznaczy¢, ze prawa komutacji dotycza wytacznie pradu (strumienia) cewki i
napigcia (fadunku) kondensatora. Inne wielkoSci zwiazane z tymi elementami (prad
kondensatora, napigcie cewki) jak réwniez prad i napigcie na rezystorze nie sa zwigzane

bezposrednio zalezno$ciami energetycznymi i moga zmienia¢ si¢ w sposob skokowy podczas
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komutacji. Wartos$ci jakie przybieraja tuz po komutacji wynikaja badz z praw Kirchhoffa badz
z prawa Ohma.

Przy zalozeniu, ze chwil¢ komutacji uwazac¢ begdziemy za chwil¢ poczatkowa analizy
obwodu w stanie nieustalonym (7, =0) istotnym problemem w analizie obwodu jest
wyznaczenie warunkéw poczatkowych procesu, czyli wartosci napie¢ na kondensatorach i
pradow cewek w chwili przetaczenia (u nas i, (0) oraz u.(0")). Zwykle przyjmuje sig, ze
przetaczenie nastgpuje ze stanu ustalonego obwodu. Warunki poczatkowe wynikaja wowczas
z wartosci ustalonych tych wielkosci w chwili tuz przed przetaczeniem ¢, =0~ . Warunki
poczatkowe moga by¢ przy tym zerowe, jesli prady wszystkich cewek i napigcia wszystkich
kondensatoréw w chwili przetaczenia mialy wartosci zerowe. Znajomo$¢ warunkéw
poczatkowych w obwodzie jest niezb¢dna przy wyznaczaniu rozwiazania obwodu w stanie

nieustalonym.

Wyznaczenie stanu poczatkowego napigcia kondensatora i pradu cewki w obwodzie

sprowadza si¢ do

e rozwiazania stanu ustalonego obwodu przed przetaczeniem (przy wymuszeniach
sinusoidalnych metoda symboliczna),

e okreSlenia postaci czasowej tego rozwigzania dla pradu cewki i,(f) 1 napigcia

kondensatora u.(t) oraz

® wyznaczenia wartosci tego rozwigzania odpowiadajacego chwili czasowej przetaczenia (u

nas i,(07) oraz u.(07)).

10.3 Opis stanowy obwodu RLC

Wykorzystujac opis ogélny elementéw RLC oraz prawa Kirchhoffa tatwo pokazac, ze liniowe
obwody elektryczne RLC w stanach nieustalonych moga by¢ opisane przez réwnania
rozniczkowe i catkowe. Porzadkujac te rownania i eliminujac zmienne nie bedace pradami
cewek 1 napigciami kondensator6w mozna uzyska¢ tak zwana posta¢ kanoniczna opisu w

postaci uktadu réwnan rézniczkowych, ktéry mozna przedstawic¢ nastepujaco
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I = a; X+ a,x,+ et a,x,+ fi(®)
t
dx
2= a,x+ apx,+ ..+ a,x,+ f,(0) (10.9)
dt :
= a,x + a,x,+ e a,x,+ f.()
dt
Zmienne x,, Xx,, .., X, wystgpujace w réwnaniach oznaczaja prady cewek lub napigcia

kondensatoréw (tzw. zmienne stanu). W opisie obwodu operuje si¢ zwykle minimalnym
zbiorem zmiennych stanu, ktore sa niezbedne dla wyznaczenia pozostaltych wielkosci w
obwodzie. Liczba zmiennych stanu n zalezy od liczby reaktancji w obwodzie i jest najczgsciej
rowna (w szczegllnych przypadkach mniejsza) sumie liczby kondensator6w i cewek
wilaczonych w obwodzie. State wspétczynniki a; wystgpujace w réwnaniu (10.9) stanowiag
kombinacje warto$ci parametrow R, L, C, M elementow pasywnych obwodu oraz parametrow
zrodet sterowanych. Funkcje czasu fi(¢), fa(¢), ..., f.(f) zwiazane sa z wymuszeniami
napigciowymi i pradowymi w obwodzie. Przedstawiony powyzej uktad réwnan mozna

zapisa¢ w postaci macierzowej

|
dt Ay e 4y, X f1(0)
dx, a a e a X 1, ()
? — 21 22 2n . 2 + 2 (1010)
dxn a, a, .. a,||x, £, ()
L dt |

W przypadku obwodéw liniowych funkcje fi(f) wystgpujace po prawej stronie wzoru sa
liniowymi funkcjami wymuszen pradowych i1 napigciowych. Oznaczajac wymuszenia
pradowe badz napigciowe w ogoélnosci przez u; mozna te funkcje zapisa¢ przy pomocy

zaleznosci macierzowe;j

fi(®) b, b, .. b, u,

fo () _ by by ... by, . U, (10.11)

fn (t) bnl bn2 bnm um
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JeSli macierz zawierajaca elementy a; oznaczymy jako A, macierz o elementach b;; jako
macierz B, wektory zawierajace zmienne stanu przez X a warto$ci wymuszen przez u, to

rOwnanie stanu opisujace obwod elektryczny mozna przedstawi¢ w postaci

dx(t)

= Ax(¢) +Bu(?) (10.12)

Jest to ogdlna posta¢ opisu stanowego obwodu liniowego RLC. Reprezentuje ona uktad n
rownan rézniczkowych liniowych rzedu pierwszego. Elementy macierzy A i B zaleza
wylacznie od wartosci parametrow obwodu. Elementy wektora u stanowia zrédta niezalezne
pradu i napigcia w obwodzie. Zmienne stanu to niezalezne napigcia na kondensatorach i prady

cewek.

10.4. Rozwiqzanie stanow nieustalonych w obwodach metodq zmiennych stanu
10.4.1 Rozwigzanie ogolne

Jak zostalo pokazane w punkcie poprzednim uktad réwnan rézniczkowych opisujacych
obwdd elektryczny moze by¢ przedstawiony w postaci macierzowego rownania stanu (10.12).
Jesli zalozymy, ze wektor stanu x(r) jest n-wymiarowy a wektor wymuszen u(f) m-
wymiarowy, to macierz stanu A ma wymiar nXn, a macierz B nxm. Réwnanie (10.12)
nazywane jest macierzowym rownaniem stanu obwodu elektrycznego. Rozwiazanie tego
rOwnania pozwala wyznaczy¢ przebieg czasowy zmiennych stanu tworzacych wektor x(z).
Jesli dodatkowo interesuja nas inne zmienne w obwodzie, na przykitad prady i napigcia
rezystorow, prady kondensatoréw czy napigcia na cewkach to nalezy sformutowaé drugie
rOwnanie, tzw. réwnanie odpowiedzi y(7), ktére uzaleznia poszukiwane wartosci od

zmiennych stanu i wymuszen. Réwnanie to zapiszemy w postaci

y(#) = Cx(r) + Du(z) (10.13)

Réwnania (10.12) 1 (10.13) tworza parg réwnan stanu

d’;(’ ) — Ax(t) + Bu(r)

(10.14)
y(t) =Cx(t)+Du(z)
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ktéra w petni opisuje stan obwodu przy zatozeniu, ze znane sa warunki poczatkowe xo=x(ty),
gdzie ty oznacza chwilg przetaczenia. W przypadku ogélnym rozwigzanie réwnania stanu

przyjmuje postac

x(t) = e*7x(1,) + j e OBu(r)dr (10.15)

Ty

Zaleznos¢ powyzsza stanowi rozwiazanie ogOlne, ktére dla konkretnych wartosci funkcji
wymuszajacych zadanych wektorem u wyznacza rozwiazanie czasowe dla zmiennych stanu.
We wspodtczesnych metodach numerycznych réwnania stanu stanowia punkt wyjscia w
okreslaniu  dokladnego rozwigzania réwnan liniowych lub  przyblizonego dla
zlinearyzowanych réwnan stanu. Sa one roéwniez bardzo wygodne w zastosowaniach
przyblizonych metod catkowania réwnan rézniczkowych ze wzgledu na to, ze wszystkie
rOwnania stanu sa rzedu pierwszego, dla ktérych istnieja wyspecjalizowane metody
catkowania przyblizonego.

W rozwiazaniu (10.15) réwnania stanu wystepuja dwa cztony, z ktérych pierwszy jest
zalezny tylko od warunkéw poczatkowych niezerowych (energii zgromadzonej w cewkach i
kondensatorach), a drugi stanowi odpowiedZ obwodu na wymuszenia tworzace wektor u(z).
Pierwsza cze$¢ nazywacé bedziemy sktadowa przejsciowa, a druga — sktadowa wymuszona

(ustalona). Zalezno$¢ (10.15) moze wigc by¢ przedstawiona w postaci

x(1)=x,(t)+x,(1) (10.16)

W praktyce obliczenie skladowej ustalonej wedtug zaleznosci (10.15), zwlaszcza przy
wymuszeniu sinusoidalnym, jest niezwykle ucigzliwe, gdyz wymaga catkowania ztozonych
funkcji macierzowych. W zamian mozna wykorzysta¢ fakt, ze stan nieustalony jest
superpozycja stanu ustalonego i przejsciowego, i w rozwigzaniu stanu ustalonego zastosowac
metod¢ symboliczna analizy obwodow, ktéra pozwala wyznaczy¢ rozwiazanie w stanie
ustalonym bez operacji catkowania (patrz lekcja 4). W ten spos6b stan nieustalony rozbity
zostaje na dwa niezalezne od siebie stany: stan ustalony (sktadowa x,(7)), pochodzacy od
niezaleznych wymuszen, wyznaczany metoda symboliczng oraz stan przejSciowy (sktadowa

X,(1)), w ktérym te wymuszenia nie wystgpuja (zrodla napigciowe zwarte a pradowe
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rozwarte). Zauwazmy, ze przy braku wymuszenia (u=0) obwdd dla sktadowej przejsciowe;j

opisuje si¢ prostszym rownaniem stanu

M:Ax (1) (10.17)
dt !

ktérego rozwigzanie nie wymaga catkowania funkcji i dane jest w postaci
_ _A(t—t) +
X,()=e X,(t)) (10.18)

Jesli dodatkowo przyjmiemy, ze chwila przetaczenia 7y oznacza poczatek liczenia czasu (#=0)
to w naszym podejsciu Xp(fo")=x,(0"). Zauwazmy, ze wartoSci poczatkowe w obwodzie
dotycza chwili tuz po przelaczeniu, oznaczanej zwykle symbolem 0°. Przy rozbiciu stanu
nieustalonego na dwie sktadowe wymagane jest wigc wyznaczenie wartosci x,(07) dla
sktadowej przejsciowej. Mozna tego dokona¢ korzystajac z praw komutacji, ktore tutaj

przepiszemy w postaci

x(07)=x(0")=x,(0")+x,(0") (10.19)

Przy znanych warto$ciach x(07) oraz x,(0") z zalezno$ci (10.19) mozna wyznaczy¢ warto$¢

x,(07), jako
x,(07)=x(0")—x,(0") (10.20)
W tej sytuacji rozwigzanie rOwnania stanu (10.17) mozna przedstawi¢ w postaci
x (H)=e"x (0) (10.21)

w ktorej wartos¢ x,(07) jest okreSlona zalezno$cia (10.20). Do okreSlenia rozwiazania w

stanie przejéciowym nalezy wyznaczy¢ jeszcze macierz e, w ktérej wyktadnik jest macierza
a nie skalarem. Dla obliczenia e*’ nalezy w pierwszej kolejnosci obliczy¢ wartosci wiasne

macierzy stanu A.
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10.4.2 Wartosci wlasne i wektory wlasne macierzy kwadratowej

Zat6zmy, ze A jest macierza kwadratowa stopnia n. Macierz (s1-A) nazywana jest macierza
charakterystyczna A, przy czym 1 oznacza macierz jednostkowa stopnia n, to jest macierz
diagonalna 1=diag(1, 1,..., 1). Wyznacznik macierzy charakterystycznej det(s1-A) nazywamy

wielomianem charakterystycznym macierzy, a r6wnanie

det(s1-A)=0 (10.22)

nazywamy réwnaniem charakterystycznym macierzy A. Réwnanie to po rozwinigciu

wyrazenia wyznacznika przyjmuje posta¢ wielomianu n-tego stopnia

s"+a,_ 5" +.+tas+a,=0 (10.23)

Pierwiastki tego rownania sy, sz, ..., S, nazywamy warto$ciami wlasnymi macierzy A. Moga
one przyjmowac wartosci rzeczywiste lub zespolone, pojedyncze lub wielokrotne. Z kazda
wartoscig wtasng s; skojarzony jest wektor wlasny x; o niezerowej wartosci i wymiarze n,

spetniajacy rOwnanie

AX, = sX, (10.24)

Jesli wszystkie wartosci wlasne sg rézne to na podstawie rownania (10.24) mozna napisac n

rownan liniowych o postaci

AX, =5X,
AXx, =5,X, (10.25)
Ax =sX,

z rozwiazania ktérych mozna wyznaczy¢ wszystkie wektory wiasne x;.

Przyklad 10.1

Dla macierzy stanu
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S

wyznaczy¢ wartosci 1 wektory wlasne

Rozwigzanie

Roéwnanie charakterystyczne
I 0] |[-2 =2 2
det(s1—A) =det| s - =5 +5s+4=0
0 1 -1 -3

Pierwiastki tego réwnania bedace wartosciami wlasnymi A s3 réwne s;=-4 oraz s;=-1.

Wektory wtasne spetniaja relacje (10.25), ktéra w naszym przypadku przyjmie postac

M
= )]

Powyzszym réwnaniom odpowiadaja cztery rownania skalarne o postaci

—2x,—2x,, =—4x,,
T 3le = —4)621
—-2x,—2Xx, =—X

12 “Mn 12

— X T 3x22 =X,

Biorac pod uwage, ze dwa sposrod nich sa zalezne, dwie zmienne mozna przyja¢ dowolnie,
na przyktad x;=1 oraz x;;=1. Z rozwiazania pozostalych 2 réwnan otrzymuje si¢ wektory

wlasne o postaci

Przykiad 10.2

Napisa¢ uktad réwnan stanu dla obwodu elektrycznego przedstawionego na rys. 10.1
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D 3k O

Rys. 10.1. Schemat obwodu do przyktadu 10.2

Rozwiqzanie

Z praw Kirchhoffa napisanych dla obwodu z rys. 10.1 wynikaja nastgpujace réwnania

e=Ri.+u,+u,
=i, =i,

Biorac pod uwagg, ze

di
u, =L—%
. dt
oraz
du
ip =C—=
¢ dt

rownania Kirchhoffa mozna przeksztalci¢ do réwnowaznej postaci réwnan rézniczkowych

R(i ')+LdiL+
e = 1, —1 —TU
L dt C

d
C ;‘C =i, —i
t

ktére przyjmuja uporzadkowana form¢ odpowiadajaca postaci (10.9)

di, R. 1 1
—L=——i, - —u. +—e+—i
dt L L L L
du. 1. 1,

=—i, ——i
dad C~ C
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Réwnania powyzsze mozna zapisa¢ w postaci zaleznoSci macierzowej rownania stanu, w

ktérej zmiennymi stanu sg prad cewki i napigcie kondensatora.

diy| [=R -1 1R
dt || L L || L L|°
duc 1 0 |L4c 0 —L
dt C C

Wektor stanu x jest rowny

L

a wektor wymuszen

Obwdd liniowy zawierajacy dwa elementy reaktancyjne (cewka i kondensator) opisuje si¢
wigc macierzowym réwnaniem stanu drugiego rzedu. Macierz stanu A jest macierza rowniez
drugiego rzgdu o wspoétczynnikach uzaleznionych od wartosci rezystancji, pojemnosci oraz
indukcyjnos$ci. Macierz B zawiera dwa wiersze (liczba zmiennych stanu) oraz dwie kolumny
(liczba wymuszen w obwodzie). Przyjmujac w analizie wartosci liczbowe obwodu: R=2€Q,

L=1H, C=1F otrzymuje si¢ macierz stanu A o postaci

Réwnanie charakterystyczne tej macierzy jest rowne

s 0 -2 -1 5
det(s1—A) =det - =5 +2s5+1
0 s 1 0

Wartosci wlasne (pierwiastki réwnania charakterystycznego) sa w tym przypadku sobie

réwne i wynosza s, =s, =—1. Dla rozwazanego obwodu RLC sa one polozone w lewej

polplaszczyznie zmiennej zespolonej s na ujemnej osi rzeczywistej.
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10.4.3 Wyznaczanie macierzy e*’

Kluczem do wyznaczenia rozwiazania obwodu w stanie przejSciowym metoda zmiennych
stanu jest okreslenie macierzy e, Istnieje wiele metod rozwiazania tego zadania. Tutaj
przedstawimy trzy z nich: metod¢ Lagrange’a-Sylvestera, diagonalizacji macierzy oraz
Cayleya-Hamiltona. W kazdej z nich wymagane jest wyznaczenie wartosci wtasnych s;

macierzy A.

Metoda Lagrange’a-Sylvestera

. . . A . . . , . . .. .
W metodzie tej macierz e’ wyznacza sig z prostej zaleznosci podanej w postaci jawnej

M= e (10.26)

Z analizy powyzszego wzoru widoczne jest, ze metoda Lagrange’a-Sylvestera obowiazuje
jedynie dla przypadku wartosci wlasnych pojedynczych (przy wartosciach wielokrotnych

mianownik zaleznoS$ci staje si¢ zerowy).

Metoda diagonalizacji macierzy

W metodzie diagonalizacji macierzy zastgpuje si¢ obliczenie macierzy e poprzez
transformacj¢ macierzy A do postaci diagonalnej D o tych samych warto$ciach witasnych.
Diagonalna macierz D posiada prosta form¢ macierzowa e, bedaca réwniez macierza

diagonalna o postaci

e 0 0 0
0 ¢” 0 0

& = ¢ (10.27)
0 0 0 e

Mnozac obustronnie réwnanie stanu dx/ds = Ax przez nieosobliwa macierz U przeksztalca
si¢ je do postaci d(Ux)/dt = UAXx. WprowadZzmy nowy wektor v = Ux. Wéwczas oryginalne

rOwnanie stanu przeksztatca si¢ do postaci okreslonej wzgledem v, przy czym
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Dv 10.28
7 ( )

gdzie D jest macierza diagonalna okre§lona wzorem D=UAU" o wartoéciach diagonalnych
rownych wartosciom wtasnym macierzy A. Macierz przeksztalcenia U nalezy tak dobrac,
aby spetniona byla réwno$¢ UA=DU. Zalezno$¢ ta reprezentuje soba uklad réwnan

liniowych. Rozwiazanie réwnania stanu (19.28) dane jest w prostej formie

v(t) =P v(0) (10.29)

Biorac pod uwagg, ze v=Ux, po wstawieniu tej zaleznoSci do rownania (10.29) otrzymuje

sic Ux(r)= P Ux(0) , co pozwala napisa¢ wyrazenie na x(¢) w postaci

x(r) = U™ Ux(0) (10.30)

. . A ’
Oznacza to, ze macierz e zostata okreslona wzorem

A =U"e?U (10.31)

Zauwazmy, ze powyzsza metoda prowadzi do wyniku wylacznie dla pojedynczych wartosci

wtasnych macierzy A, podobnie jak metoda Lagrange’a-Sylwestera.

Metoda Cayleya-Hamiltona
Zgodnie z ta metoda macierz e rozwija si¢ w szereg skonczony o n sktadnikach (n — stopien

macierzy A)

eM=agl+aA+..+a, A" (10.32)

Dla petnego okreslenia rozwiazania nalezy wyznaczy¢ wszystkie wspétczynniki a; (i = 0, 1,...,
n-1) rozwinigcia (10.32).

W przypadku pojedynczych wartosci wlasnych nieznane wspétczynniki wyznacza sig z
rozwiazania uktadu n réwnan skalarnych, wynikajacych z twierdzenia Cayleya-Hamiltona.

Zgodnie z tym twierdzeniem kazda macierz kwadratowa spetnia swoje réwnanie
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charakterystyczne. Oznacza to w praktyce, ze rownanie (10.32) musi by¢ spetnione réwniez
przez wartosci wlasne macierzy A (macierz A jest zastapiona w tym rownaniu przez kolejne
wartosci wilasne skalarne). W przypadku pojedynczych wartosci wlasnych prowadzi to do

uktadu n réwnan z n niewiadomymi o postaci

n—1

t
W=ay+as +...+a, s

e

(10.33)

e =ag+as, +..+a, s
Rozwiazanie powyzszego ukiadu rownan wzgledem wspoiczynnikéw a; pozwala okresli¢
pelna postaé macierzy e wedhug wzoru (10.32).

Wz6r Cayleya-Hamiltona obowiazuje réwniez dla wielokrotnych wartosci wilasnych,
przy czym ubytek réwnan w zbiorze (10.33) wynikajacy z wielokrotnosci wartosci
wlasnych uzupelnia si¢ analogicznymi réwnaniami obowigzujacymi dla pochodnych
wzgledem wartosci wilasnej wielokrotnej. Przykladowo, jesli k-ta warto$¢ wilasna sy
wystepuje podwdjnie, wéwczas obowiazuja dla niej dwie rownosci Cayleya-Hamiltona o

postaci

n—1

Spt
et =ay+as, +...+a, s,

deskt
ds;

(10.34)
=1’ = a, +2a,s, +...+(n—Da, 57>

W ten sposéb brakujace rownanie w uktadzie (10.33) zostaje zastapione rdwnaniem dla

pochodnej 1 uktad rownan pozostaje rozwiazywalny.

Przykiad 10.3

Obliczanie macierzy e zilustrujemy na przyktadzie macierzy stanu A o podwojnej

warto$ci wlasnej. Macierz stanu dana jest w postaci
-4 -2
A=
2 0
Rozwigzanie
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Réwnanie charakterystyczne macierzy A

det(s1-A)=s>+4s+4=0

Warto$ci wilasne sa pierwiastkami réwnania charakterystycznego i réwnaja si¢ s;=sp=-2
(pierwiastek podwdjny). Wobec podwdjnej wartosci wiasnej macierz e wyznaczymy

stosujac metod¢ Cayleya-Hamiltona. Zgodnie z ta metoda dla macierzy stopnia n=2 mamy

M =a,1+aqA

Wartosci wspotczynnikéw a; wyznaczymy rozwiazujac uktad rownan

st
61

de syt
ds |

= dy + a;sy

=te 'V = qa,

Po wstawieniu wartos$ci liczbowych otrzymuje si¢

“2r _
e =a,—2q

-2t
e = =q

Rozwiazanie wzgledem wspoétczynnikow ap 1 a; pozwala uzyskac

a, = e >+ 2te

a, = te

Po wstawieniu tych warto$ci do wzoru na e otrzymuje sie

1 0 -4 =2 =2t _ -2t _ -2t
eAt _ (e—Zt +2t€_2t 1:0 J+te_2{ :|: |:(€ 2te ) 2te

20 21 (e_2t - 2te_2’)

10.4.4 Obliczanie stanu nieustalonego w obwodzie metoda zmiennych stanu

Jak zostalo przedstawione na wstgpie najwygodniejsza metoda obliczenia przebiegéw
czasowych w stanie nieustalonym metoda zmiennych stanu jest rozdzielenie stanu
nieustalonego po przetaczeniu w obwodzie na stan ustalony i przejsciowy. Stan ustalony

okreslany jest metoda symboliczng, a stan przejSciowy metoda zmiennych stanu. W ten
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sposOb unika si¢ trudnego problemu catkowania ztozonych zalezno$ci matematycznych. W

efekcie rozwiazanie stanu nieustalonego w obwodzie sktada si¢ z nastgpujacych etapow.

Okreslenie warunkéw poczatkowych w obwodzie przed przetaczeniem. W praktyce
oznacza to wyznaczenie pradéow cewek i napi¢¢ kondensatoréw w obwodzie w stanie
ustalonym (np. metoda symboliczna), przejscie na posta¢ czasowa tych rozwigzan i
okreslenie wszystkich wartosci pradow cewek 1 napig¢ kondensatoréw w chwili
przetaczenia. Wartosci poczatkowe i1(0°) oraz uc(0') utworza wektor stanu x w chwili
poczatkowej 0.

Okreslenie stanu ustalonego w obwodzie po przetaczeniu (np. metoda symboliczna). W
wyniku otrzymuje si¢ wartosci ustalone pradéw cewek i,(f) i napie¢ kondensatorow
uc,(t). Wartosci te tworza wektor x,(f) w stanie ustalonym.

Okreslenie stanu przejSciowego w obwodzie po przetaczeniu. Obwod dla stanu
przejsciowego powstaje po odrzuceniu wszystkich zrédel wymuszajacych niezaleznych
(zwarcie zrdodel napigcia e(f) oraz rozwarcie zrédet pradowych i(¢)), od ktérych
odpowiedz w stanie ustalonym zostata juz obliczona. Obwdd taki opisuje si¢ rOwnaniem
stanu o postaci dx,/dr=Ax, ktorego rozwigzanie okreslone jest zaleznoscia (10.21) przy
warunkach poczatkowych okreslonych dla sktadowej przejsciowej zmiennych stanu.
Oznacza to konieczno$é¢ okreslenia dla kazdej cewki i kondensatora wielkosci iz,(0")

oraz uc,(0"). Korzystajac z réwnania (10.20) otrzymuje sie

e, (0°)=uc(07)—ue, (07)
i, (0%)=i,(07)—i, (07) (10.35)

Po okresleniu warunkoéw poczatkowych dla sktadowej przejsciowej mozna z zaleznosci

(10.21) wyznaczy¢ pelne rozwigzanie obwodu w stanie przejsciowym.

Rozwiazanie catkowite obwodu sktada si¢ z czg$ci ustalonej i przejsciowej. Mozna je

zapisa¢ w postaci

ue(t)=ug, (1) + Ucy (1)
i () =iy, () +i, (1) (10.36)

co odpowiada zapisowi macierzowemu dla zmiennych stanu x(#)=x,()+xX,(1).
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Przykiad 10.4

Rozpatrzmy stan nieustalony w obwodzie RLC przedstawionym na rys. 10.2a po

przetaczeniu. Dane elementéw: R=5Q, L=2H, C=0,5F, e(t)=6V (napigcie state).

a) b)
Rys. 10.2 Obwdd RLC do przyktadu 10.4: a) obwod wyjsciowy, b) posta¢ obwodu do

wyznaczenia stanu przejsciowego

Rozwiazanie

Warunki poczatkowe w postaci pradu cewki i napigcia na kondensatorze oblicza si¢ na
podstawie stanu ustalonego przed przetaczeniem. Przy stalym wymuszeniu w obwodzie (w=0)
cewka stanowi zwarcie a kondensator przerwg. Oznacza to, ze prad ptynacy w obwodzie jest
rowny ir(1)=6/10=0,6A. Stad i,(0)=0,6. Napigcie na kondensatorze (przed przelaczeniem
pozostaje poza obwodem) jest zerowe, stad uc(07)=0.

Po przetaczeniu powstaje obwdd ztozony z szeregowego potaczenia elementéw R, L i
C. W stanie ustalonym wobec ®w=0 kondensator stanowi przerwg i prad ustalony w takim
obwodzie nie ptynie, i;,(f)=0 a napigcie kondensatora uc,(1)=6. Oznacza to, ze warunki
poczatkowe dla sktadowej ustalonej dane sa w postaci: iz,(0")=0 oraz uc,(0")=6.

Wyznaczenie stanu przejsciowego rozpoczniemy od warunkéw poczatkowych dla
tego stanu. Warunki poczatkowe dla stanu przejsciowego okreslone sa w postaci (patrz
rownanie (10.35))

i1, 0")=i,(07)-i,,(0)=0,6-0=0,6

MCp(O+):uC(O_)_MCu 0)=0-6=-6
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Stad warunki poczatkowe dla stanu przejsciowego mozna zapisa¢ w postaci wektorowe;j
i, (0" 0,6
x,(0) = i1y ( +) { }
uc,(07) -6

Réwnania stanu przejsciowego dotycza obwodu bez wymuszen zewnetrznych (zrédio
napigciowe zwarte) przedstawionego na rys. 10.2b. Z prawa napigciowego Kirchhoffa po

uwzglednieniu réwnan elementéw obwodu otrzymuje si¢ nast¢pujace rownania rézniczkowe

le .
du
— P

i =Cy

Po uporzadkowaniu tych réwnan otrzymuje si¢ rGwnanie macierzowe stanu w postaci

din B R - 1 ' '
dr | _ T Ll _ =25 =051

d”Cp l 0 Ucp 2 0 Ucp
dt C

z ktérego wynika, ze macierz stanu A jest rOwna

~25 -05
A=

Réwnanie charakterystyczne dla macierzy A dane jest w postaci

det(s1-A)=s>+2,5s+1=0

Wartosci wlasne sa pierwiastkami rownania charakterystycznego i rownaja si¢ s1=-2, s,=-0,5.

Macierz e*' wyznaczymy stosujac metodg Sylvestera. Zgodnie z ta metoda

{ 2 05 } {0.5 0,5}
$ot (sll_A):e—Zt -2 -05 4o 05t -2 -2

At :esll (SZI_A)
(s,—s,) 3/2 -3/2

+e
(52_51)

e

Po wykonaniu odpowiednich operacji matematycznych otrzymuje si¢

[ (1337 -0330%) (0330 ~0,33¢°)
L33 4133¢0%) (£033¢7 +133¢70%)
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Rozwiazanie okreslajace wektor stanu w stanie przejSciowym oblicza si¢ z zaleznosci

_ =2t —-0,5¢
X O=eVx, (0+){ 1,2¢7 +1,8¢ }

1,2¢7 =727

Calkowite rozwiazanie obwodu w stanie nieustalonym mozna wigc przedstawi¢ w postaci

=2t -0,5¢

iL(t)ziLu(t)+in(t)=—1,2e +1,8¢e

ue(t) = e, (1) +ug, (1) = 6+1,2e7 —=7,2¢7

10.5 Metoda klasyczna rozwiqzania rownan rozniczkowych

W przypadku, gdy interesuje nas tylko jedna wybrana zmienna (jeden prad badz jedno
napigcie w obwodzie) uktad réwnan stanu pierwszego rzegdu mozna sprowadzi¢ do jednego

roéwnania rézniczkowego n-tego rzedu wzgledem tej zmiennej

d"x d"'x d"*x
dtn +Cln_1 dl_n—l an_z dlan

a

n

+...+al%+aox=f(t) (10.37)

Rozwiazanie powyzszego réwnania rézniczkowego, podobnie jak w metodzie zmiennych

stanu, mozna przedstawi¢ w postaci sumy dwu sktadowych: ustalonej x, (#) wymuszonej
przez zrédto oraz sktadowej przejsciowej x,(f), zwanej réwniez sktadowa swobodna,

pochodzaca od niezerowych warunkéw poczatkowych

x(@)=x,H)+x,() (10.38)

Skladowa wymuszona stanowi rozwiazanie ustalone obwodu po komutacji i moze by¢
wyznaczona metoda symboliczng. Skladowa przejSciowa charakteryzuje fizycznie procesy
zachodzace w obwodzie elektrycznym na skutek niezerowych warunkéw poczatkowych przy
braku wymuszen zewngtrznych. Odpowiada ona obwodowi, w ktérym wyeliminowano
wszystkie zewngtrzne zroédta wymuszajace (zrédla napigciowe zwarte a pradowe rozwarte).
Sktadowa przejsciowa zalezy jedynie od warunkéw poczatkowych (napigé

poczatkowych kondensatoréw i pradow poczatkowych cewek), struktury obwodu i wartosci
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parametréw tego obwodu. Dla obwoddéw elektrycznych zawierajacych elementy rozpraszajace
energi¢ (rezystancje) sktadowa przejsciowa, jak zostanie pokazane p6zniej, zanika z biegiem
czasu do zera. ROwnanie sktadowej przejsciowej otrzymuje si¢ zaktadajac wymuszenie f{t)

we wzorze (10.37) rowne zeru 1 zastgpujac zmienng x(¢) poprzez jej sktadowa przejsciowa

x, (1) . Otrzymuje si¢ wéwczas rownanie rézniczkowe jednorodne o postaci

+a, , L+ +a, d—:+a0xp =0 (10.39)

Rozwiagzanie powyzszego rownania jednorodnego uzyskuje si¢ za posrednictwem réwnania

charakterystycznego
a,s"+a, s"" +a, " +.+as+a, =0 (10.40)

Jest to wielomian n-tego rzedu zmiennej zespolonej s o wspoéiczynnikach rzeczywistych a; .

Jest on identyczny z réwnaniem charakterystycznym otrzymanym dla zmiennych stanu.
Pierwiastki s, (i=1, 2, ..., n) tego wielomianu stanowia bieguny ukladu, identyczne z

warto§ciami wlasnymi macierzy stanu A. W tym punkcie ograniczymy si¢ jedynie do
przypadku biegunéw pojedynczych. Przy takim zalozeniu rozwiazanie réwnania (10.39) dla

sktadowej przejSciowej zapiszemy w postaci
x,()=Y Ae" (10.41)
i=1

W rozwiazaniu tym wspoiczynniki A, sa staltymi catkowania, ktére nalezy wyznaczy¢

wykorzystujac znajomos$¢ warunkéw poczatkowych w obwodzie (napi¢¢ kondensatoréw i
pradéw cewek w chwili komutacji r=0). W tym celu nalezy wyznaczy¢ rozwiazanie

réwnania (10.39) dla kazdej sktadowej przejSciowej zmiennej stanu x, () oddzielnie, a
nastgpnie rozwiazanie catkowite x, (1) = x,, (1) +x, (t) dla k=1, 2, ..., n. Kazda ze zmiennych

x, (t) posiada znang warto$¢ rozwiazania x, (0) w chwili r=0 (warunki poczatkowe). Z

ciagtosci pradéw cewek i napi¢¢ kondensatoréw wynika nastepujaca zaleznos¢
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x,(07)=x,(0")+x,(0") (10.42)

Piszac t¢ rownos¢ dla wszystkich n zmiennych stanu otrzymuje si¢ n réwnan algebraicznych z

n nieznanymi wspétczynnikami A,. Z rozwigzania tego ukladu wyznacza si¢ wszystkie
wspotczynniki A; i podstawia do wzoru ogdlnego (10.41). Po wyznaczeniu rozwiazania

obwodu dla sktadowej ustalonej i przejsciowej rozwigzanie catkowite réwnania (10.37) jest

suma obu rozwiazan czastkowych, to znaczy

x(t) = x, (1) + x,(7) (10.43)

Powyzsza procedura rozwigzania stanu nieustalonego w obwodzie poprzez rozwiazanie
uktadu réwnan rézniczkowych wyzszego rzedu nosi nazwe metody klasycznej. Przy
wigkszej liczbie zmiennych jest ona dos$¢ uciazliwa w obliczeniach, gdyz wymaga
pracochtonnego wyznaczania rozwiazan dla kazdej sktadowej przejSciowej zmiennych stanu.
Dlatego w praktyce stosuje si¢ zwykle tylko do rownan pierwszego rzedu. W tej pracy
zastosujemy ja do rozwigzania stanu nieustalonego w obwodzie RL oraz RC przy zataczeniu

napigcia stalego.

Zadania sprawdzajqce

Zadanie 10.1

Wyznaczy¢ warunki poczatkowe w obwodzie przedstawionym na rys. 10.3. Parametry
elementdow obwodu sa nastgpujace: L=1H, C=0,5F, R=1Q, e(t)le\/Esin(t+45”)V,

i(t) =2sin(t —45%) A.

em() jﬁc® X

] i(t)

|

Rys. 10.3. Schemat obwodu do zadania 10.1
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Rozwiqzanie
Warunki poczatkowe dotycza stanu ustalonego przed przetaczeniem, w ktéorym w obwodzie

dziataja oba Zrédta wymuszajace. Stosujac metod¢ symboliczng analizy obwodu otrzymujemy

E =10e’*"
2 co
[=——e /¥
J2
w=1
Z, = jaL=jl

Z.=—jlwC =-j2
Réwnania obwodu:

E=2Z,1,+R(I+1,)

, _E-RI

L= =721/
R+Z,

Uc = ZCI = ie—jws”

V2
i,(t)=72132sin(r +11,31°)

u-(t) =4sin(t —135°%)
Warunki poczatkowe:

i,(07)=2

U (07) =242

Zadanie 10.2

Napisa¢ rownanie stanu dla obwodu o strukturze przedstawionej na rys. 10.4.

277



)
<)
[
)
—_—
o
Rl

Rys. 10.4. Schemat obwodu do zadania 10.2

Rozwiqzanie
Z praw Kirchhoffa napisanych dla obwodu z rysunku wynika

Po przeksztatceniach tych réwnan otrzymujemy

duc. _ 1p o .
dt _C[l(t) a
dip, 1p
ar gl

Réwnanie stanu:
du

L [0 —uc] [u 0 1/C] [e)
— . + °
di, ["lyL o |i| |-uL o ||io

dt

Zadanie 10.3
Napisa¢ réwnanie stanu obwodu o strukturze przedstawionej na rys. 10.5.
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Rys. 10.5 Schemat obwodu do zadania 10.3

Rozwiqzanie

Z réwnan Kirchhoffa napisanych dla obwodu z rys. 10.5 otrzymuje si¢

e(t) =uc +uc,

Po wyznaczeniu u. z réwnania pierwszego i przeksztatceniu powstatych rownan

otrzymujemy
di, 1 .
—==—|u. —Ri
B -
d
Ue, _ 1 i, +C, de(t)
dt C +C, dt

Posta¢ macierzowa rOwnan stanu:

di, R 1
il 4 = — ; 0
ddt — l14 L | i ce(t) + Cl de(?)
& — 0 C, 0 C +C dt
dt G +C, b

Jak wida¢ pomimo trzech elementéw reaktancyjnych w obwodzie, réwnanie stanu jest

drugiego rz¢du. Wynika to z faktu, ze napigcie jednego kondensatora jest liniowo zalezne od
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napigcia zrédla i napigcia na drugim kondensatorze. W wyniku redukcji liczby zmiennych

stanu rdwnania stanu sa zalezne od pochodnej funkcji wymuszenia.
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Lekcja 11. Stany nieustalone w obwodach RL i RC

Wstep

Dla zrozumienia istoty stanu nieustalonego rozpatrzymy zjawiska jakie towarzysza procesowi
komutacji w najprostszych obwodach zawierajacych cewke badz kondensator. Oba
wymienione elementy reaktancyjne gromadza energi¢. Prawo zachowania energii wymusza
pewien stan przejSciowy zachodzacy pomigdzy stanami ustalonymi przed i po przetaczeniu. Musi
uplynaé pewien czas trwania stanu przejsciowego, w ktérym stan nieustalony przejdzie w
ustalony.

W tej lekcji analiz¢ stanu nieustalonego przeprowadzimy przy zastosowaniu metody
klasycznej. Podamy opisy rézniczkowe obwodéw RL i RC oraz ich rozwiazania w dziedzinie
czasu. Przebiegi pradéw i napie¢ w obwodach zawierajacych jeden element reaktancyjny sa
typu wykladniczego, scharakteryzowanego przez stata czasowa, decydujaca o czasie trwania

stanu nieustalonego. Pokazemy wptyw stalej czasowej na przebiegi czasowe w obu

11.1 Stan nieustalony w szeregowym obwodzie RL przy zalaczeniu napigcia statego

obwodach.

Jako pierwszy przyklad zastosowania metody klasycznej rozpatrzymy stan nieustalony w
obwodzie szeregowym RL przy zerowych warunkach poczatkowych i zalaczeniu napigcia
stalego jak to zostalo w symboliczny sposob przedstawione na rys. 11.1. Zerowe warunki

poczatkowe obwodu oznaczaja, ze i, (07) =0.

Rys. 11.1. Obwdd szeregowy RL przy zataczeniu napigcia stalego
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Po przetaczeniu w obwodzie RL powstaje stan nieustalony, ktéry po okreslonym
czasie prowadzi do powstania nowego stanu ustalonego wynikajacego z nowego uktadu
polaczen elementow. Stan nieustalony jest superpozycja stanu ustalonego i przejsciowego.

Stan ustalony w obwodzie RL przy wymuszeniu staltym oznacza, ze cewka stanowi

zwarcie (rys. 11.2a).

1"'

=(1) ]

a) )

Rys. 11.2. Posta¢ obwodu RL do obliczenia sktadowej a) ustalonej i b) przejsciowe;j

Na podstawie napigciowego prawa Kirchhoffa prad ustalony tej cewki jest rowny

i, ()=E/R (11.1)

Przechodzac do obliczenia stanu przejsciowego nalezy wyeliminowa¢ zewnetrzne zrddio
zasilajace. Poniewaz jest to zrédto napigciowe, nalezy go zewrze¢. Schemat obwodu dla stanu
przejsciowego po zwarciu zrédla zasilajacego, dla ktérego odpowiedz zostala wiasnie
obliczona, ma posta¢ przedstawiong na rys. 11.2b. Stosujac prawo napigciowe Kirchhoffa dla

tego obwodu przy uwzglednieniu

di
u,, =L—2

11.2
) & (11.2)

otrzymuje si¢ réwnanie rézniczkowe jednorodne (brak wymuszenia) dla sktadowe;j

przejsciowej o postaci

di,
L—+Riy, =0 (11.3)
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Réwnanie charakterystyczne odpowiadajace powyzszemu rOwnaniu rdézniczkowemu

przyjmuje postac
Ls+R=0 (11.4)

Roéwnanie to posiada tylko jeden pierwiastek

si== (11.5)

Wykorzystujac wzér (10.41) rozwiazanie stanu przejsciowego dla pradu w obwodzie RL

zapiszemy w postaci

t

i, =Ae LR (11.6)

w ktorej wspotczynnik A, jest nieznang statg calkowania. Rozwiazanie catkowite obwodu jest

suma sktadowej ustalonej 1 przejSciowej. W zwiazku z powyzszym prad cewki okreslony jest

nastgpujacym wzorem

t

i, (=i, @) +i, () =%+Ale_w (11.7)

Z prawa komutacji dla cewki wynika, ze i, (0")=i,(0"), stad wobec i, (07) =0 otrzymuje

si¢

0=—+A4 (11.8)

oraz
A =-E/R (11.9)

Stad rozwiazanie okreslajace przebieg pradu cewki w stanie nieustalonym przyjmuje postac
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iL(t):%[l—e_L;RJ (11.10)

Wprowadzajac pojgcie stalej czasowej 7 obwodu RL
T=L/R (11.11)

rozwiazanie na prad cewki w stanie nieustalonym mozna zapisa¢ w postaci
E _r
iL(t)zE(l—e fj (11.12)

Jednostka stalej czasowej jest sekunda (jednostka indukcyjnosci jest 1H=1Qs a
jednostka rezystancji 1Q2). Latwo wykazac, ze po uptywie trzech statych czasowych (¢ =37)
prad cewki uzyskuje prawie 95% swojej wartosci ustalonej a po 5 statych czasowych az
99,3%. Oznacza to, ze praktycznie po 5 stalych czasowych stan nieustalony w obwodzie
zanika przechodzac w stan ustalony.

Na rys. 11.3 przedstawiono przebiegi pradu cewki dla réznych wartosci stalej

Czasowej.

01 teR - o d : i i
1 4 ! : ! !

| s e T reabbbt et P :
VE AN ! ! ! !

06 f---- A S - L A !
Y ! ! ! !

041 o-F -~ - - TRREEE be--- Lo--- !
L v S
: ! ! :T1<T2<r]'3 :

D | | | | | It
1] 1 2 3 4 5 5]

Rys. 11.3. Przebieg pradu cewki w stanie nieustalonym
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Jest to przebieg typu wyktadniczego, w ktérym stan przejsciowy trwa tym dluzej im dtuzsza
jest stata czasowa. Praktycznie po 5 stalych czasowych stan przejSciowy w obwodzie zanika
przechodzac w stan ustalony.

Stala czasowa obwodu RL mozna wyznaczy¢ na podstawie zarejestrowanego
przebiegu nieustalonego bez znajomosci wartosci rezystancji i indukcyjno$ci. Zauwazmy, ze

dla ¢t =7 prad cewki przyjmuje wartos¢

E E
(D) =—(1-¢")=0,632= 11.13
i,(7) R( e) R ( )

Oznacza to, ze warto$¢ pradu i, (t)|r:T = O,632§ wyznacza na osi odcigtych wartosc¢ statej

czasowej. SposOb wyznaczania stalej czasowej zilustrowany jest na rys. 11.4.

(1 11 ERE ; ; ; ; :
T R i o S B
0632 E/R 1
I:IE ______ [ I A [ B T-==°° r=-=-=--- 1
7] SO S N SO
L

0 i i i i i |t
0 1t 2 3 1 5 B

Rys. 11.4. Ilustracja sposobu wyznaczania stalej czasowej na podstawie zarejestrowanego

przebiegu pradu cewki

Wyznaczenie rozwiazania na prad w stanie nieustalonym w obwodzie RL pozwala na

okreslenie przebiegu czasowego pozostatych wielkosci w obwodzie. Korzystajac z zalezno$ci

definicyjnej cewki u, = L% otrzymuje si¢
t
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di, (1) _ :

u, (1) =L L Ee L/R (11.14)

Przebieg napigcia na cewce w stanie nieustalonym w obwodzie szeregowym RL

przedstawiono na rys. 11.5.

e e R
\ \ o Tlami<ry
N e
0B - e - - - R O DE—
iR - oosodoasosheosoaboonad
o) P SN S R S [N
71} | i | :
0 ! i ' . |
0 1 2 3 4 5 &

Rys. 11.5. Przebieg napigcia na cewce w stanie nieustalonym w obwodzie szeregowym RL

Napigcie na rezystorze R, jak wynika z prawa Ohma, jest proporcjonalne do pradu

uR(t):RiL(t):E(l—e_L’RJ (11.15)

i ma ksztatt identyczny z przebiegiem pradu w obwodzie przedstawionym na rys. 11.3.

11.2 Stan nieustalony w galezi szeregowej RC przy zalaczeniu napiegcia statego

Rozpatrzymy stan nieustalony w obwodzie szeregowym RC przy zerowych warunkach

poczatkowych i zalaczeniu napigcia statego (rys. 11.6).
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Rys. 11.6. Zataczenie napigcia statego do obwodu szeregowego RC

Wobec braku zasilania w obwodzie przed przetaczeniem w warunki poczatkowe obwodu sa
zerowe, co oznacza, ze u.(0")=0.

Po przetaczeniu powstaje w obwodzie stan nieustalony, ktéry po pewnym czasie
prowadzi do powstania nowego stanu ustalonego. Stan nieustalony obwodu jest superpozycja
stanu ustalonego 1 przejSciowego. Stan ustalony w obwodzie RC przy wymuszeniu staltym

(w=0) oznacza, ze kondensator stanowi przerwg¢ (rys. 11.7a).

10 e ST

a) b)

Rys. 11.7 Schemat obwodu RC dla sktadowej a) ustalonej, b) przejsciowe;j
Zgodnie z prawem napigciowym Kirchhoffa napigcie ustalone kondensatora jest rowne

g, ()=E (11.16)

Schemat obwodu dla stanu przejSciowego (po zwarciu zrédta zasilajacego, dla ktérego
odpowiedz zostata wiasnie obliczona) ma posta¢ przedstawiong na rys. 11.7b. Stosujac prawo

du
napigciowe Kirchhoffa dla tego obwodu i uwzgledniajac, ze i., = Cd—c‘”, otrzymuje si¢
t

rownanie rézniczkowe jednorodne o postaci
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Ue, =0 (11.17)

Roéwnanie charakterystyczne odpowiadajace mu przyjmuje wigc postac
RCs+1=0 (11.18)

Roéwnanie to posiada jeden pierwiastek s, =—1/RC. W zwiazku z powyzszym jego

rozwiazanie wynikajace ze wzoru (10.41) przyjmie uproszczong postacé

1

U, =Ae" =Ae k¢ (11.19)

W rozwigzaniu tym wspotczynnik A, jest stala catlkowania, ktéra nalezy wyznaczy¢

korzystajac z prawa komutacji. Rozwiazanie catkowite bgdace suma sktadowej ustalonej i

przejsciowej przybiera wigc postac

t

ue(t) =g, (1) +ug, (1) = E+ Ae *© (11.20)

Z prawa komutacji dla kondensatora wynika, ze u.(07) =u.(0"), stad wobec u.(07)=0

otrzymuje si¢
0=E+A, (11.21)
oraz
A =-E

Rozwiazanie czasowe okreslajace przebieg napigcia na kondensatorze przyjmuje wigc postac

U, () = E(l - eRCj (11.22)
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Wprowadzajac pojgcie statej czasowej 7 obwodu RC jako iloczynu rezystancji R i

pojemnosci C
T=RC (11.23)

rozwiazanie na napigcie kondensatora w stanie nieustalonym mozna zapisa¢ w postaci
_r
u-(t)=E|l-e * (11.24)

Jak tatwo sprawdzi¢ podstawowa jednostka statej czasowej w obwodzie RC jest réwniez
sekunda (jednostka rezystancji jest 12 = 1V/A, a jednostka pojemnosci jest 1F = 1As/V). Na

rys. 11.8 przedstawiono przebiegi napigcia na kondensatorze w stanie nieustalonym

t

u-(t)= E[l - e_’] dla réznych wartosci statej czasowe;.

UC':t:I 1 -E____: ______ . JI | : :
S s

08 --- ek T rahb A P :
FEr N | ! | :

06 }-- oooost Coooe TR b ooooe b ooooe :
Q7 . - —
0.2 A R e e b :

! ! ! S R4 R4

|:| 1 | | | | 1 1

0 1 2 3 4 5 B

Rys. 11.8. Przebiegi napigcia na kondensatorze w stanie nieustalonym przy réznych statych

czasowych
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Im dtuzsza stata czasowa tym dtuzej trwa stan przejSciowy w obwodzie (zanikanie zmian
napigcia do zera).

Latwo wykazac, ze po uptywie 3 stalych czasowych (7 =37 ) napigcie uzyskuje prawie
95% swojej warto$ci ustalonej a po 5 stalych czasowych az 99,3%. Oznacza to, ze
praktycznie po 5 stalych czasowych stan nieustalony w obwodzie zanika przechodzac w stan
ustalony.

Stala czasowa mozna wyznaczy¢ bezposrednio na podstawie zarejestrowanego
przebiegu nieustalonego bez znajomosci wartosci rezystancji i pojemnosci, podobnie jak to
mialo miejsce w przypadku obwodu RL. Zauwazmy, ze dla ¢t = 7 napigcie na kondensatorze

przyjmuje wartos¢
u(r)y=E(l-e')=0,632E (11.25)

Oznacza to, ze napigcie uc(t)| -, =0,632E wyznacza na osi odcigtych warto$¢ stalej

czasowej. [lustruje to rys. 11.9.

Ut (1E

. -

DBF----- - -

04f---~ R - -

02F-4--- - of- - (apap——

r---T- -~ -TrT--"-TAaA-~-=-=T7°°-°% -

a

[T [ A T D i, SR
E o e Il R e I I I

! i
0 1T © 2
Rys. 11.9. Wyznaczanie statej czasowej obwodu RC na podstawie przebiegu czasowego

napigcia kondensatora
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Po okresleniu funkcji opisujacej przebieg napigcia na kondensatorze mozna okresli¢ przebieg
czasowy pradu w obwodzie. Korzysta si¢ przy tym z zaleznos$ci definicyjnej kondensatora

d
ir=C % , zgodnie z ktora

du (ty E -
=—e

ic(t)=C = 11.26
c(® 5 R (11.26)

Przebieg pradu fadowania kondensatora w stanie nieustalonym w obwodzie RC dla réznych

staltych czasowych przedstawia rys. 11.10.

it : : : : :

R T - R R booo-- oo
' ' A R S .

D\ e
OB - oo - R [N beeoo- I !
041 - oosodoososionscohosoad
02| -5 -~ g oo
0 ! i ; ! |

] 1 2 3 4 5 5]

W chwili komutacji wystgpuje skokowa zmiana wartosci pradu (prad kondensatora nie jest
objety komutacyjnym prawem ciagtosci). Przebieg pradu kondensatora dazy do wartosci
ustalonej zerowej (w stanie ustalonym kondensator stanowi przerwe dla pradu). Stata czasowa

zmian tego pradu jest identyczna jak napigcia i réwna 7= RC .

Zadania sprawdzajqce

Zadanie 11.1
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Okresli¢ przebieg czasowy napigcia na kondensatorze w stanie nieustalonym w obwodzie
przedstawionym na rys. 11.11. Zastosowa¢ metode klasyczna. Przyja¢ nastepujace wartosci

parametréw: R=10kQ, C=10uF, i(t) =1 =2mA..

i(tj@ o — HR ]

Rys. 11.11. Schemat obwodu do zadania 11.1

Rozwiqzanie
Warunki poczatkowe w obwodzie wynikaja ze stanu ustalonego obwodu przed

przetaczeniem, ktéry wobec wymuszenia stalego ma posta¢ uproszczona przedstawiong na

rys. 11.12.

im@ :Tuc R

Rys. 11.12. Schemat obwodu w stanie ustalonym przed przelaczeniem dla wymuszenia

stalego

U (1) =u.(07) = IR =20V

Stan ustalony w obwodzie po przetaczeniu dotyczy obwodu przedstawionego na rys. 11.13.

|
210

ilitll@ :Tuﬁu
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Rys. 11.13. Schemat obwodu w stanie ustalonym po przetaczeniu
uq, () =u.,(0")=IR/2=10V

Stan przejsciowy dotyczy obwodu po przetaczeniu przedstawionego narys. 11.14

2170

i ::TuqJ

lop

Rys. 11.14 Schemat obwodu w stanie przejsciowym po przetaczeniu

Roéwnania rézniczkowe obwodu:

R dug,
2 dt

ug, +C =0

Ue, + 0,05% =0
Roéwnanie charakterystyczne:
1+0.055 =0 — s, =-200
Rozwigzanie réwnania r6zniczkowego:
e, (1) = Ae?™
Rozwiazanie catkowite obwodu
ue(t) =ue, () +ug, (t) =10+ Ae ™™
Z prawa komutacji dla kondensatora wynika réwnos¢
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u-(0)=u.(0")>20=10+A—> A=10
Posta¢ rozwiazania ostatecznego:
up () =10(1+ ")

Stata czasowa obwodu jest wigc réwna 7 =1/200=0,05s

Zadanie 11.2
Okresli¢ przebieg czasowy pradu cewki w stanie nieustalonym w obwodzie przedstawionym

na rys. 11.15. Zastosowa¢ metod¢ klasyczna. Przyja¢ nastepujace warto$ci parametrow:

R=20Q R,;=50Q,, L=2H, e(t) = 20+/2 sin(¢)

i
e(tj( ) R, R L

Rys. 11.15. Schemat obwodu do zadania 11.2

Rozwiqzanie

Warunki poczatkowe dotycza obwodu przedstawionego na rys. 11.16.

|
| S—

{

Rys. 11.16. Schemat obwodu do wyznaczania warunkéw poczatkowych
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Stosujac do tego obwodu metodg symboliczng otrzymuje si¢ kolejno

w=1
Z, = jwL=j2
2.2 .
= =1+l
o242 /
I, =E—2r 30,
(Rl + ZRL )ZL

i, (f) = 2,324/2sin(t — 54,5%)

i,(07)=-2,67

Wobec odlaczenia zrédta podczas przetaczenia stan ustalony w obwodzie po przetaczeniu jest

zerowy, stad
i, )=0—1i,0")=0
Stan przejsciowy dotyczy obwodu z rys. 11.17

Fi

R|:| RI fL

Rys. 11.17 Schemat obwodu do wyznaczenia sktadowej przejsciowe]

Roéwnanie rézniczkowe obwodu:

di 2R R
L2 =)
dt 2R +R "™

Po wstawieniu wartos$ci liczbowych otrzymuje si¢

295



dij,
dt

+ %i =0
Réwnanie charakterystyczne
s+ Bl =0—>s = 2
6 6
Rozwigzanie réwnania r6zniczkowego
i, () =Ae>"

Wobec braku sktadowej ustalonej rozwiazanie to jest jednocze$nie rozwigzaniem petnym.

Stad
i, (=i, ) =Ae”""
Z praw komutacji wynika
i, (0)=i,(0") > A=-2,67
Rozwiazanie pelne obwodu przyjmuje wigc postac

i, (1) =-2,67¢>""
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Lekcja 12. Metoda operatorowa Laplace’a

Wstep
Opis obwodéw elektrycznych w stanie nieustalonym poprzez uktad réwnan rézniczkowych
jest wygodna forma analizy przy zastosowaniu metod numerycznych. W przypadku
analizowania zjawisk zachodzacych w tych obwodach z zastosowaniem metod analitycznych
metoda ta jest zmudna przy duzej liczbie elementéw indukcyjnych i pojemnosciowych i stad
jej zastosowanie ograniczone jest praktycznie do rzedu n=2. W takich przypadkach znacznie
wygodniejsze jest zastosowanie metod operatorowych, z ktérych najwazniejsza to metoda
operatorowa Laplace’a. Rachunek operatorowy jako alternatywa do metody klasycznej polega
na algebraizacji réwnan r6zniczkowych opisujacych dany obwéd. W ten sposob uktad rownan
rozniczkowych zostaje zastapiony uktadem rownan algebraicznych typu funkcyjnego.

Zastosowanie przeksztalcenia Laplace’a upraszcza operacj¢ rozwigzywania rownan
rézniczkowych zastgpujac ja rozwiazaniem uktadu réwnah algebraicznych. Istota
przeksztatcenia Laplace’a polega na tym, ze kazdej funkcji czasu f(r) okreslonej dla >0
odpowiada pewna funkcja F(s) okreslona w dziedzinie liczb zespolonych i1 odwrotnie, kazdej
funkcji F(s) odpowiada okreslona funkcja czasu f{(7).

W tej lekcji oméwimy podstawy rachunku operatorowego Laplace’a. Przedstawione
zostana definicje przeksztatcenia prostego i odwrotnego oraz podstawowe wlasnosci
przeksztalcenia. Podamy przykitady obliczania transformat prostej i odwrotnej, ilustrujace

istote transformacji Laplace’a.

©

12.1 Wiadomosci podstawowe dotyczace rachunku operatorowego Laplace’a

Zastosowanie przeksztalcenia Laplace’a wupraszcza operacje rozwiazywania rownan
rozniczkowych zastgpujac ja rozwiazaniem uktadu réwnah algebraicznych. Istota
przeksztatcenia Laplace’a polega na tym, ze kazdej funkcji czasu f(r) okreslonej dla >0
odpowiada pewna funkcja F(s) okreslona w dziedzinie liczb zespolonych i odwrotnie, kazdej
funkcji F(s) odpowiada okres$lona funkcja czasu f(r). Funkcje f(f) nazywamy oryginalem i

oznaczamy malg litera. Funkcje F(s) nazywamy transformatg funkcji okreslona w dziedzinie
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zmiennej zespolonej s 1 oznaczamy duza litera. Zmienna s jest nazywana czestotliwoscia
zespolona, przy czym s = 0 + jw, gdzie @ oznacza pulsacjg.
W elektrotechnice najczgsciej uzywane jest jednostronne przeksztatcenie Laplace’a,

okreslone parg réwnan:

F(s)=L{fO}=[ f@0)e™"dt (12.1)

c+ joo

Fy=LF ()} =—— [F(s)e”ds (12.2)
27 j

c— joo

w ktorych c¢ jest blizej nieokreslong stala warunkujaca polozenie granic catkowania w
obszarze zbieznos$ci transformaty. Pierwsze z rownan definiuje proste przeksztalcenie
Laplace’a przyporzadkowujace oryginalowi transformat¢ zmiennej zespolonej s, a drugie
przeksztalcenie odwrotne dokonujace transformacji odwrotnej, czyli wyznaczajace funkcjg
oryginalu na podstawie F(s). Zaktadamy przy tym, ze funkcja f(¢) jest funkcja czasu, zadana
dla >0 i réwna 0O dla t<0 oraz, ze nie rosnie szybciej niz funkcja wykladnicza. Proste
przeksztatcenie Laplace’a okreslone wzorem (12.1) dokonuje transformacji funkcji czasu f(r)
na funkcj¢ F(s) zmiennej zespolonej s. Przeksztalcenie odwrotne okreslone wzorem (12.2)
dokonuje transformacji funkcji zespolonej F(s) na funkcjg czasu f(r). Wzor ten petni jedynie
role definicji i w praktyce nie uzywa si¢ go do wyznaczania transformaty odwrotnej,

wykorzystujac w zamian wlasnosci transformat Laplace’a.

Przyktad 12.1

Wyznaczymy z definicji transformat¢ Laplace’a funkcji stalej f(r)=A. Z definicji (12.1)

transformaty otrzymuje si¢
° —A A
Fo=Lia)=afear=| A -2

0 S 0

Przyktad 12.2
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Jako drugi przyktad wyznaczymy transformate Laplace’a funkcji wyktadniczej f (1) =e",

gdzie w ogélnosci a = a+ jf.Z zastosowania wzoru (12.1) otrzymuje si¢

a—s

F(s) = L{f ()} = Te“’e‘”dt - [ ! e(a_s),}
0 0

Po wstawieniu granic catkowania i zatozeniu, ze a < s (warunek zbiezno$ci ciagu) otrzymuje

si¢

L{e‘”}z !

sS—da

Nalezy podkresli¢, ze jednostronne przeksztalcenie Laplace’a jest okreslone w przedziale od
zera do nieskonczonosci, stad posta¢ funkcji dla czasu ujemnego nie ma zadnego wptywu na
transformatg¢ Laplace’a.

Na przykilad funkcja stata f(r)=1 oraz funkcja skoku jednostkowego f(7)=1(¢)

(funkcja skokowa Heaviside’a) okreslona wzorem

(12.3)

maja identyczne transformaty Laplace’a, pomimo tego ze dla ¢ < 0 sa inne (pierwsza réwna 1
a druga réwna 0) gdyz w zakresie czasowym od zera do nieskonczonos$ci nie réznia si¢
niczym.

Jakkolwiek definicja przeksztalcenia Laplace’a umozliwia obliczenie transformaty dla
dowolnej funkcji czasu, w obliczeniach inzynierskich postugujemy si¢ najczgsciej tablicami
transformat Laplace’a zebranymi w poradnikach matematycznych, wykorzystujac przy tym

podstawowe wtasnosci tego przeksztatcenia.
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12.2 Podstawowe wlasnoSci przeksztalcenia Laplace’a.

Z wielu istniejacych wilasnosci przeksztalcenia Laplace’a ograniczymy si¢ tutaj do kilku
podstawowych, ktérych znajomos$¢ jest konieczna do okreslenia stanéw nieustalonych w

obwodach RLC.

12.2.1 Liniowos¢ przeksztatcenia

Jesli wspétczynniki a; 1 a; sa dowolnymi statymi to
Lla,f,(t) + a, f, ()] = a,F,(s) + a,F, (s) (12.4)
L'[a,F(5)+ a,Fy (s)] = a, f,(6) + a, f, (1) (12.5)

gdzie symbole L i L' oznaczaja odpowiednio transformaty: prosta i odwrotna Laplace’a. Z

wlasnos$ci liniowosci przeksztalcenia wynika, ze przeksztalcenie Laplace’a spelnia zasade

superpozycji.

Przyktad 12.3
Dla zilustrowania uzyteczno$ci twierdzenia o liniowosci przeksztalcenia Laplace’a
zastosujemy je do obliczenia transformaty funkcji cos(mt). Korzystajac z definicji funkcji

cosinusoidalnej otrzymuje si¢

Licos(ax)}= L{#}

Skorzystamy tutaj z wyprowadzonego wczesniej wzoru na transformate¢ funkcji wyktadnicze;j.

Podstawiajac do odpowiedniego wzoru i stosujac zasadg superpozycji otrzymuje si¢

1 » 1 ; 1 1 1 s
Licos(an)} =~ L{e’ }+ —L{e 7 }=— + _
teos(an} 2 ) 2 el ZL—ja) s+ja)} s+ @

12.2.2 Transformata pochodnej funkcji czasu

Transformata pochodnej funkcji czasu spetnia relacje
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L{%} =sF(s)— f(0") (12.6)

W ktérej f(07) oznacza warto$¢ poczatkowa funkcji f(r). Mnozenie funkcji F(s) przez

zmienng zespolong s odpowiada w dziedzinie czasu rézniczkowaniu funkcji. Stad operator s

nazywany jest operatorem rézniczkowania.

12.2.3 Transformata catki funkcji czasu

Transformata catki funkcji czasu spetnia relacje

LD f(t)dt} _FB) (12.7)
0 N

Pomnozenie funkcji F(s) przez 1/s odpowiada w dziedzinie czasu catkowaniu funkcji. Stad

1. L .. .
operator s~ jest nazywany roéwniez operatorem catkowania.

12.2.4 Przesuniecie w dziedzinie czestotliwosci
Rozwazmy przesunigcie argumentu funkcji operatorowej Laplace’a. Oznacza to, ze zamiast
transformaty F(s) bierzemy pod uwagg funkcj¢ F(s-a). Twierdzenie o przesunigciu argumentu

zmiennej zespolonej s mowi, ze spelniona jest wowczas zaleznos¢
L f()}=F(s-a) (12.8)

Przesunigcie argumentu zespolonego s transformaty o warto$¢ a odpowiada w dziedzinie
czasu pomnozeniu funkcji oryginalu przez funkcje wykladnicza e“. Korzysci ptynace z
powyzszej wlasnosci zademonstrujemy na przyktadzie wyznaczania transformaty odwrotnej

Laplace’a funkcji o przesunigtym argumencie s.

Przyktad 12.4
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Nalezy wyznaczy¢ odwrotna transformat¢ Laplace’a funkcji F(s) zadanej w postaci

s+2

o=t

W rozwiazaniu problemu wykorzystamy ostatnia wiasnos¢ przeksztalcenia w odniesieniu do

funkcji rozwazanej w przyktadzie 12.3. Zgodnie z wynikami uzyskanymi w tym przykladzie

mamy L{cos(ar}= przy warto$ci ® = 3. Wprowadzajac przesunigcie o wartos¢ a = 2

s’ + @’
w dziedzinie zmiennej zespolonej s uzyskuje si¢ zadana w tym przyktadzie funkcje
operatorowa Laplace’a. Oznacza to, ze jej transformata odwrotna odpowiada funkcji

e cos(ax). Stad transformata odwrotna funkcji zadanej w przyktadzie wynosi

L' {(L} =e¢ " cos(3t)

s+2)° +3

Twierdzenie o przesunigciu pozwolito uzyska¢ transformat¢ odwrotna Laplace’a bez
koniecznosci wykonywania operacji catkowania zadanej w definicji przeksztalcenia

odwrotnego.

12.2.5 Przesuniecie w dziedzinie czasu
Transformata Laplace’a funkcji czasu o argumencie przesunigtym wzgledem poczatku uktadu

wspotrzednych spetnia nastgpujaca zaleznos¢
Lf(t—a)-1t—a)]=e“F(s) (12.9)

Przesunigcie argumentu funkcji oryginalnej f{#) w dziedzinie czasu f(¢) — f(t-a) odpowiada
w dziedzinie czestotliwosci pomnozeniu transformaty Laplace’a funkcji oryginalnej F(s)
(nieprzesunigtej) przez funkcje wyktadnicza e .

Wiasno$¢ powyzsza jest czesto wykorzystywana przy obliczaniu transformat

nietypowych funkcji jak réwniez przy analizie obwodéw o wymuszeniach impulsowych.
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Tutaj zilustrujemy jej uzyteczno$¢ przy obliczaniu transformaty impulsu Diraca,

zwanej funkcja impulsowa Diraca. Impulsem Diraca nazywamy wielko$¢ oO(f) o

nastgpujacych wiasnosciach.

5(1) = 0 dla t#0 (12.10)
" eo dla t=0 '
oraz
j&(z)dz =1 (12.11)

Impuls Diraca przyjmuje warto$¢ nieskonczona tylko dla jednego punktu t=0 a w
pozostatym zakresie ma warto$¢ zerowa. Warto$¢ nieskonczona stwarza pewne trudnosci

obliczeniowe. Aby je przezwycigzy¢ wprowadza si¢ jej aproksymacj¢ w postaci
S(t,h) = % [1(6) = 1(t - h)] (12.12)

ktorej wykres dla r6znych wartosci s przedstawiony jest na rys. 12.1.

S(th) A

P

TN

I|=

. P
d ':‘-'(-":'/': EE

e
kA A&

>
h ¢

h h
4 2

Rys. 12.1. Aproksymacja funkcji Diraca przez funkcj¢ impulsowa
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Im mniejsza warto$¢ h tym bardziej funkcja aproksymujaca zbliza si¢ swym wygladem do
funkcji Diraca. W granicy przy h — 0 funkcja aproksymujaca jest zbiezna do rzeczywiste]

funkcji Diraca. Transformata Laplace’a dla funkcji aproksymujacej jest dana w postaci

L{é‘(t,h}:%[%—%eﬂh} (12.13)

Biorac pod uwagg, ze delta Diraca jest granica funkcji aproksymujacej otrzymuje si¢

L6} = lhin(} L{6(t,h)}= 1im%{l —1e‘f"} =1 (12.14)

h—0 S S

Transformata Laplace’a funkcji delty Diraca jest rOwna jednosci.

12.2.6 Transformata splotu
Splot stanowi wazne pojgcie w teorii obwoddéw, gdyz za jego posrednictwem okresla sig
odpowiedzi czasowe obwoddéw rzeczywistych RLC. Splot dwu funkcji czasu fi(t) 1 fa(¢)

oznaczony w postaci f,(t) * f,(t) jest zdefiniowany w nastgpujacy sposob

L= £ = [ fDfE-DdT=[ fit-D) f,(D)dT (12.15)

Transformata Laplace’a splotu jest rowna zwyktemu iloczynowi transformat poszczegdlnych

funkcji tworzacych splot

LIf,®) * £,O]= F(s)- F,(s) (12.16)
Powyzsza wlasno$¢ nosi w matematyce nazwe¢ twierdzenia Borela. Zauwazmy, ze mnozenie
splotowe dwu funkcji w dziedzinie czasu odpowiada zwyklemu mnozeniu ich transformat w

dziedzinie czg¢stotliwosci. Wiasno$¢ ta jest szczegdlnie wygodna w analizie obwodéw

zarbwno w stanie ustalonym jak i nieustalonym. Zamiast zmudnych operacji w dziedzinie
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czasu wykonuje si¢ transformacj¢ Laplace’a funkcji czasowych a nastgpnie wszystkie

operacje wykonuje na transformatach.

12.3 Przyklady transformat Laplace’a

Obliczanie transformat Laplace’a polega na zastosowaniu wzoru (12.1) przy zadanej funkcji
oryginatu i przeprowadzeniu dzialan w nim okreslonych (catkowanie funkcji 1 wyznaczenie
warto$ci na granicach catkowania). Przyktady wyznaczania transformaty Laplace’a dla
funkcji impulsowej Diraca, wartosci statej, funkcji wyktadniczej i cosinusoidalnej zostaly
zaprezentowane na poczatku tej lekcji.

Obliczanie transformat dla wigkszosci funkcji, zwlaszcza bardziej ztozonych, nie jest
procesem tatwym i dlatego w praktyce inzynierskiej najczgsciej postugujemy sig tablicami
gotowych transformat Laplace’a, ktérych zrédio znalez¢ mozna w wielu poradnikach
matematycznych jak réwniez podrecznikach poswigconych rachunkowi operatorowemu. W
tablicy 12.1 zestawiono wybrane przyktady transformat Laplace’a szczegdlnie czgsto
wykorzystywanych przy rozwigzywaniu stanéw nieustalonych w obwodach RLC. W dalsze;j
czgsci tej lekeji beda one wykorzystane do wyznaczania transformat odwrotnych Laplace’a

(funkcji czasu odpowiadajacych transformatom).

Tablica 12.1 Tablica wybranych transformat Laplace’a

f(v) F(s)
o(1) 1
1
1(t) ;
e ™ !
s+a
sin(ar) . fa)z
cos(at) 5 —iw 5
S
—or - w
e sinan) Grarta
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st+a

e ™ cos(ax) m

Zawarto$¢ tablicy przedstawiajaca zbiér funkcji czasu wraz z odpowiadajacymi im
transformatami moze stuzy¢ zaréwno wyznaczaniu transformaty Laplace’a przy zadanej
funkcji czasu jak 1 dziataniu odwrotnemu, to jest wyznaczeniu oryginatu na podstawie zadane]

postaci transformaty. Przyktadowo, jesli transformata dana jest wzorem

F(s)=15——F—
) (s+2) +5

to odpowiadajaca mu funkcja oryginatu odczytana z tablicy 12.1 ma postaé
£ (1) =15¢7 sin(5¢).

W dalszej czgéci rozwazan podamy rozwinigcie tej metody pozwalajace na wyznaczenie
transformaty odwrotnej dla dowolnej postaci funkcji wymiernej F(s) korzystajac z tablicy

12.1.

12.4 Wyznaczanie odwrotnej transformaty Laplace’a

Aby wyznaczy¢ funkcje czasu f(r) na podstawie danej transformaty nalezy dokonaé
odwrotnego przeksztalcenia Laplace’a. Zalezno$¢ definicyjna okreslona wzorem (12.2) jest
raczej bezuzyteczna ze wzgledu na koniecznos¢ catkowania ztozonych zwykle funkcji, jak
rowniez na nieokreslone precyzyjnie granice catkowania (stata ¢ w definicji nie jest doktadnie
okreslona). Najczes$ciej korzysta si¢ z posrednich metod wyznaczania oryginalu wynikajacych
z wlasnosci samego przeksztatcenia. Niezaleznie od metody zastosowanej do wyznaczenia
oryginatlu, zaktada¢ bgdziemy, ze transformata Laplace’a zadana jest w postaci wymiernej,

czyli ilorazu dwu wielomianéw zmiennej zespolonej s o wspotczynnikach rzeczywistych.

_L(s) b,s"+b, s""+..+bs+b,
M(s) s"+a, " +.+as+a,

F(s) (12.17)
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Dodatkowo przyjmiemy, zZe stopien licznika jest mniejszy niz stopien mianownika. Jesli
warunek powyzszy bytby niespetniony, nalezy podzieli¢ licznik przez mianownik tak, aby
wymusi¢ spelnienie tego warunku. Sposob postgpowania w takim przypadku zilustrujemy na

przykladzie.

Przyktad 12.5

Dana jest transformata F(s) o postaci

25> +s*+35+5

F(s)=
() s’ +s+4

Dzielac licznik przez mianownik wedlug najwyzszych potgg otrzymuje si¢ rozwinigcie
funkcji na sume¢ dwu sktadnikow potegowych zmiennej s oraz funkcj¢ wymierng spetniajaca

warunek, ze stopien licznika jest mniejszy niz stopien mianownika

F(s)=2s—14+ 2 25%9
s"+s+4

Przy obliczaniu transformaty odwrotnej powyzszej zaleznosci tylko ostatni (ztozony) sktadnik
wymaga specjalnego postgpowania. Sktadnik staty (-1) odpowiada funkcji impulsowej Diraca
a funkcja 2s odpowiadac bedzie wartosci pochodnej funkcji Diraca pomnozonej przez dwa.
Istnieje wiele metod obliczania transformaty odwrotnej Laplace’a, wykorzystujacych
wilasnosci przeksztalcenia. Do najbardziej popularnych naleza metoda residuéw, rozktadu
funkcji wymiernej na utamki proste, metoda Heaviside’a oraz metoda bazujaca na
wykorzystaniu tablic transformat Laplace’a. Tutaj ograniczymy si¢ do dwu najbardziej
uniwersalnych metod: metody residu6w oraz metody tablicowe] wykorzystujacej tablice

transformat Laplace’a.

12.4.1 Metoda residuow

Zat6zmy, ze funkcja wymierna F(s) zadana jest w postaci ilorazu dwu wielomianéw zmiennej

zespolonej s, okre§lona wzorem (12.17)
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_ LGs)

F(s)= M(s)

(12.18)

Pierwiastki licznika funkcji transformaty sa nazywane zerami a pierwiastki mianownika
biegunami. Zauwazmy, ze bieguny s3a utozsamione z pierwiastkami réwnania
charakterystycznego wystepujacego w metodzie klasycznej lub metodzie wartosciami

wlasnymi macierzy stanu A. W metodzie residuéw korzysta si¢ z nast¢pujacego twierdzenia.

Twierdzenie
Jezeli funkcja F(s) jest ilorazem dwu wielomianéw L(s) i M(s), przy czym stopien
wielomianu mianownika jest wyzszy niz stopien wielomianu licznika (n>m) to oryginat

funkcji f(r) okreslony jest nastgpujacym wzorem
L) =Y res,, [F(s)e] (12.19)
i=1

Sumowanie odbywa si¢ po wszystkich biegunach funkcji operatorowej F(s) niezaleznie od
tego, czy bieguny sa pojedyncze czy wielokrotne.
Residuum funkcji res[c] wyznacza si¢ korzystajac ze wzoréw wynikajacych z

wlasnos$ci przeksztalcenia Laplace’a. W przypadku bieguna I-krotnego wzdr jest nastgpujacy

1 da'™?"
lims_”v T
(-1 " ds

res,_, [F(s)e"]= [F(s)(s—s,)e"] (12.20)

Szczegdlnie proste zaleznoSci otrzymuje si¢ dla bieguna jednokrotnego s,. W takim

przypadku /=1 1 wzdr na residuum ulega znacznemu uproszczeniu
res,, [F(s)e* |=lim _ [F(s)(s—s,)e”] (12.21)

Wzér (12.19) wykorzystujacy residuum funkcji jest stosowalny dla dowolnych biegunow
funkcji F(s), w tym biegunéw rzeczywistych, zespolonych, jednokrotnych i wielokrotnych.
Jednakze przy biegunach zespolonych obliczenie residuum jest procesem do$¢ zlozonym i

metoda nie jest konkurencyjna wzgledem innych.
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Przyktad 12.6

Jako pierwszy przyktad rozpatrzmy wyznaczenie transformaty odwrotnej Laplace’a funkcji

F(s) danej wzorem

5s

STT)

Zadana funkcja ma dwa bieguny: s, =-1 oraz s,=-3. Wykorzystujac wzor (12.19)

otrzymuje si¢
f@)y=res,_, [F(s)e”]+ res,_,. [F(s)e”]

Na podstawie wzoru (12.21) otrzymuje si¢

T st . st | 5(_1) ~1t 5(_3) -3 _ ~t -3¢
F =lim_, [F(s)(s + e J+1im _, [F(s)(s +3)e”]= Cin g s Tse

Przyktad 12.7
Funkcja operatorowa F(s) dana jest wzorem

~ 10
C(s+3)2(s+4)

F(s)
Wystepuja 3 bieguny funkcji, z ktérych jeden jest pojedynczy a dwa pozostate rowne sobie
(jeden biegun podwdjny): s;=s,=-3, s3=-4. Wykorzystujac wzory (12.20) i (12.21) otrzymuje

sig¢ nastgpujacy schemat obliczen

foy=res.,.,, [F(S)e“]"’ resy, [F(s)e”]z
1

d
=——1lim_,_,—|F(s)(s+3)e" |+1im_ _,[F(s)(s +4)e” |=
oMo FOe e ftim L [Fes ]
=1im€_)_3i 10« +lim__, Lze‘” =1O[te_3’—e_3']+106_4’
T ds| s+4 ‘ (s+3)
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12.4.2 Metoda wykorzystujqca tablice transformat

Metoda residuéw jakkolwiek koncepcyjnie bardzo prosta staje si¢ zmudna, jesli bieguny
uktadu sa zespolone. Jest to szczegdlnie widoczne przy wysokich stopniach mianownika
transmitancji operatorowej. W takich przypadkach zwykle korzystniejsze jest zastosowanie
metody wykorzystujacej tablice transformat Laplace’a.

Przy korzystaniu z tablic transformat nalezy poprzez elementarne przeksztalcenia
doprowadzi¢ dang transformatg do postaci standardowej znajdujacej si¢ w tablicy transformat
(u nas tablica 12.1) a nastgpnie odczyta¢ z niej oryginal. Jest ona szczeg6lnie wygodna jesli
bieguny uktadu sa zespolone, gdyz w procesie przeksztatcania transformaty nie wystgpuje
potrzeba wyznaczania tych biegunéw a wszystkie obliczenia dokonywane sa na wartosciach
rzeczywistych. W praktyce przy stosowaniu tej metody transmitancj¢ wyzszych rzgdow (n>2)
rozklada si¢ na sktadniki rzedu drugiego i wszystkie przeksztalcenia dokonuje na
wielomianach rzedu pierwszego lub drugiego. Id¢ metody wyjasnimy na przyktadach

liczbowych

Przyktad 12.8

Obliczy¢ transformatg odwrotng Laplace’a dla funkcji F(s) danej w postaci

F(s)=—
(5) S +s+1

Wobec zespolonych pierwiastkéw mianownika wykorzystamy tablice transformat 12.1.
Poréwnanie postaci danej transformaty z danymi zawartymi w tablicy wskazuje, ze nalezy ja
doprowadzi¢ do postaci transformaty odpowiadajacej funkcji sinusoidalnej tlumionej

wyktadniczo (wiersz 6 w tablicy). Kolejno$¢ czynnosci jest tu nastgpujaca

F(s)=+/413 (U S—
(s+0,5) +(v374)

Poréwnanie tej postaci z wierszem szdéstym tablicy 12.1 pokazuje, ze &« =0,5 a w=+/3/4.

Funkcja oryginatu jest wigc okreslona wzorem
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f(t) =413 sin(\/3/ 41)

Przyktad 12.9

Jako przyktad drugi rozpatrzymy transformatg trzeciego rz¢du o biegunach zespolonych.

B s+3
(s+D(s* +25+10)

F(s)

W tym przypadku przed zastosowaniem metody tablicowej nalezy najpierw roztozy¢ funkcje
zadang na sktadniki o rz¢dach nie wigkszych niz drugi. Ogélna posta¢ rozktadu zapiszemy w

nastgpujacej formie

A Bs+C
+

F(s)= >
(s+1) (s +2s5s+10)

Wspdtczynniki A, B i C rozktadu nalezy wyznaczy¢ w taki sposéb, aby obie strony zaleznosci
rownaly si¢ sobie. Wsp6tczynnik A mozna wyznaczy¢ stosujac metode residuum, zgodnie z

ktérg

A=res_ F(s)=limF(s)s+1)= %

s——1

Wobec zespolonych wartosci biegunoéw drugiego sktadnika rozktadu wspétczynniki B 1 C
najlepiej jest wyznaczy¢ jako rdéznicg funkcji zadanej F(s) i sktadnika pierwszego rzedu, to

jest

Bs+C s+3 _2/9 -2 s5+7/2
(s> +25+10) (s+D(s*+25s+10) (s+1) 9 s*+2s5+10

Stad funkcja zadana F(s) moze by¢ zapisana w postaci
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2/9 2 s+7/2
F(s)= -———
(s+1) 9s +2s+10

Ze wzgledu na liniowos¢ przeksztatcenia Laplace’a transformata odwrotna sumy jest rowna
sumie transformat odwrotnych kazdego skladnika oddzielnie. Pierwszy skladnik sumy

odpowiada trzeciemu wierszowi tablicy 12.1. Stad

22
(s+D] 9

Sktadnik drugi wymaga wykonania wstepnych przeksztalcen doprowadzajacych jego postac

do wierszy szdstego 1 siddmego tablicy 12.1. W efekcie tych przeksztalcen otrzymuje si¢

2 s+7/2 2(s+D)+3-5/6 2  (s+1) 5 3

952 +25+10 9 (s+1)*+3° 9 (s+1)>+3> 27 (s+1)*+3

Transformata odwrotna tego wyrazenia moze by¢ zatem zapisana w postaci

L_l{_g s+7/2 }ZL_I 2 (s+¥) 5 3 _
9s*+2s5+10 9(s+1)*+3> 27(s+1)*+3°

2 5
—Z e cos(3t) —— e sin(3¢
5 (31) e (31)

Stad na mocy twierdzenia o liniowosci transformata odwrotna Laplace’a zadanej funkcji F(s)

jest suma transformat odwrotnych obu sktadnikéw rozktadu

LHF(s)}= %e_t —%e_t cos(3t) —%e_’ sin(3t)

Zadania sprawdzajgce

Zadanie 12.1

Wyznaczy¢ transformate odwrotna Laplace’a dla transmitancji operatorowej F(s)

312



1
T (s+D(s+2)(s+5)

F(s)

Rozwiqzanie
W rozwazanym przypadku wszystkie bieguny sa rzeczywiste 1 pojedyncze. Ich wartosci sa
rowne: s;=-1, so=-2, s3=-5. Najskuteczniejsza metoda pozostaje w tym przypadku metoda
residuéw, zgodnie z ktéra
f@t)=res,_ F(s)e" +res

F(s)e" +res._. F(s)e”

s—-2 s—=5

Warto$¢ funkcji residuum dla poszczegdlnych biegunéw jest rowna

res, , F(s)e" =lim F(s)(s+1)e” = ie"

s——1

ress—)—ZF(S)ebr = hm F(S)(S + 2)6” = —ge_zr

s—>—2

res, s F()e" = lim F($)(s+5)e” = ée-ﬁ

Sumujac poszczegdlne sktadniki otrzymujemy

1—1 1721 1 =5t
N=—e"——e ¥ +—
fO=ye 3o +e

Zadanie 12.2

Wyznaczy¢ transformatg odwrotna Laplace’a dla transmitancji operatorowej F(s)

F(s)= : .
(s+2)(s +3)(s+5)
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Rozwiqzanie
W rozwazanym przypadku wszystkie bieguny sa rzeczywiste, przy czym jeden z nich jest
podwdjny. Ich warto$ci sa rowne: s,=-2, s,=-3, s3=s4=-5. Najskuteczniejsza metoda pozostaje
w tym przypadku metoda residuéw, zgodnie z ktéra

ft)y=res,_ ,F(s)e" +res

F(s)e" +res_. F(s)e"

s—-3 s——=5

Wartos¢ funkcji residuum dla poszczegdlnych biegunéw jest rowna

res,, ,F(s)e" =1im F(s)(s +2)e" = —%e_z’

s—>—2

res,, JF(s)e" =1im F(s)(s+3)e" = %e‘3’

s—-3

-5t

res,, sF(s)e" = limdi(F(S)(S +5)%¢" )= D w3,

s—=>=5dS 36

Sumujac poszczegdlne sktadniki otrzymujemy

=5t

2 o 3 s 19
H=——e " +—¢e "' ——e
@) 9 4 36

5
——te
6

Zadanie 12.3

Wyznaczy¢ transformate odwrotna Laplace’a dla transmitancji operatorowe;]

s+2

F(s)=—M—
() (s> +5+10)

Rozwiqzanie
W rozwazanym przypadku mamy do czynienia z biegunami zespolonymi, stad przy
wyznaczaniu transformaty odwrotnej Laplace’a wygodniejsza jest metoda wykorzystujaca

tablice transformat. W tym celu przeksztalcimy wyrazenie transformaty do postaci

s+2  (s+0,5)+1,5-44/39-439/4

F(s)=—; =
(" +5+10) (5405 +(V39/4f
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Z poréwnania szdstego i siddmego wiersza w tablicy 12.1 z wyrazeniem opisujacym zadana

transformat¢ otrzymuje si¢

F(0) = e cos(v/39741)+ —— e sin(v/39/41)

3
V39

315



Lekcja 13. Metoda operatorowa analizy stanéw nieustalonych w obwodach

elektrycznych

Wstep

W metodzie operatorowej Laplace’a zastgpuje si¢ uktad réwnan rézniczkowych poprzez
uktad rownan algebraicznych zmiennej zespolonej s. Jakkolwiek bezposrednie zastosowanie
transformacji Laplace’a do réwnan rézniczkowych opisujacych obwdd elektryczny pozwala
uzyskac¢ opis obwodu w dziedzinie operatorowej, najlepsza metoda analizy obwodéw w stanie
nieustalonym przy zastosowaniu przeksztatcenia Laplace’a jest okreslenie transformat pradéw
1 napig¢ bezposrednio na podstawie obwodu bez koniecznosci ukltadania rownan
rézniczkowo-catkowych.

W tej lekcji wprowadzimy metode¢ operatorowa Laplace’a do analizy stanu
nieustalonego w obwodzie RLC bezposrednio na podstawie struktury obwodu bez stosowania
rownan rozniczkowych. Podamy modele operatorowe rezystora, cewki i kondensatora.
Zostanie wprowadzona metoda superpozycji standw ustalonego i przejsciowego rozdzielajaca
analiz¢ obwodu w stanie ustalonym po przetaczeniu od analizy w stanie przejSciowym. Zaleta

takiego podejscia jest znaczne uproszczenie obliczen, zwlaszcza przy wystapieniu zrddet

)

sinusoidalnych.

13.1 Modele operatorowe elementéw obwodu

Aby uzyska¢ bezposrednie przetworzenie postaci oryginalnej obwodu na obwod w dziedzinie
operatorowej Laplace’a nalezy kazdy element obwodu zastapi¢ odpowiednim modelem w
dziedzinie operatorowej. Tutaj podamy te modele dla trzech podstawowych elementéw

obwodu RLC.

13.1.1 Rezystor
Prawo Ohma dotyczace wartosci chwilowych pradu i napigcia dla rezystora mozna zapisa¢ w

postaci

(1) = Riy (1) (13.1)
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Jest to rOwnanie algebraiczne wiazace prad i napigcie na zaciskach elementu. Stosujac

transformacj¢ Laplace’a do obu stron rOwnania otrzymuje si¢

U,(s) = RI(5) (13.2)

Jak wynika z powyzszej zaleznosci impedancja operatorowa dla rezystora jest rOwna samej
rezystancji Z,(s) = R. Rys. 13.1 przedstawia model operatorowy rezystora, obowiazujacy w

dziedzinie zmiennej zespolone;j s.

R P lls) P
R L T T
B R —

Ug(1) Ug(s)

Rys. 13.1. Model operatorowy rezystora

13.1.2 Cewka
Dla uzyskania modelu operatorowego cewki idealnej zastosujemy przeksztalcenie Laplace’a

bezposrednio do réwnania opisujacego cewke w dziedzinie czasu

di, (1)
u,(t)y=L—L—= 13.3
() 5 (13.3)
1 wykorzystamy wtasnos¢ dotyczaca transformaty pochodnej. W efekcie otrzymuje si¢
U,(s)=sLI, (s)—Li, (0") (13.4)

Powyzszemu réwnaniu mozna przyporzadkowa¢ schemat obwodowy cewki w dziedzinie

operatorowej przedstawiony na rys. 13.2
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W L g A=t
B oep—t VOV L B —= A Yy \_6_, B
-

ULlit:l +

Rys.13.2 Model operatorowy cewki idealne]

&

Jest to potaczenie szeregowe impedancji operatorowej odpowiadajacej cewce idealnej 1 zrodta

napigciowego. Zaciski A-B modelu odpowiadaja zaciskom A-B w oryginalnym symbolu
cewki. Impedancja Z,(s)=sL jest impedancja operatorowa cewki a Li,(0") reprezentuje

zrodio napigcia stanowiace integralng cz¢s¢ modelu.

13.1.3 Kondensator
Dla uzyskania modelu operatorowego kondensatora idealnego skorzystamy z jego opisu w
dziedzinie czasu

du,
dt

i-(t)=C (13.5)

Zastosujemy przeksztatcenie Laplace’a do obu stron rdwnania kondensatora. W efekcie takiej

operacji otrzymuje si¢

I1.(s) = sCU . (s) — Cu,(0") (13.6)

Przepiszemy teg zalezno$¢ w postaci

U(s) =llc(s)+w (13.7)
sC s

Réwnaniu  powyzszemu mozna przyporzadkowa¢ schemat operatorowy kondensatora

przedstawiony na rys. 13.3.

318



1 "
= uc[sﬂ )
U_(s)

ZC =
Ig(t) le(s)
A >—’—{ |—< B == 2 .—)—{ }—@—4 B

ug(t) o

Rys. 13.3 Model operatorowy kondensatora idealnego

O

) 1 . .
W modelu tym funkcja Z. =—C reprezentuje impedancj¢ operatorowa kondensatora a
s

u-(0")
s

- zrédto napigciowe stanowigce integralng czgs¢ modelu.

Modele operatorowe odpowiadajace podstawowym elementom obwodu pozwalaja
przyporzadkowa¢ kazdemu obwodowi rzeczywistemu jego schemat zastgpczy w dziedzinie
transformat. W schemacie tym niezerowe warunki poczatkowe uwzglednione sa poprzez
dodatkowe zrédta napigcia wystgpujace w modelu operatorowym cewki i kondensatora. Taki
sposob podejécia do analizy stanu nieustalonego jest wygodny ze wzgledu na to, ze
umozliwia napisanie réwnan (algebraicznych, funkcyjnych) w postaci operatorowe]
bezposrednio na podstawie schematu zastgpczego bez potrzeby tworzenia réwnan

rézniczkowych opisujacych obwadd.

13.2 Prawa Kirchhoffa dla transformat
Dla schematu operatorowego obwodu stuszne sa prawa Kirchhoffa, analogiczne do

praw obowiazujacych w dziedzinie czasu.

Prawo pradowe

Suma transformat pradéw w dowolnym wezle obwodu elektrycznego jest rowna zeru

ilk(s)zo (13.8)
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Prawo napieciowe
Suma transformat napi¢¢ gateziowych w dowolnym oczku obwodu elektrycznego jest réwna

zeru
Zn:Uk(s)zo (13.9)

W réwnaniach tych transformaty pradéw i napigé zastapilty wartosci czasowe wystgpujace w
podstawowej wersji praw Kirchhoffa. Znaki pradow i1 napig¢ wystgpujacych w réwnaniach
(13.8) 1 (13.9) ustalane sa w identyczny sposéb jak w przypadku podstawowej wersji praw

Kirchhoffa podanych dla wielkosci rzeczywistych.

13.3 Obliczenia pradéw i napie¢ w obwodzie metoda operatorowsg

Obliczenia pradéw i napi¢¢ w stanie nieustalonym obwodu metoda operatorowa
sprowadza¢ si¢ beda do wyznaczenia transformaty odpowiedniej wielkosci a nastgpnie
obliczenia transformaty odwrotnej Laplace’a dla okreslenia zmiennej w dziedzinie czasu. Do
obliczenia transformat pradéw i napie¢ mozna stosowac¢ wszystkie poznane dotad metody
analizy obwodéw, w tym metode réwnan Kirchhoffa, oczkowa, potencjatéow weztowych,
Thevenina 1 Nortona operujace transformatami Laplace’a zamiast wartosciami zespolonymi
czy wartosciami w dziedzinie czasu (dla obwodu rezystancyjnego).

Podstawowymi zaletami metody operatorowej jest fatwo$¢ uwzglednienia
niezerowych warunkéw poczatkowych (przez wprowadzenie zrédet napigciowych w modelu

operatorowym) oraz sprowadzenie operacji rozniczkowych do dziatan algebraicznych.

W ogdlnosci rozwiazujac stan nieustalony w obwodzie metoda operatorowa nalezy
wyrézni¢ kilka etapow.

1. Okreslenie warunkéw poczatkowych w obwodzie, poprzez wyznaczenie rozwigzania
ustalonego obwodu przed przetaczeniem i obliczenie wartosci napi¢¢ na kondensatorach i
pradéw cewek w chwili # =07, to jest i, (0") oraz u.(0")

2. Okreslenie rozwiazania obwodu w stanie ustalonym po przelaczeniu przy zastosowaniu
metody symbolicznej z wykorzystaniem dowolnej metody analizy. Wynikiem jest postaé

czasowa rozwiazania ustalonego pradow cewek i, () 1 napig¢ kondensatorow u., (t).
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Przez zatozenie t=0 otrzymuje si¢ wartosci pradow i napi¢¢ w chwili poczatkowej, to jest

i,,(0") oraz u., (0").

Okre$lenie rozwiazania obwodu w stanie przejSciowym po przefaczeniu przy

zastosowaniu metody operatorowej. Dla otrzymania takiego rozwiazania nalezy wykonac

nastgpujace etapy:

utworzenie schematu obwodu dla sktadowej przejSciowej poprzez wyeliminowanie
zrodet zewngtrznych wymuszajacych (zwarcie zrodet napigcia 1 rozwarcie zrodet
pradu); obwdd rzeczywisty dla sktadowej przejsciowej w dziedzinie czasu nie zawiera
zadnych zrédet wymuszajacych

okreslenie warunkéw poczatkowych dla sktadowej przejsciowej przy wykorzystaniu
praw komutacji, zgodnie z ktérymi x(07) = x,(0") +x,(0") ; z réwnania tego wynikaja
nastgpujace wzory na warunki poczatkowe dla sktadowych przejsciowych pradu

cewki 1 napigcia kondensatora

i,(0")=i,(07)~i,(0%) (13.10)

e, (07) = uc(07) —ug, (09 (13.11)

utworzenie schematu operatorowego obwodu w stanie przejsSciowym poprzez
zastapienie elementdw rzeczywistych obwodu ich modelami operatorowymi dla
sktadowej przejsciowej 1 rozwigzanie obwodu wzgledem poszukiwanych pradow i
napig¢ operatorowych

wyznaczenie transformaty odwrotnej Laplace’a dla poszukiwanych wielkoSci

przejsciowych okreslonych w punkcie poprzednim; w wyniku otrzymuje si¢ i,,(f)

oraz ug, ().

Rozwigzanie obwodu w stanie nieustalonym jest suma sktadowej ustalonej oraz sktadowe;j

przejsciowej, to jest

i, (6) =iy, (1) + iy, (1) (13.12)

ue(t) =ue, (1) +ug, (1) (13.13)
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Sktadowa przejsciowa zanika z czasem do zera i pozostaje jedynie sktadowa ustalona
okreslajaca przebieg wielkosci w stanie ustalonym. Taka metodyka rozwiazania stanéw
nieustalonych przy zastosowaniu transformacji Laplace’a nosi nazw¢ metody superpozycji
stanéw, gdyz rozdziela w sposéb jawny stan ustalony od stanu przejSciowego. Jest
szczegllnie zalecana przy wymuszeniach sinusoidalnych, cho¢ obowiazuje réwniez dla
obwodéw pradu stalego. Zaleta takiego podejscia jest jej uniwersalnos¢ i stosowalno$¢ do
kazdego obwodu liniowego RLC niezaleznie od rodzaju wymuszenia (wymuszenia state lub
sinusoidalne maja jedynie wptyw na stan ustalony 1 sa wyeliminowane przy rozwiazywaniu
stanu przej$ciowego).

Nalezy podkresli¢, ze rozbicie stanu nieustalonego na ustalony i przejsciowy jest
zalecane jedynie przy istnieniu wymuszen sinusoidalnych w obwodzie po przetaczeniu. Jesli
zrodia takie nie wystepuja schemat operatorowy moze dotyczy¢ obwodu catkowitego, bez
rozbijania go na schemat dla sktadowej ustalonej i przejsciowej. W takim przypadku
pozostawia si¢ zewngtrzne zrédla wymuszajace w obwodzie przyjmujac ich model

operatorowy, czyli zastgpujac posta¢ czasowa zrodita (wartos¢ stata A przy wymuszeniu

stalym) przez funkcje é Warunki poczatkowe réwniez nie podlegaja modyfikacji, co
s

oznacza, ze i, (0") =i,(07) oraz u.(0") =u.(0").

Przyktad 13.1
Wyznaczy¢ przebieg czasowy napigcia na kondensatorze w stanie nieustalonym w obwodzie
z rys. 13.4 po przetaczeniu. Dane liczbowe parametrow obwodu sa nastgpujace:

R =R, =1Q, L=1H, C=1F, e,(t)=10V. Zrédto wymuszajace sinusoidalne dane jest w

nastgpujacej postaci e, (f) = 52 sin(t+7/4) V.
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Rys. 13.4. Schemat obwodu do przyktadu 13.10.

Rozwiqzanie

W rozwiazaniu problemu wyznaczymy najpierw warunki poczatkowe w obwodzie
rozwiazujac stan ustalony przed przetaczeniem. Poniewaz przed przetaczeniem w obwodzie
wystgpowaly dwa Zrédta: state i sinusoidalne w obliczeniu warunkéw poczatkowych (stan

ustalony przed przetaczeniem) nalezy zastosowaé metodg¢ superpozycji zrodet.

2,1 ~ R, Ry
ot
Iy Y,
Uy | ——— L uE:JI
C e,(t) o
a) k)
g, R, R,
.
» I p(s)
sl
R, Uy | —— L R, Ugpls) ::1
c C
Li (0%
) d)
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Rys. 13.5 Schematy obwodu: a) w stanie ustalonym przed przetaczeniem (zrédto
sinusoidalne), b) w stanie ustalonym przed przetaczeniem (zrodlo stale), c) w stanie

ustalonym po przetaczeniu, d) schemat operatorowy dla sktadowej przejsciowe;j

Schemat obwodu w stanie ustalonym przed przetaczeniem przy wymuszeniu sinusoidalnym
przedstawiony jest na rys. 13.5a. Wobec rezonansu réwnoleglego w gal¢zi LC prad
wydawany przez zrédlo jest rOwny zeru a napigcie na tej gatgzi jest rOwne napigciu zrédta.
Stad

ulV (1) =52 sin(t + 7/ 4)

Prad cewki (warto$¢ skuteczna zespolona) dany jest wzorem
Lu

co odpowiada postaci czasowej

iV(t) = 5\2 sin(r — 7/ 4)

2

Uwzgledniajac zrédio state e(t) uzyskuje si¢ znaczne uproszczenie obwodu (cewka dla pradu
stalego w stanie ustalonym stanowi zwarcie a kondensator przerwe) jak to przedstawiono na

rys. 13.5b. Rozwigzanie na prad cewki 1 napigcie kondensatora ma wigc postac:
ul (1) =0
1
i, (1) = 1910
1
Dokonujac superpozycji obu rozwigzan otrzymuje si¢
i, () =i +i® () =10+5v2 sin(t — 7/ 4)
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g, () =ul ) +u® (1) =52 sin(t + 7/ 4)

Stad warunki poczatkowe sa nastgpujace: u.(07)=5,1,(07)=5.

Po przetaczeniu w obwodzie pozostaje jedynie zrédto sinusoidalne e;(t). Schemat
obwodu dla tego wymuszenia pokazany jest na rys. 13.5c. Z analizy tego obwodu wynika
nastgpujaca procedura rozwiazania. Wobec rezonansu réwnoleglego w gatgzi LC prad
wydawany przez zrédlo jest rOwny zeru a napigcie na tej gatgzi jest rOwne napigciu zrédta.

Stad
Uy, (1) = 532 sin(t + 7/ 4)
Prad cewki (warto$¢ skuteczna zespolona) dany jest wzorem

j45° )
ILu = Se. = 58_17”4
jl

co odpowiada postaci czasowej
i, (1) =5v2sin(r—7/4)

Stan poczatkowy dla sktadowej ustalonej pradu cewki i napigcia kondensatora przyjmuje wigc

nastgpujace wartosci:
U, (0")=5

oraz
i,(0") =5

Warunki poczatkowe dla sktadowej przejsciowej pradu i napigcia sa zatem rowne:
Ue,(0) =uc(07) —u, (07) =0
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i,(0")=i,(07) =i, (07) =10

Schemat operatorowy obwodu przedstawiono na rys. 13.5d (zrédlo wewngtrzne przy

kondensatorze nie wystepuje, bo u,(0") =0. Zastosowanie metody potencjatléw weztowych

do wyznaczenia postaci operatorowej rozwiazania prowadzi do wyniku

_ —10/s -10
s+1/s+0,5 s*+05s+1

Ug,(s)

Wobec zespolonych wartosci wtasnych (pierwiastkw mianownika transformaty napigcia) w
wyznaczaniu oryginatlu zastosujemy metod¢ wykorzystujaca tablice transformat. W zwiazku z

powyzszym transformatg przedstawimy w postaci przeksztatcone;j

10 (V15716)-10- 16715 (Vis/16)

Ug,(s)=—— =- =-10,33
$+05s+1 (51025 +(V15/16) (s+025) +(V15/16)

Powyzszej funkcji operatorowej mozna przyporzadkowaé nastgpujaca posta¢ czasowa (patrz

wiersz szOsty tablicy 12.1)
e, (1) = —10,33¢ > sin(\/15/16t)

Rozwiazanie catkowite okreslajace napigcie kondensatora jest suma sktadowej ustalonej i

przejsciowej

e (1) = g, () + g, (1) = V2 sin(r + 7/4) — 10,33¢ > sin(\/15/161)

Sktadowa przejsciowa zanika z biegiem czasu ze stata czasowa 7 = 4 i po okoto 5 stalych

czasowych pozostaje jedynie skladowa ustalona sinusoidalna.

Zadania sprawdzajgce

Zadanie 13.1
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Okresli¢ przebieg napigcia na kondensatorze w stanie nieustalonym po przelaczeniu metoda

operatorowa w obwodzie przedstawionym na rys. 13.6. Przyja¢ nastgpujace parametry

obwodu:R;=50Q, R,=100Q, C,=10uF, C,=20uF, ¢,() =50V, e,(t) =100V.

-, If= @ &,t)

Rys. 13.6 Schemat obwodu do zadania 13.1

Rozwiqzanie

Warunki poczatkowe:
u.,(0)=e =50

Uy (07) = e, =100

Ze wzgledu na wymuszenie state nie zachodzi potrzeba stosowania metody superpozycji

stanu. Schemat operatorowy obwodu w stanie nieustalonym przedstawiony jest na rys. 13.7

R, 5

(<)
— ] (<)

1 1
(T) sC, sC,
E

Rys. 13.7 Schemat operatorowy obwodu

Z metody potencjaléw weztowych zastosowanych do obwodu z rys. 9.18 wynika
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50100 s (0 0t (o
UC(S):50s+100s+10 e, (07)+2-107u, (07)

1/50+1/100+ s107° +25107°

2505 +2,5-10°

Vel =35 +1000)

Bieguny uktadu:

S]:O
s2=-1000

Transformata odwrotna Laplace’a

u.t)=lim,_ U.(s)se” +1im _ U (s)(s+1000)e"

s—0

250 50 _io00
u.()=—+"—e
c(®) 3 T3

W stanie ustalonym przy ¢t — o mamy u,(¢) = ?V.

Zadanie 13.2
Okresli¢ prad cewki w stanie nieustalonym po przetaczeniu w obwodzie przedstawionym na

rys. 13.8. Przyja¢ nastepujace wartosci parametrow obwodu: R=2Q , L=1H, C=1/4F,
e(r) = 102 sin(4z +45°) .
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Rys. 13.8. Schemat obwodu do zadania 13.2

Rozwiqzanie
1) Warunki poczatkowe w obwodzie:

w=4

/- 1oeff5“ _25
4+ j4 2
i, (t) = 2,5sin(4t)
i,(0)=0
u(07)=0

2) Stan ustalony po przetaczeniu w obwodzie (rys. 13.9)

a(f)

(=)
N

cu S

i

Rys. 13.9. Schemat obwodu w stanie ustalonym po przelaczeniu
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10e’*"

I,=—————=277¢"""
24+ j4—j1

Uy, =—jl-1,=277e7"""
i, (1) = 2,772 sin(4r —11,31°)
ug, (1) = 2,772 sin(4r —101,31°)
i,,(07)=-0,76

U, (0°) = 3,84

3) Stan przejsciowy po przelaczeniu

Schemat operatorowy przedstawiony jest na rys. 13.10.

F
1
| s© lLpls)
u I:p': 5) sl
v Tugo
° Liip(0¥)

Rys. 13.10 Schemat operatorowy obwodu po przetaczeniu

Warunki poczatkowe dla stanu przejsciowego:

i,(0")=i,(07)~i,,(0")=0,76

e, (07) = e (07) —ug, (0°) = 3,84

Posta¢ operatorowa rozwigzania
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Li,, (0")—u.,(0")/s 0,765 3,84

I, (s)= =
() s+2+4/s 2+ 2s+4

Wobec zespolonych biegunéw zastosujemy metodg tablicowa okreslenia transformaty

odwrotnej. Zgodnie z nia

0,76(s +1)— 4,6- 13\/5

75
1,(s)=
(s+1)2+(\/§)z

i, (1) =0,76¢" cos(/3r) — 2,67 sin(+/31)
Rozwiazanie catkowite na prad cewki w stanie nieustalonym

i, (1) =i, (1) +i,, (1) = 2,772 sin(4r = 11,31°) +0,76¢ ™" cos(v/31) = 2,67¢ " sin(+/31)
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Lekcja 14. Stan nieustalony w obwodzie RLC przy zalaczeniu napigcia

statego

Wstep

Jednym z najwazniejszych przypadkéw stanu nieustalonego sa zjawiska powstajace w
obwodzie RLC zawierajacym jednoczesnie cewke i kondensator. W obwodzie takim powstaja
godne uwagi zjawiska, ktére znalazty ogromne zastosowanie w wielu dziedzinach elektroniki
1 elektrotechniki.

W tej lekcji zostanie przedstawiona analiza stanu nieustalonego w obwodzie
szeregowym RLC. Analiza zostanie przeprowadzona przy zastosowaniu rachunku
operatorowego Laplace’a. W zaleznosci od wartosci rezystancji moga powstac trzy przypadki
rozwigzania: przypadek oscylacyjny, gdy aktualna rezystancja obwodu jest mniejsza od
krytycznej, przypadek aperiodyczny krytyczny, gdy ta rezystancja jest rOwna rezystancji
krytycznej oraz przypadek aperiodyczny, gdy rezystancja obwodu jest wigksza od krytyczne;j.
Szczegllnie interesujacy jest przypadek oscylacyjny, w ktérym przy zasilaniu obwodu

napigciem stalym powstaja drgania sinusoidalne o ttumionej amplitudzie. Przy rezystancji
Rozpatrzmy zalaczenie napigcia statego E do gatezi szeregowej RLC przedstawionej na rys.

5 —ST
= (4

Rys. 14.1. Zataczenie napigcia statego do obwodu szeregowego RLC

rownej zeru w obwodzie powstaja drgania sinusoidalne niegasnace.

14.1 Roéwnanie operatorowe obwodu
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Wobec zerowych warunkéw poczatkowych (brak wymuszenia w obwodzie przed
przelaczeniem) mamy u.(07)=0, i,(07)=0.

Stan ustalony w obwodzie przy wymuszeniu statym nie wymaga specjalnych obliczen,
gdyz wobec przerwy, jaka reprezentuje kondensator, prad w obwodzie nie ptynie (i, (1)=0)

a napigcie na kondensatorze jest rowne napigciu zasilajacemu u, (1) = E .

1
R s % |5
YY)
] -
ey © i
5

Rys. 14.2 Schemat operatorowy obwodu RLC w stanie nieustalonym

Schemat operatorowy obwodu w stanie nieustalonym przedstawiony jest na rys. 14.2.

Warunki poczatkowe napigcia kondensatora i pradu cewki okreslaja rownania

U (0 =u,(07)=0 (14.1)

i,(0")=i,(0)=0 (14.2)

Z prawa napigciowego Kirchhoffa zastosowanego do obwodu wynika nastgpujaca postac

operatorowa pradu cewki

E/s E/L
I(s)= = 14.3
) sL+R+1/sC §2 R (14.3)

Dla wyznaczenia transformaty odwrotnej nalezy obliczy¢ pierwiastki mianownika

transmitancji, czyli

PR SO (14.4)
L LC
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W wyniku rozwiazania tego rownania otrzymuje si¢ dwa pierwiastki (bieguny uktadu)

2
s =-R [ RYy_L (14.5)
oL \\2L) Lc
2
g =R _ (5) L (14.6)
oL \\2L) Lc

Z postaci wzoru opisujacego bieguny wynika, ze w zalezno$ci od znaku funkcji

podpierwiastkowej mozliwe sa 3 przypadki rozwiazania.
L . .
e Przypadek aperiodyczny dla R > 2\/;. Przy spetnieniu tego warunku oba bieguny sa

rzeczywiste i ujemne. Charakter zmian pradu w obwodzie w stanie przejsciowym jest

aperiodyczny (nieokresowy) zanikajacy do zera w sposob wyktadniczy.
e Przypadek aperiodyczny krytyczny wystepujacy dla R =2\/% . Przy spelnieniu tego

warunku oba bieguny sa rzeczywiste i réwne sobie. Charakter zmian pradu w obwodzie w
stanie przejSciowym jest rowniez aperiodyczny, podobnie jak w przypadku pierwszym,

ale jego czas trwania jest najkrétszy z mozliwych.
. . ) L .
¢ Przypadek oscylacyjny (periodyczny) wystepujacy dla R < 2\/;. Przy spelnieniu tego

warunku oba bieguny sa zespolone (zespolony 1 sprzg¢zony z nim). Charakter zmian pradu
w obwodzie w stanie przejsciowym jest sinusoidalny tlumiony, o oscylacjach

zanikajacych do zera.

. L . . . .
Rezystancja R = 2\/; nazywana jest rezystancja krytyczna i oznaczana w postaci R, .

14.2 Przypadek aperiodyczny
Rozpatrzymy najpierw przypadek pierwszy (aperiodyczny). Ze wzgledu na to, ze oba bieguny
sq rzeczywiste w obliczeniach transformacji odwrotnej najwygodniej jest zastosowa¢ metode

residuéw. Zgodnie z nig przebieg czasowy pradu i,(f) mozna zapisa¢ w postaci
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i(t) = E - [es" - e”t] (14.7)

o B - L
2L) LC

Podstawiajac wartosci s; i s, okreslone wzorami (14.5) i (14.6) otrzymuje si¢ postacé

hiperboliczng rozwiazania na prad cewki w stanie nieustalonym

E - RY 1
i(t) = e * sh (—j ——t (14.8)
RV 1 2L LC
o) e
We wzorze wystepuje czynnik thumiacy typu wykladniczego e 2L . Wielko$é a’=Z

nazywana jest wspoétczynnikiem tlumienia. Jej warto$¢ jest proporcjonalna do wartosci
rezystancji. Im wigksza rezystancja tym wigksze ttumienie w obwodzie.

W podobny sposéb wyznaczy¢ mozna pozostate przebiegi czasowe w obwodzie:
napigcie cewki 1 kondensatora. Transformata napig¢cia na kondensatorze wyrazona jest

WZOorem

1 E 1

Uo(s)=—I(s)=— 14.9
c(5) c (s) e, 1 (14.9)
S| s+ —s+——
LC
Po zastosowaniu wzoru na residuum otrzymujemy
u (t)=E+ Ez (s, —5,e™) (14.10)

Obliczenie napigcia cewki w stanie nieustalonym moze by¢ uzyskane bezposrednio z postaci
czasowej poprzez rézniczkowanie zaleznosci na prad cewki. Po wykonaniu odpowiednich

dziatah otrzymuje si¢
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u, (1) = Lﬂz £ [sles" —s,e" (14.11)
dt 2
R 1
|l )
2L LC

Na rys. 14.3 przedstawiono przebiegi pradu, napigcia na kondensatorze i cewce w stanie
nieustalonym w obwodzie RLC dla R=2,3Q, C=1F i L=1H przy zalaczeniu napigcia
stalego E = 1V. Dla przyjetych wartosci parametréow elementow mamy do czynienia z

przypadkiem aperiodycznym.

| [ Y

| AEREERY S

I el I N

B T T R

B R T R

=

o]

T R P

[n]

o --F-=--
—

=

Prad w obwodzie oraz napigcie na kondensatorze zachowuja ciagto$¢ i spelniaja prawa
komutacji. W stanie ustalonym prad w obwodzie nie pltynie (kondensator w stanie ustalonym
stanowi przerw¢) a napigcie na kondensatorze przyjmuje wartos¢ napigcia zasilajacego E.

Zauwazmy ponadto, ze wartosci maksymalnej pradu odpowiada zerowa warto$¢ napigcia na
cewce (u, (1) = Lzl). W chwili, gdy napigcie na cewce osiaga warto$¢ maksymalna ujemna,
t

w przebiegu napigcia na kondensatorze mozna zauwazy¢ punkt przegigcia.
Na rys. 14.4 przedstawiono wykresy przebiegéw tadowania kondensatora w obwodzie

RLC dla przypadku aperiodycznego opisanego wzorem (14.10) dla 3 réznych wartosci

. . . R
wspotczynnika ttumienia & = oL
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Jak wida¢, im wigksza jest warto$¢ tego wspotczynnika, tym dluzej trwa dochodzenie do
stanu ustalonego. Interesujace jest porownanie procesu tadowania kondensatora w obwodzie
RLC w stanie aperiodycznym (wzér 14.10) oraz w obwodzie RC. Napigcie 1 prad

kondensatora w obwodzie RC, jak zostato pokazane w lekcji jedenastej opisane sa funkcjami

u (1) = E(1—e7/%¢), ic(t)zie_” R¢. Na rys. 14.5 przedstawiono przebiegi napigcia na

kondensatorze (rys. 14.5a) oraz pradu (rys. 14.5b).

T R Lo L

T-" " ~""r-""°a~-~"~"~"71°-°°

=
(N e |
F -
o ---
o ---
—
=

Rys. 14.5 Poréwnanie procesu tadowania kondensatora w obwodzie RC i RLC
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W napigciu uc(f) w obwodzie RLC widoczny jest tagodnie narastajacy przebieg z punktem
przegigcia. Prad tadowania kondensatora, bedacy jednocze$nie pradem cewki, narasta od
wartosci zerowej z zachowaniem ciagtosci, a wigc spetniajac warunki naktadane przez prawa
komutacji. W obwodzie RC widoczny jest gwaltowny skok pradu w chwili przetaczenia

(prawa komutacji nie dotycza pradu kondensatora).

14.3 Przypadek aperiodyczny krytyczny
. . .. L
W  przypadku aperiodycznym krytycznym, wobec spelnienia relacji R = 2\/; oba

pierwiastki mianownika sa rowne i transformata pradu wyraza si¢ wzorem

I(t):LL2 (14.12)
s
o)
Zastosowanie wzoru na residuum dla pierwiastka podwdjnego s, = s, = Y = —a prowadzi
do nastgpujacej postaci pradu cewki i(¢)
R
i(t) =%te ! (14.13)

W analogiczny sposéb mozna wyznaczy¢ pozostate przebiegi (napigcia kondensatora i cewki)
dla stanu aperiodycznego krytycznego. W przypadku napigcia na cewce bezposrednio poprzez

rozniczkowanie funkcji czasowej pradu otrzymuje si¢

. _R,
uL(t):L%:Ee 2L (1—£t] (14.14)
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Napigcie na kondensatorze w stanie nieustalonym mozna uzyska¢ bezposrednio z prawa

napigciowego Kirchhoffa napisanego dla obwodu z rys. 14.1 po przetaczeniu. Mianowicie
_R, R
u.(t)=E—-Ri, (t)—u,(t)y=E—FEe * [1+th (14.15)

Na rys. 14.6 przedstawiono przebieg ladowania kondensatora w stanie aperiodycznym

krytycznym na tle przypadku aperiodycznego.

U (1)
=
08 F=Rly -
o et i S
T S R St
B e e
I N NN
2 4 5] 8 m 12 14 1B

Rys. 14.6. Poréwnanie procesu tadowania kondensatora w obwodzie RLC dla przypadku

aperiodycznego i aperiodycznego krytycznego

Jedyna réznica wystepuje w czasie trwania stanu przejsciowego, ktéry najszybciej zanika dla
przypadku krytycznego. Charakter przebiegu pradu i napi¢¢ w obwodzie dla przypadku
aperiodycznego krytycznego jest podobny do zwyklego przypadku aperiodycznego, z tym, ze

najszybciej uzyskiwany jest stan ustalony (stan przejSciowy trwa najkrocej z mozliwych).

14.4 Przypadek oscylacyjny
Przypadek oscylacyjny zmian pradu i napi¢¢ w obwodzie szeregowym RLC wystepuje przy

. L . ) .
spetnieniu  warunku R<2\/; a wiec przy malych warto$ciach rezystancji R. W tym

przypadku oba bieguny sa zespolone. Dla wyznaczenia postaci czasowej pradu wygodniej jest
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zastosowa¢ metodg tablic transformat. W tym celu nalezy przeksztalci¢ wyrazenie na prad
operatorowy w taki sposéb, aby doprowadzi¢ je do postaci wystepujacej w tablicy 12.1. Dla

zadanej postaci pradu przeksztalcenia te sa jak nastgpuje

2
I(s) = ?L — = LC 4L . EIL (14.16)

2
sacst— ( RY ([t _rRY) JL_K
I A7) Lc 4| VIC AU

WprowadZmy oznaczenie

1 _RrR
LC 4I°

(14.17)

Wielkos¢ @ jest pulsacja drgan wlasnych obwodu RLC wystepujacych w przypadku
oscylacyjnym. Wykorzystujac tablicg transformat 12.1 mozemy uzyska¢ posta¢ czasowa

pradu w obwodzie. Mozna ja zapisa¢ w postaci

R

i) = £ ¢ ' sin(ar) (14.18)
wL

Prad w przypadku oscylacyjnym opisany jest funkcja sinusoidalng o amplitudzie zmieniajace;]

R
si¢ wedtug funkcji wyktadniczej. Czynnik e 2¢ stanowi thumienie przebiegu sinusoidalnego a

jego wartos¢ jest proporcjonalna do wartosci rezystancji obwodu RLC. Odwrotnosé¢
wspolczynnika ttumienia charakteryzuje stala czasowa 7= % obwodu RLC z jaka tlumione

sa drgania sinusoidalne.

Wykorzystujac podstawowe relacje zachodzace migdzy zmiennymi w obwodzie
szeregowym RLC mozna wyznaczy¢ pozostate napigcia w obwodzie w stanie nieustalonym.
W przypadku cewki napiecie uzyskuje si¢ przez zrézniczkowanie funkcji opisujacej prad

tadowania.
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di E =

u, ()= LS = - ¢ 2 sin(ax — ) 14.19)
- dt  @JLC ? (
gdzie kat @ jest okreslony relacja
=arct 14.20
v . R/2L ( )

Napigcie na kondensatorze wyznaczy¢ mozna bezposrednio z prawa napigciowego Kirchhoffa

zastosowanego do obwodu rzeczywistego z rys. 14.1
, E . L .
u.t)=E—-u,(t)—Ri(t)=E ——Le 2L 1 Rsin(ar) — C sin(@t — @) (14.21)
(4)

Na rys. 14.7 przedstawiono przebiegi pradu i napig¢ w stanie nieustalonym w obwodzie RLC

L
przy wystapieniu przypadku oscylacyjnego, czyli przy R < 2\/2 .

1.5

0.5
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Przebieg pradu ma charakter sinusoidalny, ttumiony wykladniczo do zera. Obwiednie

. . E - .
przebiegu pradu sa wyznaczone funkcjami f(¢) = i—Le oL’ Przy zasilaniu obwodu RLC
1)

napigciem stalym wytworzyty si¢ drgania wiasne o pulsacji @ = %—f—; Pulsacja ta
zalezy wytacznie od parametréw obwodu RLC. Gltéwnym czynnikiem regulujacym warto$¢
pulsacji wobec matlej wartosci rezystancji R dla przypadku oscylacyjnego jest wartos¢
indukcyjnos$ci L oraz pojemnosci C. Przy danych wartosciach L, C 1 regulowanej rezystancji,
pulsacja rosnie przy malejacej wartosci rezystancji .

Drgania w obwodzie powstaja na skutek wymiany energii migdzy polem
elektrycznym kondensatora a polem magnetycznym cewki. Na skutek skonczonej wartosci

rezystancji zachodzi rozpraszanie energii w postaci ciepta wydzielanego na rezystorze. Stad

oscylacje powstajace w obwodzie maja charakter malejacy. Szybkos$¢ ttumienia okresla stata
tlumienia (Z:Z. Im wigksza warto$¢ rezystancji tym wigksze ttumienie w obwodzie i

szybsze zanikanie drgan sinusoidalnych do zera.
Na rys. 14.8 przedstawiono przyktadowe przebiegi tadowania kondensatora w

obwodzie RLC dla przypadkéw oscylacyjnych przy zmieniajacej si¢ wartosci rezystancji.

U (1)

LI RARE T R

D5} f-----=----

_____
0 5

Rys. 14.8. Przebiegi napigcia na kondensatorze dla przypadku oscylacyjnego przy

zmieniajacej si¢ warto$ci rezystancji
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Widoczne jest, ze im mniejsza warto$¢ rezystancji tym dluzej trwa stan przejSciowy w
obwodzie. Wobec matych warto$ci rezystancji wynikajacych z warunku wystgpowania
przypadku oscylacyjnego jej wptyw na czgstotliwos¢ drgan wlasnych obwodu (wzoér 14.17)
jest stosunkowo niewielki.

Nalezy podkresli¢, ze jakkolwiek wyrazenia analityczne opisujace przebiegi czasowe
w obwodzie dla réznych przypadkéw tlumienia sa znacznie rézniace si¢ miedzy soba,
wszystkie reprezentuja charakter ciagly. Poszczegdlne przypadki przechodza w siebie
nawzajem przy ciaglej zmianie wartosci rezystancji. Przy matej rezystancji ttumienie jest
mate i przebieg pradu oraz napiec jest oscylacyjny, ttumiony wyktadniczo. Wzrost wartosci

rezystancji powoduje wzrost tlumienia, drgania trwaja krécej az przy pewnej wartosci
krytycznej R,, = 2\/% przechodza w przebieg aperiodyczny (krytyczny), przy ktérym nie
obserwuje si¢ juz drgan. Dalszy wzrost rezystancji niewiele zmienia w charakterze
jakosciowym przebiegéw poza wydluzeniem stanu przejsciowego. Ilustracje powyzszego
zjawiska na przyktadzie napigcia u.(t) w obwodzie przedstawiono na rys. 14.9.

U |:t]|2

1.5

Rys. 14.9. Przebiegi napigcia na kondensatorze w obwodzie RLC przy ciagtej zmianie

wartosci rezystancji
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14.5 Obwéd bezstratny LC w stanie nieustalonym
Interesujace zjawiska w stanie nieustalonym wystepuja w obwodzie RLC o zerowej

rezystancji. Obwdd taki nazywac bedziemy obwodem LC. Jak wynika z przedstawionych
wyze] wzoréw tlumienie w takim obwodzie jest zerowe (0{=Z:0) a pulsacja drgan

wlasnych zalezy wylacznie od indukcyjnosci 1 pojemnosci 1 okreslona jest wzorem

1

JLc

= (14.22)

Przy zerowym tlumieniu drgania oscylacyjne powstale w obwodzie na skutek stanu
przejsciowego nigdy nie gasna. Obwodd zasilony napigciem stalym generuje niegasnace
drgania sinusoidalne stajac si¢ generatorem sygnaléw harmonicznych. Przypadek powstania
drgan niegasnacych w obwodzie LC przedstawiono na rys. 14.10, na ktérym przedstawiono

przebieg napigcia na kondensatorze, pradu w obwodzie oraz napigcia cewki.

W obwodzie zaobserwowa¢ mozna powstanie dwukrotnego przepigcia na kondensatorze
(warto$¢ maksymalna napigcia jest rowna 2FE).
Zjawisko powstawania niegasnacych drgan sinusoidalnych w obwodzie LC

wykorzystuje si¢ powszechnie w generatorach drgan harmonicznych. W rozwiazaniach
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praktycznych takich generatoréw konieczne jest jednak zastosowanie elementow
odtlumiajacych, kompensujacych skonczone tlumienie wynikajace z istnienia rezystancji
uzwojen cewki i1 skonczonej stratnosci kondensatora. Role uktadéw odtlumiajacych obwdd
pelni¢ moga elementy aktywne generujace energig, takie jak wzmacniacze operacyjne,

tranzystory, pewne typy didd itp.

Zadania sprawdzajace

Zadanie 14.1
Wartosci indukcyjnosci i pojemnosci w obwodzie szeregowym RLC sa réwne: L=0,01H

oraz C =1pF. Okreslic zmiany czgstotliwosci drgan wilasnych tego obwodu w funkcji

wartosci rezystancji R zmieniajacej si¢ od zera do rezystancji krytyczne;j.

Rozwiqzanie

Czestotliwos¢ drgan wlasnych obwodu szeregowego RLC dana jest wzorem

1 |1 R* 1
= |————=—.10°-0,25-10*R?
! 27\ LC 4I7 27#

Rezystancja krytyczna

R, = 2\E = 2009
C

Narys. 14.11 przedstawiono zaleznos¢ czgstotliwosci drgah wlasnych obwodu od wartosci

rezystancji R w podanym zakresie zmian rezystancji
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Rys. 14.11. Wykres zaleznosci czgstotliwosci drgan wtasnych obwodu od warto$ci rezystancji

Zadanie 14.2

Okresli¢ charakter odpowiedzi czasowej w obwodzie szeregowym RLC, jesli indukcyjnos¢
L =0,1H, pojemnos¢ C = 10°F a warto$ci rezystancji sag rowne: a) R = 50Q, b) R = 200€,
c) R =500Q.

Rozwiqzanie
Charakter odpowiedzi czasowych w obwodzie RLC zalezy od stosunku rezystancji obwodu

do rezystancji krytycznej. W przypadku danych w obwodzie rezystancja krytyczna jest réwna

R, =2 L_ 200Q2
C
W zwiazku z powyzszym otrzymujemy:
a) R<R, — przypadek oscylacyjny
b) R=R, — przypadek aperiodyczny krytyczny

¢) R> R, — przypadek aperiodyczny
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Lekcja 15. Transmitancja operatorowa obwodow

Wstep

W tej lekcji wprowadzone zostanie pojgcie transmitancji operatorowej obwodu. Podane
zostang definicje réznych rodzajéw transmitancji oraz metod ich wyznaczania
wykorzystujacych impedancje operatorowe elementéw. Poznamy zwiazek transmitancji
operatorowej z opisem stanowym obwodu. Wprowadzone zostana definicje odpowiedzi
impulsowej 1 skokowej oraz ich zwiazek z transmitancja operatorowa. Na podstawie opisu
operatorowego i odpowiedzi impulsowej zostanie wyjasnione pojecie stabilno$ci obwodu i

udowodniony zwiazek stabilnosci z potozeniem biegunéw na plaszczyznie zmiennej

©

zespolonej.

15.1 Definicja transmitancji operatorowej

Rozwazania dotyczace analizy stanéw nieustalonych metoda operatorowa zakladaty badanie
zjawisk zachodzacych w obwodach na skutek przetaczen. W ogélnym przypadku
zakladaliSmy wystapienie niezerowych warunkéw poczatkowych wynikajacych ze stanu
obwodu przed komutacja. Badania dotyczyly dowolnych pradéw lub napie¢ w obwodzie. Z
punktu widzenia praktycznego szczegdlnie wazny jest przypadek zerowych warunkow
poczatkowych i obliczania jedynie wybranego pradu lub napigcia w obwodzie traktowanego
jako sygnat wyjsciowy. W takim przypadku wygodnie jest wprowadzi¢ pojgcie transmitancji
operatorowej.

Wezmy pod uwage obwdd ztozony z dowolnych elementéw pasywnych RLCM i
zrodet sterowanych nie zawierajacych wewnatrz zadnych zrédet niezaleznych. Wyréznijmy w
tym obwodzie jedna par¢ zaciskow uwazanych za wejSciowe, do ktoérych przyktadamy zrédio
wymuszajace oraz druga parg zaciskow wyjsciowych, z ktérych zbieramy prad (zaciski
zwarte) lub napigcie (zaciski rozwarte).

Transmitancja operatorowa okresla zwiazek migdzy transformata operatorowa sygnatu
wyjsciowego (odpowiedzi), ktora tutaj oznaczymy w ogdlnosci przez Y(s) oraz transformata
operatorowa wymuszenia (sygnatu wejsciowego), oznaczona ogoélnie przez X(s).

Transmitancja operatorowa nazywac bedziemy stosunek transformaty sygnalu wyjsciowego
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(pradu lub napigcia) do transformaty sygnatu wejsciowego uktadu (zrédia napigciowego lub

pradowego) przy zerowych warunkach poczatkowych

_Y(s)
X (s)

T(s) (15.1)

W zaleznosci od sygnatu wejsciowego 1 wyjsciowego uktadu wyr6zni¢ mozna cztery rodzaje
transmitancji operatorowych: transmitancja napigciowa, pradowa, napi¢ciowo-pradowa i
pradowo-napigciowa. Przyjmijmy oznaczenie bramy wejsciowej cyfra 1 a bramy wyjsciowe;]

cyfra 2 jak to pokazano na rys. 15.1.

1,(3) 1,(5)
L e >

Lktad

Ui (s) liniowy U (5) Ly

Rys. 15.1. Oznaczenie uktadu przy definicji transmitancji

15.1.1 Transmitancja napieciowa (napieciowo-napieciowa)
Transmitancja napigciowa dotyczy stosunku dwu napig¢ zewngtrznych ukladu. Sygnatem
wejsciowym jest zrodio napigciowe, a sygnatem wyjSciowym napigcie na dowolnym

elemencie uznane za napigcie wyjsciowe. Jest ona definiowana w postaci

_Uy(9)
O30 (15.2)

W definicji transmitancji napigciowej zaklada si¢, ze napigcie wyjsciowe uktadu mierzone

jest w stanie jalowym tzn. przy Z, = (bez obcigzenia zaciskow wyjsciowych, 1,=0).
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15.1.2 Transmitancja prqdowa (prqdowo-pradowa)
Transmitancja pradowa dotyczy stosunku dwu pradéw zewnetrznych uktadu, z ktérych jeden
jest pradem wymuszajacym a drugi pradem galgzi uznanym za prad wyjsciowy 1 jest

definiowana w postaci

1,(s)

I,(s)

(15.3)

T,(s) =

W definicji tej transmitancji zaktada sig, ze prad wyjSciowy I, jest mierzony w czgsci

bezimpedancyjnej gat¢zi wyjsciowej Z, =0 odpowiadajacej U, = 0.

15.1.3 Transmitancja napieciowo-prqdowa
Transmitancja napi¢ciowo-pradowa przyjmuje napigcie na dowolnym elemencie obwodu jako
sygnat wyjSciowy Y(s). Sygnalem wejsciowym X(s) jest wymuszenie pradowe. Jest zatem

zdefiniowana w postaci

U, ()

1(5)

T.(s)= (15.4)

Napigcie U, mierzone jest w stanie jalowym (Z, = oo ) obwodu.

15.1.4 Transmitancja prqdowo-napieciowa
Transmitancje pradowo-napigciowa definiuje si¢ jako stosunek pradu wyjsciowego do
napigcia wejsciowego (sygnalem wejsciowym X(s) jest napigcie wymuszajace a sygnalem

wyjsciowym Y(s) prad dowolnego elementu w obwodzie)

_ L)

= U.(s) (15.5)

T,(s)

Szczegdlnym przypadkiem transmitancji napigciowo-pradowej jest impedancja wejSciowa
uktadu, w definicji ktérej przyjmuje sig¢, ze prad i napigcie dotycza tej samej bramy

wejsciowej. Jej definicja jest przyjmowana w postaci

U,(s)

s

Z,.(s)= (15.6)
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Definicja impedancji wejsciowej uktadu zaktada dowolny stan obcigzenia Zy. Nalezy jednak
zwroci¢ uwage, ze kazda zmiana impedancji obciazenia zmienia impedancj¢ wejSciowa. Stad
definiujac impedancj¢ wejSciowa nalezy sprecyzowal, przy jakim obciazeniu jest ona
wyznaczana.

W identyczny spos6b mozna zdefiniowa¢ impedancj¢ wyjsciowa, w ktérej prad i
napigcie dotycza bramy wyjsciowe] uktadu Odwrotno$¢ impedancji wejsciowe] (lub
wyjsciowej) nazywana jest admitancja wejsciowa (wyjsciowa), ktéra moze byc

zinterpretowana jako szczegdlny przypadek transmitancji pradowo-napigciowe;.

15.2 Transmitancja operatorowa obwodéw RLC

Przy wyznaczaniu transmitancji operatorowej obwodu zawierajacego rezystancje,
indukcyjnos$ci, indukcyjnosci sprz¢zone i pojemnosci wykorzystuje si¢ model operatorowy
poszczegllnych elementdéw R, L, C 1 M wprowadzony w lekcji poprzedniej. Przy zalozeniu
zerowych warunkéw poczatkowych dla indukcyjnosci 1 pojemnosci modele tych elementéw
nie zawieraja zrédet a jedynie impedancje operatorowe Z(s). Zestaw impedancji

operatorowych dla elementéw pasywnych przedstawiono w tablicy 15.1

Tablica 15.1 Impedancje operatorowe przyporzadkowane elementom pasywnym

Element Impedancja operatorowa
Rezystancja R Z,=
Indukcyjnos¢ wiasna L Z, =sL
Indukcyjnos¢ wzajemna + M Z,, =*tsM
: o 1
Pojemnos¢ C Z,=—
sC

Dla obwod6éw pasywnych zawierajacych elementy R, L, C i M obliczenie transmitancji
operatorowej polega na zastapieniu elementu rzeczywistego poprzez ich impedancje
operatorowe a nastgpnie wykorzystujac dowolna metod¢ analizy (metoda praw Kirchhoffa,
weztowa, oczkowa, Thevenina, Nortona) nalezy wyznaczy¢ odpowiedZ operatorowa w

funkcji wymuszenia. Wobec liniowosci obwodu kazda jego odpowiedz (dowolny prad i
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dowolne napigcie) jest liniowa funkcja wymuszenia. Obliczajac transmitancj¢ dzieli sig
odpowiedz przez wymuszenie, w wyniku czego zmienna bgdaca wymuszeniem ulega redukcji
1 w efekcie transmitancja zalezy wytacznie od parametrow RLC obwodu oraz zrddet
sterowanych, begdac jednoczesnie funkcja zmiennej zespolonej s. Metod¢ wyznaczania
transmitancji operatorowej zilustrujemy na przyktadzie obwodu LC przedstawionego na rys.

15.2.

Przyktad 15.1
Nalezy wyznaczy¢ transmitancj¢ napigciowa obwodu przedstawionego na rys. 15.2a,

zaktadajac, ze napigcie wyjsciowe pochodzi z elementéw L i C potaczonych réwnolegle.

L1
oYY )
F 3 F s
4o ] — L
r 5]
a)
sL,

,g_—,—.fq\fﬁrﬁ‘- 'S

F F 1
Us) - Lo Uy(s)

sL % -1 sC

O O

b)

Rys. 15.2. Schematy obwodéw do wyznaczania transmitancji: a) obwéd oryginalny, b)

schemat operatorowy obwodu
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Rozwiqzanie
Schemat operatorowy obwodu do wyznaczenia transmitancji przedstawiony jest na rys. 15.2b
(warunki poczatkowe sa z definicji zerowe). Zastgpujac cewke¢ 1 kondensator potaczone

rownolegle jedna impedancja zastgpcza Z, . ()

sL-IC és

ZLC(S): s = 1
sL+— s +—
sC LC

1 stosujac prawo napigciowe Kirchhoffa do tak uproszczonego obwodu, otrzymuje si¢

Z,.(s)

Ux(8)= Z,-(s)+sL,

U,(s)

Po prostych przeksztalceniach uzyskuje si¢ wynik na transmitancj¢ napigciowa w postaci

1 1

N
Uy(s)  Zie(s) LC LC

Uis) Zie@+sly o (1 1) L (11
LC LC LC LC

W ostatecznym wyrazeniu na transmitancj¢ operatorowa zmienna stanowigca wymuszenie nie

T,(s)=

wystepuje (ulegta redukcji). Przyjmijmy nast¢pujace wartosci elementow obwodu: L = 1H,
L,=05H, C=1F (wartosci znormalizowane). Podstawiajac je do wzoru na T,(s)

otrzymujemy

2

T (s)=
() s +3

Jest to tak zwana posta¢ wymierna, zawierajaca wielomian zmiennej zespolonej s zaroOwno w
liczniku (stopien rowny zeru) jak i w mianowniku (stopien réwny dwa).

W ogélnym przypadku obwodu elektrycznego liniowego zawierajacego rezystory,
cewki 1 kondensatory oraz zrédia sterowane dowolna transmitancja operatorowa ma postac

funkcji wymiernej o stopniu licznika réwnym m 1 stopniu mianownika réwnym n
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_L(s) _b,s"+b, s""+..+bs+b,
M(s) s"+a, " +..+as+a,

T(s) (15.7)

Wspdtczynniki @; mianownika oraz b; licznika sa funkcjami parametréw elementéw obwodu i
dla ich konkretnych wartosci przyjmuja wartosci rzeczywiste. Najwyzszy stopien wielomianu
jest rtéwny (w szczegdlnych przypadkach mniejszy) liczbie elementéw reaktancyjnych (cewek
i kondensator6w) obwodu. Najczgéciej w obwodach wystepujacych w praktyce stopien
mianownika jest nie mniejszy niz stopien licznika.

Pojgcie impedancji operatorowej jest uogdlnieniem impedancji zespolonej elementow
stosowanej w metodzie symbolicznej przy analizie stanéw ustalonych w obwodzie
zawierajacym wymuszenia sinusoidalne. Latwo pokazac¢ to zakladajac s =jw we wzorach
okreslajacych odpowiednie impedancje operatorowe. Dla elementéw indukcyjnych i

pojemnosciowych przy zalozeniu s = jw otrzymuje si¢ nastgpujace zaleznosci

Z,6) = joL=Z,(jo) (15.8)
Zy()| _,=tjoM =Z,(jo) (15.9)
Ze)| =jLwC=Zc(jw) (15.10)

Impedancje Z(jw) reprezentuja impedancje symboliczne elementéw RLC, obowiazujace w
analizie stanéw ustalonych przy wymuszeniach sinusoidalnych. Zalozenie s=jo upraszcza
zatem opis obwodu w stanie nieustalonym do opisu obwodu w stanie ustalonym przy

zatozeniu wymuszenia sinusoidalnego.

15.3 Zwiazek transmitancji operatorowej z opisem stanowym ukladu

Jak zostato pokazane w lekcji dziesiatej obwody liniowe RLC moga by¢ opisane w dziedzinie

zmiennych stanu poprzez réwnanie stanu, ktérego posta¢ macierzowa jest nastgpujaca

ézAX+Bu (15.11)

dt
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Zmienna x jest wektorem zmiennych stanu, u wektorem wymuszen napigciowych i
pradowych wystepujacych w obwodzie, A jest macierza stanu a B — macierza wymuszen.
Jesli zbior sygnatéw wyjSciowych obwodu oznaczymy w postaci wektora y, to mozna je
wyrazi¢ jako kombinacje liniowa zmiennych stanu oraz wymuszen. Oznacza to, ze wektor

wyjsciowy y moze by¢ zapisany w postaci macierzowej
y =Cx+Du (15.12)
Wielkosci C 1 D wystepujace we wzorze stanowia réwniez macierze o odpowiednich
wymiarach.
W stosunku do opisu macierzowego (15.11) 1 (15.12) zastosujemy przeksztatcenie

Laplace’a. Przy zalozeniu zerowych warunkéw poczatkowych i uwzglednieniu witasnosci

przeksztatcenia dotyczacej transformaty pochodnej, z rownania (15.11) otrzymuje si¢

sX(s)=AX(s)+BU(s) (15.13)
Stad

X(s)=(s1-A)"'BU(s) (15.14)
Poddajac réwniez drugie réwnanie stanu (15.12) przeksztatceniu Laplace’a otrzymuje si¢

Y (s) =CX(s) + DU(s) (15.15)

Po uwzglednieniu zaleznosci (15.14) otrzymuje si¢

Y(s) = C(s1- A)'BU(s) + DU(s) = [C(s1- A) "B + DJU(s) (15.16)

Przy uwzglednieniu jednego wejscia (wymiar wektora u réwny jeden) i jednego wyjscia
(wymiar wektora y réwny takze jeden) wektor wyjsciowy Y(s) staje si¢ skalarem Y(s),

podobnie jak wymuszenie U(s). Transmitancja operatorowa jest wigc okreslona w postaci
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_ Y(s)

Us) =[C(s1—A)* B+D] (15.17)

T(s)

We wzorze tym macierz D uproscita si¢ do skalara. Zauwazmy, ze mianownik transmitancji

operatorowej jest rowny wielomianowi charakterystycznemu macierzy A, to jest
M (s)=det(s1-A) (15.18)

Pierwiastki tego mianownika (bieguny uktadu) sa tozsame z warto$ciami wlasnymi macierzy
stanu A. Wz6r (15.17) stanowi zwiazek migdzy opisem stanowym ukladu a opisem

operatorowym transmitancyjnym.

Przyktad 15.2

Wyznaczy¢ opis transmitancyjny ukladu opisanego nastgpujacymi macierzami stanu

A:{_S 13] B:m, c=[1 6], D=2.

2 —
Na podstawie wzoru (15.17) otrzymuje si¢

i 25> +22s+57
T(s)=|C(s1- AY'B + D|= 22257
() =lct1-a) ] S +85+13

Warto$ci wlasne macierzy stanu, bedace réwniez biegunami uktadu sa réwne s, =-5,73,

s, =-2,27.

15.4 Odpowiedz impulsowa i skokowa ukladu

Opis obwodu w dziedzinie zmiennej zespolonej s pozwala bada¢ jego zachowanie przy
pobudzeniu dowolnym wymuszeniem. Szczegdlnie wazne sa wlasciwosci dynamiczne
obwodéw (stan nieustalony) przy pobudzeniu za pomoca pewnych wymuszen standardowych.

Do takich wymuszen nalezy impuls Diraca o(¢) oraz funkcja skoku jednostkowego 1(1).
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15.4.1 Odpowiedz impulsowa

Odpowiedziag impulsowa ukladu nazywamy jego odpowiedZ czasowa na wymuszenie w
postaci impulsu Diraca przy zerowych warunkach poczatkowych obwodu. Dla wyznaczenia
odpowiedzi impulsowej wykorzystuje si¢ pojecie transmitancji operatorowej T(s).
Transformata funkcji impulsowej Diraca jest rowna 1, zatem obliczajac odpowiedz obwodu

przyjmiemy wymuszenie X(s)=1. Bezposrednio z definicji transmitancji wynika

_Y() _Y(E)
CX(s) 1

T(s) - Y(s)=T(s) (15.19)

Odpowiedz impulsowa uktadu jest transformata odwrotna Laplace’a sygnatu Y(s). Stad

y(©) =LY (s)]= L[ (5)] (15.20)

Z powyzszej zaleznosci wynika, ze odpowiedz impulsowa jest transformata odwrotna

Laplace’a transmitancji operatorowej 7(s) uktadu.

15.4.2 Odpowiedz skokowa
Odpowiedzig skokowa uktadu nazywamy odpowiedz czasowa tego uktadu na wymuszenie w
postaci skoku jednostkowego 1(¢) przy zerowych warunkach poczatkowych obwodu. Biorac

pod uwagg, ze transformata Laplace’a funkcji jednostkowej 1(7) jest rowna 1/s otrzymuje sig

_Y(e) _Y(E)
CX(s) /s

T(s) — Y (s) le(s) (15.21)
s

Odpowiedz skokowa jest transformata odwrotng Laplace’a sygnatu Y(s). Stad
v =L'[r(s)]=L" PT (s)} (15.22)
s

Odpowiedz skokowa ukladu jest wigc transformata odwrotna Laplace’a transmitancji

operatorowej 7T(s) tego ukladu, podzielonej przez zmienna zespolona s. Podobnie jak
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odpowiedz impulsowa odpowiedZz skokowa jest okreslona w pelni przez transmitancje

operatorowa 7(s) uktadu.

Przyktad 15.3
Dla zilustrowania rozwazan teoretycznych obliczmy odpowiedz impulsowa i skokowa uktadu
o zadanej transmitancji operatorowej

1
(s+1)(s+5)

T(s)=
Rozwiqzanie
Stosujac metodg residuéw dla zadanej postaci transmitancji 7(s) otrzymujemy:

e odpowiedz impulsowa

st

y(it)y=L" SR =lim_, ! e +1imH_5Le =—e ——e
(s+1)(s+5) s+5 s+1 4 4

e odpowiedz skokowa

0= s

. 1 P
lim_,————=e¢" +lim_,_

T+ i ————¢" =0,2-0,25¢" +0,05¢
(s +1)(s +5) ¢ T e ‘ ‘ ‘

s(s+5)

Na rys. 15.3 przedstawiono wykres czasowy odpowiedzi impulsowej (rys. 15.3a) i skokowe;j

(rys. 15.3b) uktadu o zadanej postaci transmitancji operatorowej T(s).
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15.5 Stabilnos¢ ukladéw liniowych

Opis uktadéw liniowych za pomoca transmitancji operatorowej badz réwnowazny mu opis
rOwnaniami stanu pozwala bada¢ bada¢ cechy jakosciowe uktadu na podstawie analizy
polozenia jego biegunéw (wartosci wilasnych macierzy stanu). Do najwazniejszych cech
uktadu naleza pojgcie stabilnosci oraz charakter odpowiedzi uktadu w stanie przejsciowym na
skutek przytozenia wymuszenia zewngtrznego.

Stabilno$¢ uktadu jest rozumiana w sensie ograniczonej amplitudy odpowiedzi na
wymuszenie o skofnczonej warto$ci. Uktad nazywaé bedziemy stabilnym, jes$li jego
odpowiedz czasowa na skonczona wartos¢ pobudzenia bedzie ograniczona co do amplitudy.
Stabilno$¢ wymaga, aby przy zaniku pobudzenia odpowiedz uktadu w stanie ustalonym przy
t > oo byla ograniczona co do amplitudy (stabilnos¢ w sensie zwyktym) lub zerowa
(stabilno$¢ w sensie asymptotycznym). Oznacza to, ze dla uktadéw stabilnych odpowiedz w
stanie przejsciowym powinna zanika¢ do zera lub co najmniej nie narasta¢, pozostajac na
ustalonym poziomie.

Stabilnos¢ uktadu moze wigc by¢ oceniana na podstawie odpowiedzi impulsowe;j. Jesli
odpowiedz ta zanika do zera lub pozostaje na stalym poziomie przy t— oo uklad jest
stabilny. Jesli natomiast odpowiedz impulsowa ma charakter narastajacy w czasie — uktad jest
niestabilny. Zauwazmy, ze odpowiedz impulsowa jest transformata odwrotng Laplace’a

transmitancji operatorowe;j
y@) =L'[T(s)] (15.23)

Jesli bieguny ukladu oznaczymy przez s, gdzie i = 1, 2, ..., n, woéwczas w przypadku

biegunéw jednokrotnych na podstawie metody residuéw odpowiedz impulsowa moze by¢

WyraZOHa wzorem
y0)=> Ae™ (15.24)
i=1

Wzér ten dowodzi, ze jesli wszystkie bieguny uktadu sa potozone wylacznie w lewe;j
pétplaszczyznie zmiennej zespolonej s, R(s;) <0, wéwczas odpowiedz impulsowa zanika z

czasem do zera lub pozostaje ograniczona co do amplitudy (gdy czg$¢ biegunéw lub

wszystkie znajda si¢ na osi urojonej).
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Sytuacja jest nieco bardziej ztozona, gdy czg$¢ biegundéw jest wielokrotna. Dla
uproszczenia ograniczymy si¢ tylko do biegunéw dwukrotnych. Zat6zmy, ze liczba takich
dwukrotnych biegunéw jest rowna m. W takim przypadku zastosowanie wzoréw na residuum

przy obliczaniu transformaty odwrotnej prowadzi do wyniku
y(0)=> A€ +> Bie™ (15.25)
i=1 k=1

Przy niezerowej wartosci czgsci rzeczywistej biegunéw potozonych w lewej poéiptaszczyznie
odpowiedz przejsciowa ukladu przy ¢-—> oo bedzie zanika¢ do zera (uklad stabilny
asymptotycznie). Przy potozeniu biegunéw na osi urojonej R(s;) =0 uktad moze by¢ stabilny
(cho¢ nie asymptotycznie), jesli sa to bieguny pojedyncze lub niestabilny, jesli bieguny sa
wielokrotne. Utrata stabilnosci na skutek potozenia bieguna wielokrotnego na osi urojonej
wynika z pojawienia si¢ we wzorze na odpowiedz impulsowa czynnika proporcjonalnego do
czasu. Zauwazmy, ze przy spetnieniu warunku Re(s,) =0 i zalozeniu bieguna zespolonego
s, = jw wyrazenie Bte't' moze by¢ rozwinigte do postaci B,te™' =Bkt(cosa)t+ jsinar).
Wobec ograniczonych warto$ci funkcji sinus 1 cosinus czynnik ten przy f¢— co narasta
nieograniczenie, co prowadzi do utraty stabilnosci.

W konsekwencji warunkiem stabilnosci uktadu jest polozenie biegunéw w lewej

polptaszczyznie, a w przypadku biegunéw wielokrotnych wytaczenie ich z osi urojone;j.

Alms

Rys. 15.4. Zaleznos¢ stabilnosci uktadu od potozenia biegunéw
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Na rys. 15.4 zilustrowano wplyw potozenia biegunéw na stabilnos¢ uktadu. O$ urojona

odpowiedz impulsowa

rozklad biegunow:

Interesujacy jest réwniez wplyw potozenia biegunéw na charakter odpowiedzi

rozgraniczajaca obszar stabilny od niestabilnego jest obszarem warunkowo stabilnym
(stabilny w sensie zwyklym przy biegunach jednokrotnych i niestabilny przy biegunach
impulsowej uktadu liniowego. Rys. 15.5 przedstawia odpowiedzi impulsowe uktadu drugiego

rzedu przy réznych potozeniach biegunow.

wielokrotnych).
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rozklad biegunow: odpowiedz impulsowa
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Rys. 15.5 Odpowiedzi impulsowe uktadu drugiego rzg¢du przy ré6znych potozeniach biegunéw

W zaleznoS$ci od warto$ci biegunéw mamy do czynienia ze stanem aperiodycznym (bieguny
polozone na osi rzeczywistej) oraz oscylacyjnym (bieguny zespolone). Zanikanie odpowiedzi
impulsowej do zera $wiadczy o stabilnosci asymptotycznej uktadu. Odpowiedz o
ograniczonej amplitudzie nie zanikajaca z czasem $wiadczy o stabilnosci zwyktej uktadu.

Odpowiedz narastajaca z czasem jest cecha uktadu niestabilnego.

Zadania sprawdzajace

Zadanie 15.1
Wyznaczy¢ transmitancje¢ operatorowa typu napigciowego obwodu z rys. 15.6. Zalozy¢:

R=1Q,L=2H, C=1F.
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Rys. 15.6. Schemat obwodu do zadania 15.1
Rozwiqzanie

Schemat operatorowy obwodu przy zerowych warunkach poczatkowych stosowany do

wyznaczenia transmitancji przedstawiony jest na rys. 15.7

F sL

Rys. 15.7. Posta¢ operatorowa obwodu

Kolejne etapy wyznaczania transmitancji:

Prad I(s)

U,(s) B sC
R+sL+1/sC s°LC+ sRC+1

I(S): UI(S)

Napigcie wyjsciowe

1

1
U S :—I S) = U S
== v ske 1 Y
Transmitancja napigciowa
U,(s) 1/LC

T,(s)= 5
U,(s) s +sR/L+1/LC
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Po podstawieniu wartosci liczbowych otrzymuje si¢

0,5
s +0,55+0,5

Tu (s) _
Zadanie 15.2
Wyznaczy¢ odpowiedz impulsowa i skokowa dla obwodu przedstawionego na rys. 15.8.
Odpowiedzi dotycza napigcia wyjSciowego obwodu przy zasilaniu napigciowym. Zatozy¢

nastgpujace warto$ci elementow: R = 1Q, R, = 1Q, L =2H, C = 0,5F.

A A

jL
o [ .

Rys. 15.8. Schemat obwodu do zadania 15.2

Rozwiqzanie
Schemat operatorowy obwodu przy zerowych warunkach poczatkowych stosowany do

wyznaczenia transmitancji przedstawiony jest na rys. 15.9

L
||5C
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Rys. 15.9. Posta¢ operatorowa obwodu

Kolejne etapy wyznaczania transmitancji:

Prad I(s)

U,(s) sC

I(S): = 3
R +R, +sL+1/sC s°LC+sC(R,+R,)+1

U,(s)

Napigcie wyjsciowe
U,(s)=(R, +sL)I(s)
Transmitancja napigciowa

_U,(s) _ (sSL+R,)sC

Tu(s)_ 2
U(s) s LC+sC(R+R,)+1

Po podstawieniu wartosci liczbowych otrzymuje si¢

s> +0,5s
sT+s+1

T,(s)=
Odpowiedz impulsowa okreslona bedzie przy zastosowaniu metody korzystajacej z tablic

transformat. W zwiazku z powyzszym

055+1 _,_05(s+05)+(/3/4)

T (5)=1-
sSHsHl (5405)7 +(V374)

y(t) = LT, (s)]= 8(t) — 0,5¢ " cos(~/3/41) — e sin(~/3/ 4t)

Odpowiedz skokowa
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e cos(+/3/41)

d

(s+0.,5)
(s+0,5° + (374

!

Odpowiedzi impulsowa i skokowa uktadu podane sa na rys. 15.10

a) odpowiedz impulsowa

ot

A
1
1
1

Y U U U
1
1
1

B o R e |

t

1
1
1
-

1
1
1
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0
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b) odpowiedz skokowa
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Rys. 15.10. Odpowiedzi impulsowa i skokowa uktadu

Zadanie 15.3
Wyznaczy¢ impedancje wejsciowa w postaci operatorowej dla obwodu przedstawionego na

rys. 15.11. Impedancj¢ wejsciowa potraktowac jako transmitancj¢ napi¢ciowo-pradowa.

e

Rys. 15.11. Schemat obwodu do zadania 15.3
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Rozwiqzanie
Z prawa pradowego i napieciowego Kirchhoffa napisanych dla obwodu z rys. 15.11

otrzymuje si¢

_U1+Z1(11_I)222(I_Y0U1)_U1
U, -D+U-YU)=kl

gdzie Y =1/Z . Z réwnania drugiego otrzymuje sig¢

11_Y0U1

[ =—F"2"—

k

Po podstawieniu do wzoru pierwszego otrzymujemy

Zl+zlz—zlk ! =(ZZY0+leZZYUJU1

Stad

U = Z+Z,-Zk

Z
L KLY, +Y,(Z,+Z,)
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Lekcja 16. Charakterystyki czestotliwosciowe ukladow

Wstep
Transmitancja operatorowa poza odpowiedziami czasowymi pozwala réwniez wyznaczy¢
charakterystyki obwodu w stanie ustalonym przy wymuszeniu sinusoidalnym o zmiennej
wartosci czestotliwosci.

W lekcji szesnastej skupimy si¢ na charakterystykach czgstotliwosciowych obwodéw
RLC. Podane zostana definicje charakterystyki amplitudowej 1 fazowej oraz logarytmiczne;j
charakterystyki amplitudowej a takze sposéb ich wyznaczania na podstawie transmitancji
operatorowej. Rozwazone zostang przyktady charakterystyk czegstotliwo$ciowych uktadow
pierwszego rze¢du: cztonu catkujacego 1 rdézniczkujacego oraz przesuwnika fazowego.
Zdefiniowane zostang podstawowe transmitancje operatorowe drugiego rz¢du, opisujace filtry
bikwadratowe typu dolnoprzepustowego, srodkowoprzepustowego oraz gérnoprzepustowego.
Przedstawione zostana charakterystyki czestotliwosciowe odpowiadajace tym filtrom oraz
przeanalizowany  zostanie = wpltyw  dobroci  filtru na  ksztalt  charakterystyk

czgstotliwosciowych.

&

16.1 Definicje charakterystyk czestotliwosciowych

Charakterystyka czestotliwosciowa ukladu nazywaé begdziemy zalezno$¢ wartosci sygnatu
wyjsciowego tego uktadu od czestotliwosci przy jednostkowym wymuszeniu sinusoidalnym
przylozonym na wejscie uktadu. Charakterystyke¢ t¢ mozna wyznaczy¢ bezposrednio na
podstawie transmitancji operatorowej 7(s). Nosi ona nazwe transmitancji widmowej uktadu.

Oznaczmy transmitancj¢ widmowa w postaci T(jw). Latwo pokaza¢, ze jest ona

zdefiniowana jako transmitancja operatorowa dla s = j@, to znaczy

T(jo)=T(s)

(16.1)

s=jw
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Transmitancja widmowa reprezentuje soba liczbg zespolona bedaca funkcja pulsacji .

Przedstawiajac ja w postaci wykladniczej, to jest T(j®) =|T(j®)le’”” mozna zdefiniowaé

dwa rodzaje charakterystyk czgstotliwosciowych:

¢ charakterystyka amplitudowa przedstawia soba zalezno$¢ modutu transmitancji
widmowej T'(jw) od pulsacji @ (czgstotliwosci f), to jest |T( ja))|

¢ charakterystyka fazowa okresla zalezno$¢ argumentu transmitancji widmowej 7'(j@) od
pulsacji (czgstotliwosci) to jest @(w). Charakterystyka fazowa reprezentuje soba

przesunigcie fazowe migdzy sygnalem wejsciowym a wyjsciowym dla danej pulsacji @ .

Charakterystyki czestotliwosciowe przedstawia si¢ zwykle na wykresie modutu lub fazy w
zaleznosci od pulsacji (czgstotliwosci). Jesli wielkosci podlegajace wykreslaniu réznig sig
znacznie pod wzgledem wartosci (np. zmieniaja sie¢ w zakresie od 1 do 10°) wygodnie jest
wprowadzi¢ skale logarytmiczna zwykle o podstawie 10. Dotyczy to okreslonego zakresu
czestotliwosci. W przypadku charakterystyki amplitudowej skalg logarytmiczng przelicza sig

na decybele (dB) definiujac logarytmiczng charakterystyke amplitudowa
20log,, (T(jw)) (16.2)

Na rys. 16.1 przedstawiono przykladowo charakterystyke amplitudowa (rys. 16.1a) oraz
logarytmiczng charakterystyke amplitudowa (rys. 16.1b) odpowiadajaca tej samej transmitacji

danej wzorem

0.003s* + 0.082s* +0.287

I(s)= 4 3 2
s*4+0,945s" +1,487s" +0,778s + 0,322
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Rys. 16.1. Posta¢ liniowa (a) oraz logarytmiczna (b) charakterystyki amplitudowe;j

odpowiadajacej transmitancji T(s)

Kazdy rodzaj przedstawienia charakterystyki amplitudowej podkresla inne szczegéty w jej
przebiegu. Charakterystyka logarytmiczna podkresla stosunkowo niewielkie w skali globalnej
zmiany dynamiczne w tak zwanym pasmie zaporowym, gdzie amplituda sygnatu jest bardzo
mata w stosunku do pasma przepustowego, podczas gdy skala liniowa uwypukla globalny
charakter przebiegu tracac drobne szczegély w zakresie czgstotliwosci gdzie wartosci
sygnatéw sa mate.

Jesli badany zakres czestotliwosci jest bardzo szeroki (np. od 1Hz do 1MHz)
wygodnie jest wprowadzi¢ skalg logarytmiczng rowniez dla czgstotliwosci. Charakterystyke
fazowa wykresla si¢ zwykle w skali liniowej dla fazy i liniowej lub logarytmicznej dla

czestotliwosci (pulsacji).
Przyktad 16.1

Wyznaczy¢ charakterystyki czgstotliwosciowe transmitancji napigciowej uktadu RL

przedstawionego na rys. 16.2a

371



Ly (1 R Up(t)  Lh(s) R Lh(s)

o
)
]
)

a) b
Rys. 16.2 Schematy obwodu do przyktadu 16.1: a) schemat rzeczywisty,

b) posta¢ operatorowa obwodu

Rozwiqzanie

Zastepujac elementy rzeczywiste poprzez ich impedancje operatorowe otrzymuje si¢ kolejno:

R/L
U(s)=———U
R+ sL 1(5) s+R/L 1(5)

U,(s)=

_U,(s) _ RIL

T(s) U(s) s+R/L

Podstawiajac s = jw do powyzszej zaleznosci otrzymuje si¢

R/L _ R/L e—ja_rctg(a)L/R)

Charakterystyka amplitudowa ukfadu okreslona jest wigc zaleznoscia

R/L
@ +(R/L)

T(jw)| =

a charakterystyke fazowa opisuje wzor

¢(w) =—arctg(wL/R)
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Rys. 16.3 przedstawia wykresy charakterystyki amplitudowej i fazowej obwodu o

wartosciach R =1Q i L=1H w funkcji pulsacji @.

Fooooo o5

B T T

ju}
| N T,

Rys. 16.3. Wykres charakterystyki amplitudowej i fazowej uktadu

Charakterystyka amplitudowa wskazuje na dobre (nie ttumione) przenoszenie czgstotliwosci
matych. W miar¢ wzrostu warto$ci czgstotliwosci charakterystyka amplitudowa maleje, co
oznacza, ze sygnal wyjsciowy ma coraz mniejsza amplitudg. Taki obwdd ma wigc charakter
uktadu dolnoprzepustowego (szeregowo wlaczona cewka w miarg wzrostu czgstotliwosci ma
coraz wigksza impedancj¢ tlumiaca przebieg pradu przeptywajacego przez rezystor

wyjsciowy).

16.2 Przyklady transmitancji operatorowych pierwszego rzedu

W praktyce inzynierskiej zdefiniowano wiele uzytecznych postaci transmitancji
operatorowych. Tutaj ograniczymy si¢ jedynie do trzech najprostszych transmitancji

pierwszego rzg¢du: uktadu catkujacego, rézniczkujacego oraz przesuwnika fazowego.
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16.2.1 Uktad catkujqcy

Transmitancja idealnego uktadu catkujacego definiowana jest w postaci
T(s)=k/s (16.3)

Uktad nosi nazwe catkujacego, gdyz operator 1/s w dziedzinie czgstotliwosci zespolone]
Laplace’a oznacza catkowanie funkcji w dziedzinie czasu. Charakterystyke czgstotliwosciowa

uktadu catkujacego opisuje zaleznos¢
. . k _ i90°
T(jw)y=k! jo=—e"’ (16.4)
@

Wykres charakterystyki amplitudowe;j

k
T(jow)|=— (16.5)
(42

oraz fazowe]
o(w) =-90° (16.6)

dla uktadu catkujacego przy k>0 przedstawiono na rys. 16.4.
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Rys. 16.4 Charakterystyki czgstotliwosciowe uktadu catkujacego: a) amplitudowa, b) fazowa

Charakterystyka amplitudowa jest typu hiperbolicznego, a charakterystyka fazowa stata

(przesunigcie fazowe state i rowne —90° niezaleznie od czgstotliwosci).

16.2.2 Uktad rézniczkujqcy

Transmitancja uktadu r6zniczkujacego dana jest w postaci

T(s)=ks (16.7)

Uktad nosi nazwe¢ rézniczkujacego, gdyz operator s w dziedzinie czgstotliwosci zespolone;j
oznacza rozniczkowanie funkcji w dziedzinie czasu. Charakterystyka czgstotliwosciowa

opisana jest zaleznoscia

T(jo)=kio=kwe'™ (16.8)
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Charakterystyka amplitudowa jest funkcja liniowa

T(jw)=ko (16.9)
a charakterystyka fazowa stala, niezaleznie od czgstotliwosci

p(w) =90° (16.10)

Wykres obu charakterystyk uktadu r6zniczkujacego przy k>0 przedstawiono na rys. 16.5.

s T P TR,

N I
O T S R

o 0.5 1.5

Rys. 16.5 Charakterystyki czgstotliwosciowe uktadu rézniczkujacego: a) amplitudowa,

b) fazowa
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16.2.3 Przesuwnik fazowy
Przesuwnik fazowy jest ukladem przesuwajacym fazg napigcia wyjSciowego wzgledem
wejsciowego bez zmiany amplitudy sygnatu. Transmitancje przesuwnika fazowego okresla

zalezno$¢

-5+
T(s)=—1¢ (16.11)
s+a
Charakterystyka czgstotliwosciowa przesuwnika okreslona jest nastgpujaca relacja
_ [0 4,2 pio@) ‘
T(joy="t2T0_NC ¥4 ¢ o) (16.12)

Jjo+ta | w?+a* e /)

gdzie kat ¢(w) okreslony jest wzorem @(w) = arctg(gj. Powyzsza zalezno$¢ potwierdza, ze
a

przesuwnik fazowy nie zmienia amplitudy sygnatu wejSciowego (|T( ja))|=1) a wptywa

jedynie na przesunigcie fazowe migdzy sygnalem wejSciowym 1 wyjSciowym.

Charakterystyka fazowa przesuwnika okreslona jest zaleznoscia
w
o(w)=-2 arctg[—] (16.13)
a

Na rys. 16.6 przedstawiono wykres charakterystyki fazowej przesuwnika o transmitancji

(16.11) w funkcji pulsacji dla wartosci a=1.
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Rys. 16.6. Charakterystyka fazowa przesuwnika w funkcji pulsacji

Przesunigcie fazowe uktadu jest funkcja czgstotliwosci 1 zmienia si¢ od zera do wartosci
180°. Warto$¢ przesunigcia fazowego dla konkretnej warto$ci czgstotliwo$ci mozna
regulowac poprzez zmiang wspoétczynnika a transmitancji. Na rys. 16.7 przedstawiono wykres
przedstawiajacy zmiang¢ kata przesunigcia fazowego uktadu dla pulsacji jednostkowej przy

zmianie warto$ci wspétczynnika a.

pia) 0

A0f------

BOf-----

onf--4~--

20 -f----

| i B HE e e |
r=-"~"T1T-"~"~"7T~-"~="T-~-=-7T°1 "1

4 & g 10

-180

RTo ] S— oo o
2

Rys. 16.7. Charakterystyka fazowa przesuwnika w funkcji wartos$ci wspétczynnika a
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16.3 Transmitancje operatorowe ukladéw drugiego rzedu

16.3.1 Postac ogolna transmitancji bikwadratowej
Szczegblnym przypadkiem transmitancji operatorowej jest transmitancja drugiego rzedu,
zwana bikwadratowa, szczeg6lnie czgsto wykorzystywana w teorii filtréw. Ogdlna postac tej

transmitancji dana jest wzorem

_ L(s) _b,s’+bs+b,
M(s) s +as+a,

T(s)

(16.14)

W przypadku wykorzystania tej transmitancji w teorii filtréw wielomiany licznika i

mianownika zaktada si¢ w specjalnej postaci. W przypadku mianownika przyjmuje si¢

M(s)=s" +%s+a)§ (16.15)

Wielko$¢ @, jest pulsacja srodkowa (rezonansowa) filtru a Q dobrocig. Posta¢ licznika

transmitancji jest uzalezniona od rodzaju filtru. Tutaj rozpatrzymy przykladowo trzy

podstawowe rodzaje filtréw i ich transmitancje. Sa to

e Filtr dolnoprzepustowy

T,,(s) =‘;‘WL£’; (16.16)

Wielko$¢ A, jest wzmocnieniem filtru w pasmie przepustowym i mierzona jestdla s =0.

¢ Filtr Srodkowoprzepustowy

0)0
A —>s

__ 0
T =705 (16.17)

Wielko$¢ A, jest wzmocnieniem filtru w pasmie przepustowym i mierzona jest dla pulsacji

§=ja,.
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e Filtr gérnoprzepustowy

2
_ AcpS

Tg(s)= M(s)

(16.18)

Wielko$¢ A, jest wzmocnieniem filtru w pasmie przepustowym i mierzona jest dla pulsacji
rownej s =oo .
Charakterystyki czgstotliwosciowe filtrow otrzymuje si¢ po wstawieniu s = jo do

transmitancji operatorowej odpowiadajacej danemu rodzajowi filtru. Modut zaleznosci

wyznacza charakterystyke amplitudowa a kat fazowy — charakterystyke fazowa.

16.3.2 Charakterystyki czestotliwosciowe filtru dolnoprzepustowego
Po wstawieniu zaleznosci s= jw do wzoru na transmitancj¢ 7,,(s) otrzymuje si¢

charakterystykg filtru dolnoprzepustowego w postaci

2
App @y

),
(@ - )+ j—>
0

(16.19)

TDP (] a)) =
Jest to funkcja zespolona pulsacji. Modut tej funkcji stanowi charakterystyke amplitudowa a
faza — charakterystyke fazowa uktadu. Charakterystyki te wyrazone sa w postaci
e charakterystyka amplitudowa

2
ADP a)O

T, (jo)|= - (16.20)
()
0

e charakterystyka fazowa
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wa,

00, 16.21
O(w; — ) (1621

¢(jw) = —arctg

Na rys. 16.8a przedstawiono typowe charakterystyki amplitudowe a na rys. 16.8b

charakterystyki fazowe filtru dolnoprzepustowego drugiego rzedu dla dwu réznych dobroci:

Q>1/\/§ oraz QSI/\/E.

|T|:Jm:|| 1 1 1 1 1 1 |T|:‘Im:|| I:I """ aE==== TE==== r===== 1
[ ----- Tl oo Ha . reTTes : | | ! :
1 oA Po--e- P o BRRNEY] 7T R I
Q=0707 | : : : : :
B e T T R e W thih roones roooos :
] AN N SR N o --- - S -- SRR ERR oo |
' : 4= 0707} !
04f----- P LR R Rt Ao A Pty P !
0.2f----- R . e (- . S

: % : : o : !

|:| 1 ||:| 1 1M _"IBD 1 1 1
045 1 1.5 2 25 i 05 1 1.5 2 25 3

a) b)

Rys. 16.8. Charakterystyki czestotliwosciowe filtru bikwadratowego dolnoprzepustowego:

a) amplitudowe, b) fazowe

Dla dobroci Q >1/ V2 charakterystyka amplitudowa jest niemonotoniczna 1 osiaga

maksimum dla pulsacji

®, = w,\1-1/20" (16.22)

Dla dobroci Q <1/ V2 przebieg charakterystyki amplitudowej staje si¢ monotoniczny
(pulsacja @, przyjmuje wartos¢ nierzeczywista — urojona). Przy Q =1/ V2 charakterystyka

jest maksymalnie ptaska.
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Pulsacja @, (jesli jest okreSlona) jest r6zna od pulsacji Srodkowej @,. Jak z

charakterystyk czegstotliwosciowych wida¢ pulsacja srodkowa odpowiada wartosci przy ktorej
przesunigcie fazowe uktadu jest rowne —90 stopni. Moze by¢ wigc tatwo wyznaczona z
charakterystyki fazowej. Dobro¢ uktadu mozna z kolei prosto wyznaczy¢ wykorzystujac
postac charakterystyki amplitudowej. Obliczajac ja dla dwu wartosci czgstotliwosci: zerowej i

srodkowej otrzymuje si¢

[T )|

° 0,0

(16.23)

Wyznaczenie dobroci na podstawie charakterystyk czestotliwosciowych polega wigc na
okresleniu wartosci charakterystyki amplitudowej dla dwu czgstotliwosci: zerowej 1

srodkowej a nastgpnie podstawieniu tych wartosci do powyzszego wzoru.

16.3.3 Charakterystyki czestotliwosciowe filtru srodkowoprzepustowego

Po wstawieniu zalezno$ci s= j@w do wzoru na transmitancj¢ T7g,(s) otrzymuje sig

charakterystyke czestotliwosciowej filtru sSrodkowoprzepustowego w postaci

. ww
JAsp —
Y

(@, —®°)+ j

T, (jw)= (16.24)

0w,

Jest to funkcja zespolona pulsacji. Modut tej funkcji stanowi charakterystyke amplitudowa a

faza — charakterystyke fazowa uktadu. Charakterystyki te wyrazone sa w postaci

e charakterystyka amplitudowa

Agp @@,

2 2.2 (06002
; — +
Q\/(w ) (Qj

(16.25)

|TSP (]a))| =

e charakterystyka fazowa
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0w,

2

@) =90° — arct
p(jw) g @)

(16.26)

Na rys. 16.9a przedstawiono typowe charakterystyki amplitudowe a na rys. 16.9b
charakterystyki fazowe filtru Srodkowoprzepustowego drugiego rzg¢du dla dwu réznych

dobroci, przy czym Q, > Q,

TG . . . . . o Tlell, SR
| | | | | | | | W
08 }---- Lf = | : : :
| | AN | | | | !
0G}--7-- Yoooee R bocood! | | !
| | | | | | 0 - : -
04r-f-fr---n- R s P | | !
| ' Qs G | | | e : : L
0.2,/ e e N S S | | !
. | % | | 'y a0 4o | :
05 1 148 2 25 G 05 1 15 2 25 3
a) b)

Rys. 16.9 Charakterystyki czgstotliwosciowe filtru srodkowoprzepustowego drugiego rzgdu:

a) amplitudowe, b) fazowe

Z charakterystyk czestotliwosciowych wida¢, Zze pulsacja $srodkowa odpowiada
wartosci maksymalnej charakterystyki amplitudowej. Dobro¢ filtru okresla stosunek pulsacji

srodkowej @, do 3 decybelowego pasma przenoszenia Aw, (zakres czgstotliwosci ktérego

krance wyznaczaja wartosci charakterystyki amplitudowej przyjmujace 1/4/2  warto$ci

maksymalnej)

0=

- Aw,

(16.27)

Interpretacja 3 decybelowego pasma przenoszenia przedstawiona jest na rys. 16.10.
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Rys. 16.10 Interpretacja 3 decybelowego pasma przenoszenia

16.3.4 Charakterystyki czestotliwosciowe filtru gornoprzepustowego

Po wstawieniu zaleznoSci s= jw do wzoru na transmitancj¢ 7,,(s) otrzymuje si¢

charakterystyke czestotliwosciowa filtru gérnoprzepustowego w postaci

2
T, (jw)= Aer® (16.28)
(@ - )+ ]
0

Jest to funkcja zespolona pulsacji. Modut tej funkcji stanowi charakterystyke amplitudowa a

faza — charakterystyke fazowa uktadu. Charakterystyki te wyrazone sa wzorami

e charakterystyka amplitudowa

2
Asp@

2 212 606002
W — ) +| 2
ko[22

T (jo)| = (16.29)

e charakterystyka fazowa
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Tl

0.g
0.6
0.4
0.2

0w,

2

(jw)=180° —arctg———"——
Y ® 0@ - o)

(16.30)

Na rys. 16.11a przedstawiono typowe charakterystyki amplitudowe a na rys. 16.11b

charakterystyki fazowe filtru dolnoprzepustowego drugiego rzedu dla dwu réznych dobroci:

Q>1/\/§ oraz QSI/\/E.

g

______ I S R 150 4 + -
: . . . [ : :
DR R A R o0 N S
---------------- SN | et
lofy| : : : : : 1 I
1 1 1 I W I:I 1 1 1 1
045 1 1.5 2 25 i 05 1 1.5 2 25

a) b)

Rys. 16.11 Charakterystyki czestotliwo$ciowe filtru gérnoprzepustowego: a) amplitudowe,

b) fazowe

Dla dobroci Q, >1/ V2 charakterystyka amplitudowa jest niemonotoniczna 1 osiaga

maksimum dla pulsacji

1

J1-1/20?

o, =,

m

(16.31)

Dla dobroci Q, <1/42 przebieg charakterystyki amplitudowej staje si¢ monotoniczny i

maksimum funkcji nie wystgpuje. Przy Q, =1/ V2 charakterystyka jest maksymalnie ptaska.
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Pulsacja @, (jesli jest okreSlona) jest r6zna od pulsacji Srodkowej @,. Jak z

charakterystyk czegstotliwosciowych wida¢ pulsacja srodkowa odpowiada wartosci przy ktorej
przesunig¢cie fazowe uktadu jest rowne 90 stopni. Moze by¢ wigc tatwo wyznaczona z
charakterystyki fazowej. Dobro¢ ukitadu mozna z kolei prosto wyznaczy¢ wykorzystujac
posta¢ charakterystyki amplitudowej. Obliczajac ja dla dwu wartosci czgstotliwosci:

czestotliwosci maksymalnej (teoretycznie nieskonczonej) i srodkowej otrzymuje sig

_ [Ty

" W)

(16.32)

Wyznaczenie dobroci na podstawie charakterystyk czestotliwosciowych polega wigc na
okresleniu wartosci charakterystyki amplitudowej dla dwu czgstotliwosci: maksymalnej

(teoretycznie nieskonczonej) i sSrodkowej a nastgpnie podstawieniu do powyzszego wzoru.

16.4 Charakterystyki czestotliwo$ciowe ukladu n-tego rzedu
Najbardziej ogélnym przypadkiem jest uktad opisany transmitancja operatorowa 7(s) n-tego

rzedu o postaci ogélnej zadanej wzorem

b,s" +b, s" +.+bs+b,

T(s)= (16.33)

n n—1
a,s +an_1s +...+a1s+ao

Zalaczony do podrgcznika program interakcyjny CHARAKTERYSTYKI umozliwia
wykreslanie charakterystyk czestotliwosciowych (amplitudowych i fazowych) ukladéw
opisanych za pomoca transmitancji operatorowe] o postaci okre§lonej wzorem (16.33).
Transmitancja widmowa 7(jw) takiego uktadu wyznaczana jest z transmitancji operatorowej

T(s) przez podstawienie s=jw. W wyniku otrzymuje si¢

+b, (jo) " +..+b jo+b,

- (16.34)
a, ja))"+an_1(ja))" +..+a jo+a,

Transmitancja widmowa przedstawia soba funkcj¢ zespolona pulsacji @1 moze by¢ zapisana

w postaci ogdlnej jako

386



T(jw) = A(w)+ jB() (16.35)

Czes$¢ rzeczywista A(w) 1 urojona B(w) sa funkcjami zaréwno wspétczynnikéw a;, b; licznika
1 mianownika transmitancji operatorowej, jak i aktualnej warto$ci pulsacji w. Charakterystyka

amplitudowa przedstawia soba modut transmitancji widmowej okreslony wzorem

T(jo)| = JA* (@) + B> (@) (16.36)

Charakterystyka fazowa jest faza transmitancji widmowej i wyznaczana jest z zalezno$ci

_ B(w)
p(w) = arctg(—A(a))] (16.37)

Powyzsze zaleznos$ci zostaly wykorzystane do badania charakterystyk czegstotliwo$ciowych
uktadéw opisanych transmitancja operatorowa 7(s) zadawang przez uzytkownika. Wejscie w

program CHARAKTERYSTYKI nastgpuje przez kliknigcie w ikong programu.

Rys. 16.12. Okno programu CHARAKTERYSTYKI

&
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Uzytkownik zadaje stopien licznika i mianownika transmitancji, a takze warto$ci wszystkich
wspotczynnikow wielomianu licznika 1 mianownika. Okres§la rowniez zakres pulsacji, dla
ktorego wykreslane bgda charakterystyki czestotliwosciowe. W programie zatozono, ze
maksymalny rzad uktadu nie powinien przekroczy¢ wartosci 9.

Wykorzystujac podane wczesniej zaleznosci czestotliwosciowe program wykresla
charakterystyki amplitudowe (liniowa 1 logarytmiczna wyrazona w decybelach) oraz
charakterystyke fazowa w stopniach. Charakterystyki filtru zostaja wykreslone w oddzielnych
oknach, pozwalajacych na skalowanie oraz ogladanie w powigkszeniu poszczegdlnych

odcinkéw krzywych.

Zadania sprawdzajgce

Zadanie 16.1
Wyznaczy¢ charakterystyki czgstotliwosciowe obwodu przedstawionego na rys. 16.13 biorac

pod uwage transmitancj¢ napigciowa.

Rys. 16.13. Schemat obwodu do zadania 16.1

Rozwiqzanie

Transmitancja napigciowa obwodu okreslona jest wzorem

T (s)= 1/sC _ 1
R+1/sC sRC+1

Transmitancja widmowa obwodu okreslona jest na podstawie transmitancji operatorowej

T, (s) przy zalozeniu s = jw
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Charakterystyka amplitudowa

T,(jo) =
| (wRC) +1

Charakterystyka fazowa
¢(w) = —arctg(wRC)

Na rys. 16.14 przedstawiono charakterystyke¢ amplitudowa 1 fazowa dla wartosci

jednostkowych elementéw obwodu (R =1Q 1 C=1F)

1
1
1
1
1
L.

[ R

| SRR

| |
1.5 2 25 3 3.5 4

Rys. 16.14 Charakterystyki czgstotliwo$ciowe obwodu z rys. 16.12:
a) charakterystyka amplitudowa, b) charakterystyka fazowa
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Zadanie 16.2

Wykresli¢ charakterystyki czgstotliwosciowe czlonu inercyjnego pierwszego rzedu opisanego

wzorem
s+1
T(s)=
s+2
Rozwiqzanie

Przy zatozeniu s = j@ otrzymuje si¢ charakterystyke widmowa postaci

jo+1

T(jw)=-
jo+2

Charakterystyka amplitudowa

. Vo' +1
N o

Charakterystyka fazowa
w
¢(w) = arctgw — arcth

Na rys. 16.15 przedstawiono wykresy charakterystyki amplitudowej (rys. 16.15a) i fazowe;j
(rys. 16.15b).
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Rys. 16.15 Wykresy charakterystyki amplitudowej (a) 1 fazowej (b) cztonu inercyjnego z
zadania 16.2

Zadanie 16.3
Napisa¢ wyrazenie na transmitancje filtru bikwadratowego dolno-, $rodkowo- i
gérnoprzepustowego o nastgpujacych parametrach: @, =1, Q=2 przy jednostkowych

wzmocnieniach w pasmach przepustowych.

Rozwiqzanie
Korzystajac z podstawowych wzoréw na transmitancje bikwadratowe otrzymuje si¢
¢ Filtr dolnoprzepustowy

1

Tpp(s)=————
or (5) s +0,55+1

¢ Filtr sSrodkowoprzepustowy

0,5s
Tpp(s) = ————
or (8) s2+0,55+1
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e Filtr gérnoprzepustowy

2
N

T (5)=——
or (8) s2+0,55+1
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Lekcja 17. Czworniki

Wstep

W opisie obwodoéw elektrycznych bardzo czgsto interesuja nas jedynie odpowiedzi dotyczace
jednej gatezi obwodu w zalezno$ci od sygnatu wymuszajacego przylozonego na wejsciu
obwodu. W takim przypadku wygodnie jest sprowadzi¢ opis obwodu do zalezno$ci
wystepujacych miedzy pradami i napigciami na zaciskach uwazanych za wejscie i wyjscie,
wprowadzajac pojecie czwornika.

Lekcja siedemnasta poswigcona jest podstawowym informacjom o czwornikach.
Zostana podane definicje oraz podstawowe opisy macierzowe czwoérnikéw: impedancyjny,
admitancyjny, hybrydowy oraz tancuchowy. Rozpatrzone zostang rdézne potaczenia
czwornikowe oraz opisy macierzowe takich uktadow. Pokazany zostanie zwiazek

transmitancji operatorowej z opisem macierzowym czwornika.

&

17.1 Definicja czwornika
Czwornik jest elementem czterozaciskowym, majacym dwie pary uporzadkowanych
zaciskow, z ktorych jedna para jest wejSciem a druga para wyjsciem Oznaczenie czwoérnika z

zaznaczonymi zwrotami pradow i napi¢¢ koncowkowych jest przedstawione na rys. 17.1.

1 l l 2
L e
U, [ czwarnil Wuz
N I
L e g
1 2'

Rys. 17.1. Oznaczenie czwérnika z zaznaczonymi zwrotami pradéw i napiec

W odniesieniu do wejscia 1 wyjscia czwdrnika musi by¢ spetniony warunek réwnosci

pradow:

1,=1, (17.1)



1,=1, (17.2)

jak to zaznaczono na rysunku. Sygnaly pradu i napigcia po stronie wejsciowej oznaczaé
bedziemy ze wskaznikiem 1, a po stronie wyjsciowej — ze wskaznikiem 2. Przyjmiemy
umownie, ze oba prady: na wejsSciu 1 wyjsciu sa zwrocone do prostokata oznaczajacego
czwornik.

W zaleznosci od elementéw tworzacych obwdd, czwoérnik moze by¢ liniowy (gdy
wszystkie elementy obwodu sa liniowe) lub nieliniowy. W dalszych rozwazaniach
ograniczymy si¢ wyltacznie do czwornikéw liniowych. Czwoérnik nazywa¢ bedziemy
pasywnym, jesli nie wytwarza energii a jedynie pobiera ja ze zrodla zasilajacego 1 przetwarza
w okreslony sposob. Czwoérnik ztozony z samych elementéw pasywnych R, L, C i M jest
zawsze czwornikiem pasywnym. Czwornik pasywny jest zdolny do gromadzenia i
rozpraszania energii pobranej ze zrodia, moze ja rowniez oddawa¢ na zewnatrz, jednak w
dowolnej chwili czasowej t energia ta nie moze przewyzsza¢ energii pobranej. Czwornik,

ktory nie spetnia powyzszych warunkéw jest czwornikiem aktywnym (generatorem energii).

17.2 Réwnania czwoérnika

Czwérnik moze by¢ scharakteryzowany za pomoca dwéch rownan liniowych wiazacych ze

soba dwa wielkosci pradowe i dwie napigciowe dotyczace bramy wejsciowej i wyjsciowej:

I,,1,, U, oraz U,. W zalezno$ci od wyboru zmiennych mozna wyr6zni¢ 6 podstawowych

postaci rownan czwornika. Sa to

e posta¢ admitancyjna, w ktérej prady wejsciowy i wyjsciowy (I;, I) sa wyrazone w
zaleznosci od napi¢¢ zewnetrznych (U, Uy)

e posta¢ impedancyjna, w ktérej napiecia wejsciowe i wyjsciowe (U;, Uy) sa wyrazone w
zaleznosci od pradéow koncéwkowych (I, 1)

e posta¢ hybrydowa w ktérej para wielkosci (Uy, I,) jest wyrazona jako funkcja drugiej pary
(I, Un)

e posta¢ hybrydowa odwrotna w ktérej para wielkosci (I;, Us) jest wyrazona jako funkcja
drugiej pary (Uy, L)

e posta¢ fancuchowa w ktorej para wielkosci (U, I;) dotyczaca zaciskow wejsciowych jest

wyrazona jako funkcja drugiej pary (Ua, I) zwigzanej z zaciskami wyjSciowymi
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e posta¢ fancuchowa odwrotna w ktorej para wielkosci (Uy, I,) dotyczaca zaciskow
wyjsciowych jest wyrazona jako funkcja drugiej pary (U, I;) zwiazanej z zaciskami

wejsciowymi.

17.2.1 Rownanie admitancyjne
Jezeli za zmienne niezalezne przyjmie si¢ napigcia obu bram U; oraz U; czwornik przyjmie

opis admitancyjny, ktéry mozna wyrazi¢ w postaci

PR AR A
= =Y (17.3)
1, Y, Y, |U, U,

Macierz Y jest nazywana macierza admitancyjng a parametry tej macierzy maja interpretacje

admitancji operatorowych.

17.2.2 Rownanie impedancyjne
Jezeli za zmienne niezalezne przyjmie si¢ prady obu bram /; oraz I, czwornik przyjmie opis

impedancyjny, ktéry mozna wyrazi¢ w postaci

ol w4
= =7 (17.4)
U2 Z21 Z22 12 12

Macierz Z jest nazywana macierza impedancyjng a parametry tej macierzy maja interpretacje
impedancji operatorowych. Latwo jest udowodni¢, ze macierze impedancyjna i admitancyjna

sa powiazane relacja
Y=Z7"' (17.5)
17.2.3 Rownanie hybrydowe

Przy opisie hybrydowym za zmienne niezalezne wybiera si¢ prad wejsciowy 1 napigcie

wyjsciowe czwoérnika. Réwnanie hybrydowe przyjmuje si¢ w postaci

e o))
= =H (17.6)
I, H, Hy,]|U, U,
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w ktérej H jest macierza hybrydowa. Jak wida¢ z opisu hybrydowego parametr H;; ma
interpretacj¢ impedancji a Hy, admitancji. Parametry Hi, 1 H»; sa bezwymiarowe 1 wyrazaja

stosunek odpowiednio dwu napigc i dwu pradéw w obwodzie.

17.2.3 Rownanie hybrydowe odwrotne

Opis hybrydowy odwrotny czwornika definiuje si¢ w postaci
U2 G21 G22 12 12

Stanowi on odwrotno$¢ opisu hybrydowego macierza H. Obie macierze powiazane sa

nastepujaca relacja G =H ™.

17.2.4 Réwnanie tancuchowe
Roéwnanie tancuchowe czwornika uzaleznia prad i napigcie na wejsciu czwornika od pradu i

napigcia na jego wyjsciu

P I
= =A (17.8)
11 A21 Azz _12 _12

W réwnaniu tym, inaczej niz w pozostatych opisach, przyjmuje si¢ prad I, wyplywajacy z
czwornika, w zwiazku z czym przy zatozonym na wstgpie zwrocie pradu do czwdérnika w
opisie pojawia si¢ prad wyjSciowy ze znakiem minus. Elementy macierzy lancuchowej A

nazywane sg parametrami tancuchowymi czwornika.
17.2.5 Rownanie tancuchowe odwrotne

Roéwnanie fancuchowe odwrotne czwoérnika uzaleznia prad 1 napigcie na wyjsciu czwornika

od pradu i napigcia na jego wejsciu

e )G
= =B (17.9)
Iz 321 Bzz _11 _11
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Ostatni rodzaj opisu czwérnikowego (rownanie fancuchowe odwrotne) jest rzadko stosowany.
Macierz B wystgpujaca w tym opisie nazywana jest macierza tancuchowa odwrotna.

Kazdy z przedstawionych typow macierzy jednoznacznie opisuje czwornik. Wybodr
ktéregos z nich jest uwarunkowany struktura obwodu, sposobem potaczenia czwoérnikéw,
tatwoscia wyznaczenia parametréw, itp. Przejscie z jednego opisu do drugiego polega na
przegrupowaniu zmiennych i1 wyznaczeniu odpowiednich relacji migdzy tymi zmiennymi.

Duza liczba stosowanych opiséw macierzowych czwoérnika wynika réwniez z faktu,
ze dla niektérych czwdérnikéw pewne opisy moga nie istnie¢. Najbardziej uniwersalne pod
tym wzgledem sa opisy hybrydowe wykorzystujace macierz H lub G, ktére mozna otrzymac

dla wigkszosci obwodow elektrycznych.

Przyktad 17.1
Wyznaczy¢ opis czwornika przedstawionego na rys. 17.2. Czwoérnik ten nosi nazwe

czwornika typu T i jest jedna z najpopularniejszych struktur czwérnikowych.

o

O
Rys. 17.2. Schemat obwodu do przyktadu 17.1
Rozwiqzanie
Z prawa napigciowego i pradowego Kirchhoffa zastosowanego do obwodu z rys. 17.2 mozna

napisa¢ nastgpujace rownania

L =1-1,=YU,+(1+2Z,Y)-1,)
U =U,+71,-7,1,

Po podstawieniu réwnania pierwszego do drugiego otrzymuje sig
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U =0+z2YWU,+(Z +2,+2,2,Y)-1,)
Jesli jako opis macierzowy przyjmiemy réwnanie tahcuchowe to zaleznosci okreslajace prad

wejsciowy 1 napigcie wejsciowe w funkcji pradu i napigcia wyjsciowego mozna zapisaé w

postaci
U | |1+2Y Z,+Z,+Z2Z,Y | U,
|| v 1+2,Y -1,
Macierz tancuchowa A dana jest wigc wzorem

1+2)Y Z, +Z,+ZZ)Y
A=
Y 1+Z,Y

Jesli jako opis macierzowy przyjmiemy réwnanie impedancyjne, wéwczas z przetworzenia

rownania tancuchowego otrzymujemy

vl [z+z, z Ti
u,| | z z+z,|1,

Macierz impedancyjna dana jest wigc w postaci

Z+7, Z
7 =
Z  Z+Z,

Jest to macierz symetryczna, ktdra jest rOwna macierzy oczkowej obwodu tworzacego

analizowany czwornik.

17.3 Zwiazek transmitancji operatorowych z opisem czwoérnikowym

Opis macierzowy czwornikéw  jest najbardziej uniwersalnym opisem ukladu
czterokoncowkowego, obejmujacym wszystkie cztery wielkosci zewngtrzne: prady i1 napigcia

obu bram. Jest zatem idealny do wyznaczenia dowolnej transmitancji uktadu, gdyz z jednego
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rOwnania czwoOrnikowego wynikaja wszystkie mozliwe zwiazki migdzy wielko$ciami
bramowymi. W lekcji tej tym pokazemy zwiazek opisu transmitancyjnego z parametrami

macierzowymi czwornika.

17.3.1 Transmitancja napieciowa
Wezmy pod uwage transmitancje napigciowa, jako stosunek napigcia wyjsciowego do
napigcia wejSciowego w dziedzinie operatorowej przy zatozeniu zerowego pradu obciazenia

czwornika (1,(s)=0)

U,(s)

T (s)= (17.10)
U,(s)
Z réwnania tancuchowego, wobec I,(s) =0 otrzymujemy
U,(s)=A,U,(s) (17.11)
Stad
T (s) = L2 L (17.12)
Ul(s) A,

O transmitancji napigciowej decyduje jeden parametr tancuchowy A;; czwoérnika. W
identyczny sposéb uzyska¢ mozna relacj¢ wiazaca transmitancj¢ napigciowa z parametrami
dowolnego opisu czwornikowego. Przyktadowo na podstawie opisu admitancyjnego z

roOwnania drugiego czwornika, wobec 1, =0, wynika

I, =Y,U, +Y,U, =0 (17.13)
Stad
T(s)=228)_ Y (17.14)
U,(s) Y,
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17.3.2 Impedancja wejsciowa
Okreslenie funkcji impedancji wejsciowej uktadu czwoérnika wymaga ustalenia przy jakiej
impedancji obciazenia badany jest czwornik. Zat6zmy w ogdlnosci obcigzenie czwornika

impedancja Z,. Z réwnan tancuchowych czwérnika otrzymuje si¢

U,(s)=AU,(s)+A,(=1,(s5)) = AU,(s)+ A,Y.U,(s) (17.15)
I,(s)=AU,(s)+ A, (=1,(s) = A,U,(s)+ A, Y.U,(s)
gdzie Y, oznacza admitancje¢ obciazenia (odwrotnos$¢ impedacji Z,, Y,=1/Z,). Z powyzszych

rOwnan otrzymuje si¢

_U() _ A+ A,
Ii(s) Ay +AyY,

Z.,.(s) (17.16)

Impedancja wejSciowa czwornika obcigzonego jest funkcja wszystkich parametrow
tancuchowych tego czwodrnika. Pewne uproszczenia powstaja w stanach szczegdlnych

obciazen. Na przyktad w stanie jatowym na zaciskach wyjsciowych (¥,=0)

A
zZ,(s)=—1 17.17
=4 (17.17)

21

oraz w stanie zwarcia na wyjsciu (¥ =oo)

A
Z, (s)="12 (17.18)
A,

2

impedancja wejsciowa zalezy wyltacznie od dwoch parametréw tancuchowych. Identyczne
zaleznosci okreslajace impedancje wejsciowa otrzyma¢ mozna na podstawie dowolnego opisu

czwornikowego.
Przyktad 17.2

Wyznaczy¢ wyrazenie na transmitancj¢ napigciowa i impedancj¢ wejsciowa czwoérnika z

przyktadu 17.1
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Rozwiqzanie

Macierz tancuchowa czwornika z przyktadu 17.1 ma postac

1+2Y Z +Z,+ZZ)Y
A=
Y 1+Z)Y

Transmitancja napigciowa w stanie jatowym na wyjsciu jest wigc rowna

1 Z

U,(s) _
1+Z2Y Z+Z

1
T,(s)= U (s) _A_”

Wobec braku obcigzenia czwornika przez impedancje Z nie przeptywa prad, stad cate
napigcie wyjsciowe pochodzi z impedancji poprzecznej Z (dzielnik impedancyjny).
Impedancja wejsciowa czwodrnika przy obciazeniu bramy wyjsciowej impedancja Z,

na podstawie wzoru (17.16) jest réwna

U (s) A+AY, (A+ZY)+(Z +Z,+Z7Z,Y)Y,

Z (s)=
e (5) I(s) A, +AY, Y+(1+2Z,Y)Y,

Jest ona funkcja wszystkich parametréw uktadu oraz impedancji obciazenia.

17.4 Polaczenia czwornikow

Mnogos¢ opiséw czwornikowych wynika z réznorodnosci potaczen, jakie sa mozliwe przy
zatozeniu dostgpnosci obu bram: wejsciowej 1 wyjsciowej. Rozwazymy tu podstawowe
polaczenie czwérnikéw migdzy soba: potaczenie tancuchowe, szeregowe, réwnolegle oraz

szeregowo-réwnolegte i réwnolegle-szeregowe.

17.4.1 Potqczenie tancuchowe

Polaczenie tancuchowe, zwane réwniez kaskadowym czwoérnikéw to takie potaczenie , w
ktéorym zaciski wejsciowe jednego czwoérnika sa przytaczone do zaciskéw wyjsciowych
poprzedniego. Przyktad potaczenia tancuchowego dwu czwoérnikéw przedstawiony jest na

rys. 17.3.
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uﬂ A, A, x U,

o E—

Rys. 17.3. Potaczenie tahcuchowe czwornikow

Latwo jest pokaza¢, ze macierz tancuchowa A czwornikow potaczonych kaskadowo jest
rowna iloczynowi macierzy tancuchowych poszczegdlnych czwornikow tworzacych to

polaczenie

A=AA, (17.19)

Przy wigkszej liczbie czwornikow potaczonych kaskadowo macierz tancuchowa wypadkowa
jest rowna iloczynowi macierzy tancuchowych wszystkich czwérnikéw branych w kolejnosci
ich wystgpowania w tancuchu.

A=AA, A, (17.20)

Nalezy zwrdci¢ uwagg, ze przy mnozeniu macierzy istotna jest kolejnos¢ tych macierzy, gdyz

wogolnosci A A, #ALA,.

17.4.2 Potqczenie szeregowe czwornikow

Dwa czwérniki sa potaczone szeregowo, jesli spetnione sa warunki:

e prad wejSciowy jednego czwornika jest réwny pradowi wejsciowemu drugiego a prad
wyjsciowy jednego czwoérnika jest réwny pradowi wyjsciowemu drugiego

® napigcie wejsciowe (wyjsciowe) polaczenia jest réwne sumie napie¢ wejsciowych

(wyjsciowych) kazdego czwoérnika.

Na rys. 17.4 przedstawiono uktad dwu czwérnikéw polaczonych szeregowo, spetniajacy

powyzsze warunki.
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Rys. 17.4. Polaczenie szeregowe czwornikow

Latwo jest pokaza¢, ze w potaczeniu szeregowym czwérnikow macierz impedancyjna Z

polaczenia jest rOwna sumie macierzy impedancyjnych kazdego czwornika. Oznacza to, ze
=7 +7, (17.21)

Przy wigkszej liczbie czwornikéw potaczonych szeregowo macierz impedancyjna

wypadkowa jest réwna sumie macierzy impedancyjnych wszystkich czwoérnikéw

wystepujacych w polaczeniu.

72=7. (17.22)

Kolejno$¢ sumowania macierzy impedancyjnych nie odgrywa zadnej roli.

17.4.3 Potqczenie rownolegte czwornikow

Dwa czwérniki sg polaczone rownolegle, jesli spetnione s3 warunki:

® napigcie wejsciowe kazdego czwodrnika jest takie samo, podobnie napigcie wyjsciowe

e prad wejSciowy (wyjSciowy) polaczenia jest rowny sumie pradéw wejsciowych

(wyjsciowych) kazdego czwoérnika.

Na rys. 17.5 przedstawiono uklad dwu czwérnikéw potaczonych réwnolegle, spelniajacy

powyzsze warunki.
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Rys. 17.5. Potaczenie réwnolegte czwornikow

Latwo jest pokaza¢, ze w potaczeniu réwnoleglym czwoérnikow macierz admitancyjna Y

polaczenia jest rOwna sumie macierzy admitancyjnych kazdego czwornika. Oznacza to, ze
Y=Y +Y, (17.23)

Przy wigkszej liczbie czwornikéw potaczonych réwnolegle macierz admitancyjna
wypadkowa jest réwna sumie macierzy admitancyjnych wszystkich czwoérnikéw

wystepujacych w polaczeniu.
Y=Y, (17.24)

Kolejnos¢ sumowania macierzy admitancyjnych nie odgrywa zadnej roli.

17.4.4 Potqczenie szeregowe-rownolegte czwornikow

Dwa czworniki sa polaczone szeregowo-réownolegle, jesli spetnione sa warunki:

e prad wejsciowy kazdego czwornika jest taki sam a napigcie wejsciowe potaczenia jest
rowne sumie napie¢ wejsciowych kazdego czwodrnika

e prad wyjsciowy potaczenia jest rowny sumie pradow wyjsciowych kazdego czwoérnika a

napigcie wyjsciowe obu czwornikéw jest takie samo.
Na rys. 17.6 przedstawiono uktad dwu czwoérnikéw potaczonych szeregowo-rownolegle

(szeregowo po stronie zaciskow wejSciowych 1 réwnolegle po stronie zaciskow

wyjsciowych), spetniajacy powyzsze warunki.
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Rys. 17.6. Potaczenie szeregowo-réwnolegte czwornikow

Latwo jest pokazal, ze w polaczeniu szeregowo-rownolegtym czwornikéw macierz
hybrydowa H polaczenia jest rowna sumie macierzy hybrydowych H kazdego czwoérnika.

Oznacza to, ze
H=H, +H, (17.25)

Przy wigkszej liczbie czwdrnikéw potaczonych szeregowo-rownolegle macierz hybrydowa H,
wypadkowa dla catego potaczenia jest rOwna sumie macierzy hybrydowych H wszystkich

czwornikéw wystepujacych w potaczeniu.

1

HZZH' (17.26)

i=1

Kolejnos¢ sumowania macierzy hybrydowych nie odgrywa zadnej roli.

17.4.5 Potqczenie rownoleglo-szeregowe czwornikow

Dwa czworniki sa polaczone rownolegle-szeregowo, jesli spetnione sa warunki:

® napigcie wejsciowe kazdego czwornika jest takie samo a prad wejsciowy potaczenia jest
rowny sumie pradow wejsciowych kazdego czwoérnika

e prad wyjsciowy kazdego czwornika jest taki sam a napigcie wyjsciowe potaczenia jest

rowne sumie napig¢ wyjsciowych kazdego z nich.
Na rys. 17.7 przedstawiono uktad dwu czwoérnikow potaczonych réwnolegle-szeregowo

(réwnolegle po stronie zaciskow wejsciowych 1 szeregowo po stronie zaciskéw

wyjsciowych), spelniajacy powyzsze warunki.
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Rys. 17.7. Potaczenie réwnoleglo-szeregowe czwoérnikéw

Latwo jest pokazaé, ze w polaczeniu réwnolegle-szeregowym czwornikéw macierz
hybrydowa odwrotna G potaczenia jest rGwna sumie macierzy hybrydowych G kazdego

czwornika. Oznacza to, ze
G =G, +G, (17.27)

Przy wigkszej liczbie czwornikéw potaczonych réwnolegle-szeregowo macierz hybrydowa
odwrotna G, wypadkowa dla catego potaczenia jest rowna sumie macierzy hybrydowych G

wszystkich czwérnikéw wystgpujacych w polaczeniu.
G=)G, (17.28)
i=1

Kolejnos¢ sumowania macierzy nie odgrywa zadnej roli.

Zadania sprawdzajace

Zadanie 17.1
Wyznaczy¢ macierzowy opis czwornikowy czwoérnika typu IT o strukturze podanej na rys.

17.8.
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Rys. 17.8. Struktura i oznaczenia admitancji w czwoérniku typu IT

Rozwiqzanie

Uktad réwnan Kirchhoffa opisujacych obwaéd

I =YU,+1,
I, =Y,U, -1,
8 :Ys(U1_U2)

Réwnania czwornikowe

I, = (Yl +Y3)U1 -YU,
I, =-Y,,U, +(Y2 +Y3)U2

Macierz admitancyjna
AR A ¢
ERERERRE

Zadanie 17.2
Wyznaczy¢ macierz tahcuchowa czwoérnika odpowiadajacego obwodowi z rys. 17.9. Okresli¢

na tej podstawie transmitancj¢ napigciowa uktadu.
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Rys. 17.9. Schemat obwodu do zadania 17.2

Rozwiqzanie

Z réwnan Kirchhoffa dla obwodu z rys. 17.9 otrzymuje si¢

U =ZI,+U, =Z](k12 ~1, Jrﬂ}U2

2

L=k, —1,+22

2

Opis tancuchowy czwoérnika

Zadanie 17.3

Wyznaczy¢ transmitancj¢ napigciowa czwornika na podstawie znanej

impedancyjnej Z.

Rozwiqzanie
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Transmitancja napigciowa z zalozenia okreSlona jest przy warunku [,=0. Z opisu

impedancyjnego czwornika

U2 Z21 Z22 12 12

wobec I, =0 otrzymujemy

U =21
U,=2,1,
Stad
r-Ye_Z
u Zz,
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Lekcja 18. Wybrane zastosowania czwornikow

Wstep
Istnieje ogromna réznorodno$¢ czwdrnikow waznych z punktu widzenia zastosowan
praktycznych. Tutaj ograniczymy si¢ do trzech, najbardziej reprezentatywnych z punktu
widzenia zastosowan inzynierskich: zyratora, konwertera ujemno-impedancyjnego oraz
idealnego wzmacniacza napigciowego.

Pokazemy analiz¢ wybranych zastosowan tych czwérnikéw. Udowodnimy
uniwersalno$¢ wzmacniacza operacyjnego, pozwalajacego zrealizowa¢ wiele typow uktadéw,
w tym uktad sumatora wielowejsciowego, uktad catkujacy, uktad rézniczkujacy, przesuwnik

fazowy, zyrator i konwerter ujemno-impedancyjny.

&

18.1 Zyrator

Zyrator jest czwérnikiem opisanym nastepujaca macierza tancuchowa

ke 515
= (18.1)
L | |G 0|-1,

Parametr G, jest nazywany konduktancja zyracji a R, =1/G, rezystancja. Oznaczenia

graficzne zyratora przedstawione sa na rys. 18.1.

s ) ( n o= 0,

o—  L—0

o
[

Rys. 18.1. Oznaczenia graficzne zyratora

410



Znak minus wystepujacy przy pradzie wyjSciowym wynika z przyjegtego zwrotu pradu

wyjsciowego (do pudetka). Réwnaniu tancuchowemu zyratora odpowiada opis admitancyjny

e Gl
= ‘ (18.2)
L| |-6. o|u,

Najwazniejsza wlasnoscia zyratora jest przetwarzanie impedancji obciazenia w impedancje

0 postaci

odwrotnie proporcjonalng do niej. Rozwazmy uktad Zyratora obciazonego impedancja Z,

(rys. 18.2).

Z

We

Rys. 18.2. Uklad zyratora obciazonego impedancja

Impedancja wejsciowa takiego uktadu zdefiniowana w postaci

zZ,=— (18.3)

po uwzglednieniu wzoru (17.16) wobec A, =0, A, =R_, A,=G,, A,, =0 jestrowna

z?

_ A, +AY, _R_zz
" A, +AYY, Z

o

(18.4)

Impedancja ukladu zyratora obciazonego impedancja Z, jest odwrotnie proporcjonalna do
impedancji obciazenia ze wspoiczynnikiem proporcjonalnosci réwnym RZZ. Jesli zyrator

zostanie obcigzony kondensatorem o impedancji operatorowej rownej Z, = 1/sC (rys. 18.2)
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to impedancja wejsciowa uktadu jest r6wna

Z, =sR:C (18.5)

Jest to posta¢ odpowiadajaca ogdélnemu opisowi impedancji operatorowej cewki Zp=sL.

Zatem uktad zyratora obcigzonego pojemnoscia C przedstawia soba cewke o indukcyjnosci L

L=R’C (18.6)

z

Powyzszej zalezno$ci matematycznej mozna przyporzadkowac¢ transformacj¢ uktadowa

zilustrowana na rys. 18.3.

L=RZC

'Z.E 'ZUE

Rys. 18.3. Realizacja indukcyjnosci przy pomocy zyratora

&

Zyrator jako czwérnik jest bardzo tatwo realizowalny w praktyce przy wykorzystaniu

uktadéw tranzystorowych lub wzmacniaczy operacyjnych. Z tego wzgledu uktady
wykorzystujace zyratory sa powszechnie stosowane w uktadach elektronicznych (np. filtrach)

eliminujac z nich cewki, trudno realizowalne w technologii scalone;j.

18.2 Konwerter ujemno-impedancyjny (NIC)

Konwerter ujemno-impedancyjny (NIC) jest czwornikiem aktywnym (wytwarzajacym
energi¢) posiadajacym wlasno$¢ przetwarzania pradu badZ napigcia z ujemnym znakiem.

Wyréznia si¢ dwa rodzaje konwerteréw ujemno-impedancyjnych
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e NIC z inwersja pradu (INIC)

e el
- (18.7)
1| |0 -k | -1,

e NIC z inwersja napigcia (VNIC)

e
_ (18.8)
I 0 1]-1,

Parametr K (K; dla konwertera ujemno-impedancyjnego pradu oraz K, dla konwertera
ujemno-impedancyjnego napigcia) jest wspotczynnikiem przetwarzania badz pradu badz
napigcia. W konwerterze INIC prad wejSciowy jest proporcjonalny do pradu wyjsciowego z
ujemnym wspotczynnikiem proporcjonalnosci —K; przy niezmienionej warto$ci napigcia
wejsciowego. W konwerterze VNIC napigcie wejsciowe jest proporcjonalne do napigcia
wyjsciowego z ujemnym wspotczynnikiem proporcjonalnosci —K, przy niezmienionym
pradzie wejsciowym.

Konwerter impedancyjny przetwarza impedancj¢ obcigzenia w impedancj¢ wejSciowa
z ujemnym znakiem. Rozwazmy uklad konwertera INIC obciazonego impedancja Z,,

przedstawiony na rys. 18.4

U, INIC U, z

=
f
=
|
=]

Rys. 18.4. Uktad konwertera ujemno-impedancyjnego obciazonego impedancja

©
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Wykorzystujac rownania konwertera i uwzgledniajac réwnanie opisujace obciazenie

U,=7,-1,)=U, impedancja wejSciowa uktadu dana jest zalezno$cia

Zw=gi:—l£——=—z“ (18.9)
I, -K/(-1,) K,

1

Jak z powyzszego réwnania wynika konwerter ujemno-impedancyjny obciazony impedancja
Z, reprezentuje soba (z punktu widzenia wejScia) impedancj¢ ujemna —Z, /K,. Podobna
wlasno$¢ ma konwerter ujemno-impedancyjny napigcia (VNIC).

Cecha ta moze by¢ wykorzystana do realizacji rezystancji ujemnej. Mianowicie
przyjmujac obciazenie konwertera rezystancja Z, = R, otrzymuje si¢ impedancj¢ wejSciowa
rowna Z,, =—R, /K,. Nalezy pamigta¢, ze ujemna rezystancja zastosowana samodzielnie
prowadzi do niestabilno$ci ukladu (wobec ujemnych warto$ci rezystancji bieguny uktadu
znajda si¢ w prawej potptaszczyznie). Z tego wzgledu stosuje si¢ ja zwykle w specjalnych
polaczeniach z innymi elementami obwodowymi zapewniajacymi stabilne dziatanie uktadu.

Konwerter ujemno-impedancyjny jest tatwo realizowalny w technologii scalonej przy
wykorzystaniu tranzystorOw lub wzmacniaczy operacyjnych. Z tego wzgledu jest chgtnie
wykorzystywany w elektronice przy realizacji filtréw, generatoréw i innych uktadéw

przetwarzania sygnatow.

18.3 Idealny wzmacniacz napigciowy

Idealny wzmacniacz napigcia jest czwornikiem opisanym nastgpujaca macierza hybrydowa

o ol
= (18.10)
Uu,| |Aa o]1,

Jak wynika z powyzszej zaleznosci idealny wzmacniacz napi¢ciowy nie pobiera pradu
(impedancja wejsciowa rOwna nieskonczonosci) a przetwarza jedynie napigcie wejsciowe w

wyjsciowe zgodnie z relacja

U, =AU, (18.11)
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Oznaczenie techniczne wzmacniacza i odpowiadajacy mu schemat obwodowy reprezentujacy

rownanie (18.10) przedstawia rys. 18.5.

Lo : O

Rys. 18.5. Oznaczenie wzmacniacza napigciowego o skonczonym wzmocnieniu A

Wejscie uktadu stanowi przerwe (impedancja wejsciowa réwna nieskonczonosci). Na wyjsciu
istnieje jedynie idealne zrédlo napigcia sterowane napigciem. Stad impedancja wyjsciowa

takiego uktadu jest réwna zeru.

18.4 Idealny wzmacniacz operacyjny

Wzmacniacz operacyjny jest szczegdlnym rodzajem wzmacniacza napigciowego niezwykle
waznym i czesto stosowanym przy realizacji innych uktadéw. Jego oznaczenie oraz zastepczy

schemat obwodowy przedstawia rys. 18.6.

Rys. 18.6. Oznaczenie idealnego wzmacniacza operacyjnego

)

Idealny wzmacniacz operacyjny nie pobiera pradu na wejsciu (impedancja wejsciowa réwna

nieskonczono$ci) a jego napigcie wyjsciowe jest proporcjonalne do wejsciowego napigcia
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réznicowego U, =U"-U", przy czym U jest napigciem wejécia nieodwracajacego a U~

napigciem wejscia odwracajacego wzmacniacza

U, =AU, (18.12)

Przy zatozeniu idealno$ci wzmacniacza operacyjnego wartos¢ wzmocnienia A dazy do
nieskonczonos$ci. Biorac pod uwage, ze napigcie wyjsciowe wzmacniacza moze przyjmowac
jedynie wartosci skonczone, napigcie réoznicowe U, w idealnym wzmacniaczu operacyjnym
musi by¢ réwne zeru. Idealny wzmacniacz operacyjny zachowuje si¢ wigc tak, jakby stanowit
na wejsciu jednoczes$nie zwarcie i rozwarcie. W efekcie idealny wzmacniacz operacyjny
charakteryzuje si¢ nastgpujacymi wlasciwosciami:

® nieskonczona warto$¢ wzmocnienia napieciowego

e zerowa wartos¢ impedancji wyjsciowe;j

¢ nieskonczona impedancja wejsciowa

e gpetnienie wszystkich powyzszych cech dla zakresu czgstotliwosci od zera do

nieskonczonosci.

Na rys. 18.7 przedstawiono obwodowy schemat zastgpczy idealnego wzmacniacza

operacyjnego, wykorzystujacy zrédio napigcia sterowane napigciem.

O—
i
D—
- U=AL,
Al
U+
e 1

Rys. 18.7. Schemat zastgpczy idealnego wzmacniacza operacyjnego

W rzeczywisto$ci wzmacniacz operacyjny realizowany w technologii scalonej ma skonczona
wartos¢ zaréwno impedancji wejsciowe] (rzgdu megaoméw) jak 1 wzmocnienia
napigciowego. Co wigcej wzmocnienie napigciowe jest w istotny sposéb zalezne od
czgstotliwosci 1 zmienia si¢ od wartosci okoto miliona dla napieé statych (f=0) do wartosci
rownej jeden przy czgstotliwosci rzedu megahercéw. Impedancja wyjsciowa wzmacniacza

rzeczywistego przyjmuje wartos¢ okoto 70Q zamiast warto$ci zerowej w przypadku
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idealnym. Wartosci powyzsze moga si¢ zmienia¢ w zaleznos$ci od technologii wykonania. W
zakresie czg¢stotliwosci do 1kHz rzeczywisty wzmacniacz operacyjny z duzym przyblizeniem

moze by¢ jednak traktowany jako idealny.

18.5 Wybrane zastosowania wzmacniaczy operacyjnych

Wzmacniacz operacyjny dzigki swoim unikalnym cechom znalazl ogromne zastosowanie w
technice elektronicznej. Tutaj ograniczymy si¢ do wybranych zastosowan, w tym realizacji
wzmacniacza sumacyjnego, uktadu calkujacego, uktadu rézniczkujacego, przesuwnika

fazowego, konwertera ujemno-impedancyjnego oraz zyratora.

18.5.1 Wzmacniacz sumacyjny
Wzmacniacz sumacyjny jest uktadem dokonujacym sumowania napig¢ wejSciowych z
odpowiednia, zadana waga. Jesli sygnaly wejSciowe oznaczymy jako U,, to napigcie

wyjsciowe wzmacniacza sumacyjnego dane jest w postaci sumy wazonej

U,=2 kU, (18.13)
J

Wagi k; oznaczaja wzmocnienie (dodatnie lub ujemne) odpowiedniego sygnatu U; w uktadzie.
Schemat uktadu sumujacego sygnaty wejsciowe z dowolna waga przy ograniczeniu si¢ do
jednego sygnatu o wzmocnieniu ujemnym i jednego o wzmocnieniu dodatnim przedstawiono

narys. 18.8.
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Rys. 18.8. Schemat sumatora dwu sygnatow

Wobec przyjetych oznaczen elementéw i napie¢ weztowych z pradowego prawa Kirchhoffa

napisanego dla dwu weztéw obwodu wynikaja nastgpujace rownania

G,U,-ut)=Gu*

G, -v)=6,u +G,U -v,) (18.14)

Ze wzgledu na nieskonczong warto§¢ wzmocnienia wzmacniacza operacyjnego napigcie w

obu punktach sumacyjnych wzmacniacza jest sobie réwne, to znaczy
U'=U" (18.15)
Z rozwigzania tego uktadu réwnan wynika

U=

=2 y 18.16
Gy +G, ° ( )

oraz
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_&G5+G1+Gf G,

. U,-—+U (18.17)
G, G;j+G, ° ‘

U
0 Gf

Przy dwu sygnatach wejsciowych sygnat wyjsciowy wzmacniacza sumacyjnego jest wiec

rowny sumie wazonej sygnatow wejsciowych
U,=kU,+kU, (18.18)

przy czym wspétczynniki wzmocnieh obu toréw

K =-51 (18.19)

L _G, G, +G,+G,

18.20
* G, G;+G, ( )

!
sa przeciwnego znaku. Przedstawiona powyze] struktura wzmacniacza pozwala wigc
zrealizowa¢ dowolne wzmocnienie, zarowno dodatnie jak i ujemne. Zauwazmy, ze jesli

przyjmiemy zréwnowazony uklad rezystoréw, spelniajacy warunek réwnosci sumy

konduktancji wlaczonych w obu weztach sumacyjnych
G, +G,+G, =G| +G, (18.21)

to wyrazenie na wzmocnienie k, upraszcza si¢ do postaci analogicznej jak wzmocnienie kj,

czyli

k, =—2 (18.22)

Przy spetnieniu warunku zréwnowazenia konduktancji w weztach sumacyjnych oba
wzmocnienia (dodatnie i ujemne) sa okreslone jako stosunek odpowiedniej dla danego toru

konduktancji wejSciowej do konduktancji sprzezenia zwrotnego Gy Reguta doboru
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rezystorow dla uzyskania odpowiedniego wzmocnienia jest wigc bardzo prosta, a
poszczegdlne tory nie wpltywaja na siebie.
Co wigcej przedstawiony tu uktad wzmacniacza sumacyjnego tatwo jest uogélni¢ na

sumator o dowolnej liczbie wejs¢ 1 wyjs¢ przez dodanie nastgpnych kanatéw.

Rys. 18.9. Schemat sumatora wielowej$ciowego o wzmocnieniach dodatnich 1

ujemnych
Na rys. 18.9 przedstawiono schemat sumatora o wielu wejsciach odwracajacych realizujacych
wzmocnienia ujemne i nieodwracajacych realizujacych wzmocnienia dodatnie pozwalajacych

uzyska¢ dowolne, niezalezne od siebie wartoSci wzmocnieh w kanale przy spetnieniu

warunku zréwnowazenia konduktancji w weztach dodatnim i ujemnym

G, +G,+Y .G, =G, +Y.G; (18.23)
k=1 k=1
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Wzmocnienia w poszczegdlnych torach sa wyrazone wzorami identycznymi do przypadku

uktadu o dwu wejsciach

km=——"1L 18.24
; G, ( )
dlai=12,...,n oraz
k= G, (18.25)
Gf

dla i=12,..,n". Warunek zréwnowazenia jest tatwy do spelnienia ze wzgledu na

wystapienie nadmiarowych warto$ci konduktancji doziemnych G, oraz G, .

18.5.2 Uktad catkujqcy

Schemat uktadu realizujacego operacj¢ catkowania z wykorzystaniem wzmacniacza

operacyjnego jest przedstawiony na rys. 18.10.

Rys. 18.10. Schemat uktadu catkujacego

Przyjmujac wzmacniacz jako idealny 1 wykorzystujac fakt, ze wzmacniacz nie pobiera pradu
a jego napigcie réznicowe jest rowne zeru otrzymuje si¢ nast¢pujace réwnania opisujace

uktad

U, =RI (18.26)
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U =——1 18.27
: sC ( )

Z przeksztalcenia tych réwnan wynika wzdr na transmitancj¢ napigciowa

T(s)=&: !

18.28
U, SRC ( )

Z poréwnania wzoru z zalezno$cia definicyjna ukladu catkujacego T'(s)=k/s wynika, Ze

obwdd z rys. 18.10 realizuje czton catkujacy ze wspodtczynnikiem k =-——. Wartos¢

wspotczynnika k jest ujemna.

18.5.3 Uktad rozniczkujqcy

Schemat uktadu realizujacego operacj¢ rézniczkowania o transmitacji  7'(s) = ks

z
wykorzystaniem wzmacniacza operacyjnego jest przedstawiony na rys. 18.11.

Rys. 18.11. Schemat uktadu rézniczkujacego

Podobnie jak w przypadku poprzednim przyjmujemy wzmacniacz jako

idealny.
Uwzgledniajac to otrzymuje sig nastepujace roOwnania opisujace uktad.
U, = L Il (18.29)
'osC '
U, =-RI (18.30)
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Z przeksztatcenia tych réwnan wynika wzor na transmitancj¢ napigeciowa uktadu

T(s)=%=—sRC (18.31)

1

Z poréwnania transmitacji z zaleznoscia definicyjna 7'(s) = ks wynika, ze obwdd z rys. 18.11
realizuje czlon rézniczkujacy ze wspoélczynnikiem k =—-RC. Warto$¢ wspotczynnika jest

ustalana poprzez dobor rezystancji i pojemnosci uktadu.

18.5.4 Uktad przesuwnika fazowego

Schemat uktadu przesuwnika fazowego przedstawiony jest na rys. 18.12.

I:Ef
I:] | 1
R, !
u, > -

i o0 —o0 U,

> +
R L4

C

Rys. 18.12. Schemat przesuwnika fazowego

Po uwzglednieniu idealno$ci wzmacniacza otrzymuje si¢ nastgpujace réwnania opisujace

obwod

U, =(R+lj12 (18.32)
S
U, =2R, 1, +U, (18.33)
1
Uy =R, 1+, (18.34)
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Z pierwszego i drugiego rownania wynika

U,

__Y 18.35

* R+1/sC (183

=Y (18.36)
2R,

Po podstawieniu tych wielkosci do wzoru trzeciego opisujacego napigcie wyjsciowe

otrzymuje si¢

U1_U2+L U, _—s+1/RC
2Rf sC R+1/sC s+1/RC

U, (18.37)

Transmitancja napig¢ciowa uktadu wynikajaca z powyzszego wzoru jest wigc nastgpujaca

U _
T(s)=—2= :M (18.38)
U, s+1/RC

Z poréwnania tego wyniku z ogélna postacia transmitancji przesuwnika fazowego

T(s):—s+a

(18.39)
s+a

wynika, ze uktad z rys. 18.12 realizuje przesuwnik fazowy z wartoscia parametru a okreslong

wyrazeniem

a=1/RC (18.40)

Sterujac wartos$cia rezystancji R lub pojemnoscia C mozemy zatem ksztaltowac

charakterystyke fazowa przesuwnika 1 kat przesunig¢cia migdzy napigciem wejSciowym i

wyjsciowym.
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18.5.5 Konwerter ujemno-impedancyjny (NIC)

Schemat obwodu przedstawiajacego realizacj¢ konwertera ujemno-impedancyjnego pradu

przedstawiony jest na rys. 18.13.

¥ -
L

f
r

o
o

Rys. 18.13. Schemat uktadu INIC

Po uwzglednieniu idealno$ci wzmacniacza operacyjnego z réwnan Kirchhoffa wynikaja

nastgpujace zwiazki

U, =U, (18.41)
R, =R,I, (18.42)

Mozna je zapisa¢ w formie réwnania tancuchowego czwornika

1 0
Rﬂ: g K {_U;} (18.43)

odpowiadajacego doktadnie opisowi konwertera ujemno-impedancyjnego pradu ze stalg

konwersji

K="z (18.44)
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Ustalenie wartosci tej stalej odbywa si¢ poprzez odpowiedni dobdr rezystancji wystepujacych

w ukladzie.

18.5.6 Zyrator

Zyrator jest wyjatkowo waznym elementem obwodu, stosowanym powszechnie w
elektronice. Sposréd wielu istniejacych realizacji obwodowych pokazemy jedna, tatwa w
praktycznej implementacji stosujaca wzmacniacze sumacyjne napigciowe o skonczonych

wzmocnieniach réwnych 1. Schemat obwodowy zyratora przedstawia rys. 18.14.

Rys. 18.14. Uktad realizacji zyratora wykorzystujacy wzmacniacze sumacyjne

Przy zatozeniu idealnosci wzmacniaczy (impedancja wejsciowa nieskonczona, impedancja

wyjs$ciowa zerowa) prady wejsciowy i wyjsciowy uktadu opisuja relacje

I,=G.[u,-(U,-U,)]=GU, (18.45)
L,=G[u,-(U,+U,)|=-G.U, (18.46)

Roéwnanie admitancyjne uktadu dane jest wigc w postaci
I, 0 G, | U,
— , (18.47)
I, -G, 0]U,

z ktérej wynika, ze konduktancja zyracji jest rowna konduktancji G, wystepujacej w uktadzie.
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18.6 Analiza ukladéw ze wzmacniaczami operacyjnymi metoda graféw przeplywu

sygnalow Masona

Efektywna analiza uktadoéw elektronicznych zawierajacych wzmacniacze operacyjne przy
bezposrednim uzyciu praw Kirchhoffa jest mozliwa jedynie dla obwodéw zawierajacych mata
liczbe wzmacniaczy. Przy analizie duzych uktadéw o wielu wzmacniaczach operacyjnych

najbardziej efektywne pozostaje zastosowanie metody graféw przeptywowych Masona.

18.6.1 Podstawowe pojecia graféow Masona

Graf Masona jest graficznym odzwierciedleniem uktadu réwnan liniowych i odpowiada
przeptywowi sygnaléw w obwodzie elektrycznym. Wyr6zni¢ w nim mozna we¢zly,
odpowiadajace zmiennym wystgpujacym w réwnaniu oraz galgzie opisane wagami,
odpowiadajace wspoétczynnikom réwnan. Przyktadowo, jesli dany jest uktad réwnan

liniowych

ay X +apx, = F

(18.48)
Ay X +apx, =1,
to w pierwszej kolejnosci nalezy go przeksztatci¢ do postaci
x; =(ay +Dx; +ap,x, — F
1 = (@ + DX +apx, - F (18.49)

Graf Masona odpowiadajacy powyzszemu uktadowi réwnan przedstawiony jest na rys. 18.15

Rys. 18.15. Graf Masona odpowiadajacy uktadowi rownan liniowych (18.49)
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Kazdemu weztowi grafu odpowiada zmienna x; (i = 1, 2 w przyktadzie) lub wymuszenie
jednostkowe. Wezty polaczone sa galeziami, ktérym przyporzadkowane sa wspotczynniki
przy poszczegllnych zmiennych ukladu réwnan (18.49). Wspdiczynniki te, zwane
wzmocnieniami (transmitancjami) gal¢zi stanowia wagi, z jakimi sumowane sa zmienne w
poszczegbdlnych weztach. Sygnal wezta (zmienna x;) jest rOwny sumie wagowej sygnatéw
doptywajacych do danego wezla. W grafie mozna wyrézni¢ petle skladajace si¢ z galgzi
jednakowo skierowanych tworzacych zamknigty cykl (bez powtérzen gatezi i weztéw). W
szczegblnosci petle moze tworzy¢ jedna galaz wychodzaca i wchodzaca do tego samego
wezla. Transmitancja petli jest réwna iloczynowi wzmocnien (transmitancji) galezi
tworzacych petle.

Jedna z najwazniejszych zalet graféw Masona jest prosta regula topologiczna
okreslajaca dowolny sygnat w grafie. Reguta ta dotyczy transmitancji definiowanej jako
stosunek sygnatu dowolnego wezta grafu uznanego za wyjsciowy do sygnalu wezla

zrodlowego, czyli wezla z ktérego sygnaty jedynie odptywaja (w przykladzie takim weziem

Xy

jest wezet o sygnale rownym jeden). Oznaczmy t¢ transmitancj¢ przez T =——. Zgodnie z

we

regula Masona transmitancje¢ t¢ okresla wzor

szAk
T==+
A

(18.50)

W powyzszym wyrazeniu A oznacza wyznacznik gtéwny grafu okreslany zgodnie ze wzorem

A=1-YG+YGG,~ Y GGG, +.. (18.51)
i ij

i,j.k

We wzorze tym pierwsza suma oznacza sumowanie po wszystkich transmitancjach petli G;
istniejacych w grafie. Suma druga dotyczy iloczynéw transmitancji pgtli roztacznych branych
po dwie naraz. Suma trzecia dotyczy iloczyndéw transmitancji pegtli roztacznych branych po
trzy. Rozwinigcie wyznacznika prowadzi si¢ az do wyczerpania wszystkich mozliwych
kombinacji wielokrotnych petli roztacznych, biorac sumy na przemian ze znakiem plus i

minus, jak to pokazano we wzorze (18.51).
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Wyrazenie > 7;A, w liczniku transmitancji dotyczy sumowania po wszystkich
k

drogach prowadzacych od wezta zrédlowego (wejsciowego) do wezla wyjsciowego, przy
czym Ty oznacza iloczyn wzmocnien gatezi prowadzacych od zrédta do wezta wyjsciowego a
Ay jest wyznacznikiem A okreslonym dla tej czesci grafu (podgrafu), ktéra jest roztaczna z k-
ta droga Ty (przy braku petli w podgrafie wyznacznik A jest tozsamosciowo rowny 1).

Z rozwiazania grafu z rys. 18.15 przy pomocy reguly Masona otrzymuje si¢

nastgpujace transmitancje (wezet zrédtowy jest skojarzony z sygnalem jednostkowym):

T =y = Fay, - F,a,
! 1
1_[(a11 +1)+ (azz +1)+a12a21]+ (all +1)(a22 +1)
T,=x, = - Fa, - F,aq,,

I- [(au + 1)+ (azz + 1)+ Ay, Ay, ]+ (all + 1)(“22 + 1)

Rozwigzania na wartosci zmiennych x; i x; uktadu réwnan (18.48) uzyskano bezposrednio na
podstawie reguly topologicznej Masona zastosowanej wzgledem grafu z rys. 18.15. W
identyczny sposOb mozna wyznaczy¢ rozwigzanie dowolnie ztozonego systemu opisanego

poprzez graf Masona.

Jako nastepny przyktad rozpatrzmy graf przepltywu sygnatéw przedstawiony na rys. 18.16, o

wzmocnieniach gatezi opisanych literami a, b, c, ... [.

Rys. 18.16. Graf przeptywu sygnatéw do przyktadu
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Stosujac regute Masona wyznaczymy transmitancje 7' =2 Bezposrednio na podstawie

xwe

analizy struktury grafu otrzymuje si¢

_ aej(1=1)+bgk(1—h)+adgk(1—-h)+adfj(1—=1)+bcej(1-1)+bfj(1-1)

T
1—(cd +h+1)+(cdh+ cdl + hl)—cdhl

W transmitancji tej wyrazenie mianownika (wyznacznik gléwny A) zawiera trzy sktadniki
zwigzane z petlami (suma wzmocnien wszystkich petli, iloczynéw wzmocnien petli

rozlacznych branych po dwa i pgtli roztacznych branych po trzy).

18.6.2 Zastosowanie grafu Masona w analizie obwodow ze wzmacniaczami

Graf Masona mozna narysowac dla kazdego obwodu, w szczegdlnosci obwodu zawierajacego
wzmacniacze napigciowe, bez konieczno$ci wypisywania ukladu réwnan opisujacych ten
obwdd. Aby stworzy¢ reguty automatycznego tworzenia grafu rozpatrzmy wybrane rodzaje
polaczen elementéw sktadowych obwodu. Na rys. 18.17a przedstawiono typowe potaczenie

elementow pasywnych w wezle k.

vl'l
(s ]
V, .’
2 ¢5
Yek Yk
Vi© > Vi
Y
Ysk

a) b)

Rys. 18.17. Typowe potaczenie elementéw pasywnych w wezle (a)

oraz graf Masona odpowiadajacy takiemu potaczeniu (b)

Z prawa pradowego Kirchhoffa dla tego wezta wynika nastgpujace rOwnanie
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Y,(V, -V )+ Y, (V, =V, )+...+Y,(V, -V, )=Y,V, (18.52)

Po prostych przeksztalceniach otrzymuje si¢

Vi :EV1 +£V2 +..+ f V., (18.53)
sk Ysk sk

gdzie Yy jest suma admitancji wtaczonych w wezle k-tym, Y, =Y, +>Y;. Powyzszemu

i=1
rownaniu odpowiada graf Masona przedstawiony na rys. 18.17b. Graf ten ma strukturg
podobna do struktury obwodu, przy czym kazdemu elementowi Y; (i = 1, 2, ..., n) odpowiada
wzmocnienie gal¢zi grafu réwne L Kazda galaz jest skierowana do wezta Vi, ktérego
sk

reprezentacj¢ graficznag w danej chwili tworzymy. Biorac pod uwageg powyzsze, graf
odpowiadajacy weztowi z rys. 18.17a moze by¢ utworzony automatycznie bez potrzeby
pisania rownan Kirchhoffa.

W przypadku obwodu zawierajacego wzmacniacze napigciowe konieczne staje sig
podanie regulty tworzenia grafu odpowiadajacego wzmacniaczowi. Na rys. 18.18a
przedstawiony jest wzmacniacz napigciowy o dwu wejsciach (inwersyjnym i nieinwersyjnym)
o wzmocnieniu A w obu torach (w szczegdlnosci wzmocnienie A moze dazy¢ do

nieskonczonosci, jak to ma miejsce w idealnych wzmacniaczach operacyjnych).

Vi

Rys. 18.18. Model wzmacniacza napigciowego o dwu wejsciach (a) i jego graf Masona (b)

Napigcie wyjsciowe V, wzmacniacza opisuje wyrazenie

V,=AV,— AV,
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ktéremu mozna przyporzadkowa¢ bezposrednio graf Masona przedstawiony na rys. 18.18b.
Budujac graf dla ztozonego obwodu elektrycznego nalezy wyrézni¢ w nim wezty i
zwigzane z nimi potencjaly weztowe. Wezlem zrodtowym (niezaleznym) grafu jest zrodto
wymuszajace istniejace w obwodzie, wzglgedem ktérego definiowana jest transmitancja 7. Z
tego wezla sygnaly moga jedynie odptywaé. Budowg grafu rozpoczynamy od ulozenia
wszystkich weztéw grafu w ukladzie podobnym do ich rozmieszczenia w obwodzie.
Nastepnie budujemy oddzielnie reprezentacj¢ graficzna dla kazdego wezla reprezentujacego
zmienng zalezna korzystajac badz z reguty dotyczacej wezla z elementami pasywnymi (rys.
8.17) badz wezta odpowiadajacego wzmacniaczowi (rys. 18.18). Jesli wezet potozony jest na
wyj$ciu  wzmacniacza jego reprezentacja graficzna odpowiada wzmacniaczowi, w

przeciwnym wypadku we¢ztowi ,,pasywnemu’.
18.6.3 Przyktady zastosowania grafow w analizie obwodow
Przyklad 18.1

Spos6b automatycznego tworzenia grafu dla obwodu elektrycznego przedstawimy na

przykladzie obwodu z rys. 18.19.

Rys. 18.19. Przykiad obwodu ze wzmacniaczem operacyjnym

Obwod zawiera trzy wezly zalezne (Vi, Vo 1 Uyy), W zwiazku z tym nalezy zbudowac
reprezentacj¢ graficzna dla kazdego z nich (Vi 1 V, — wezly pasywne, U,y — wgzel na wyjsciu
wzmacniacza). Na rys. 18.20 przedstawiono graf przeptywu sygnatéw odpowiadajacy

obwodowi z rys. 18.19.
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UWE

Rys. 18.20. Graf przeptywu sygnatéw odpowiadajacy obwodowi z rys. 18.19

Z reguty Masona zastosowanej do tego grafu wynika nastgpujace rozwiazanie

YRR
T = wy _ YsZ Ysl
2
Uwe 1— Y3 + A YS +A Y4Y3

Yles2 Y, 2 Yles2

N

gdzie Y, =Y, +Y, +Y;+Y, , Y, =Y; +Y;. Po uproszczeniu wzoru otrzymuje si¢ ostateczng

postac¢ rozwigzania

T = Uwy = — AY]Y%
U, Y,)Y,-Y +AYY +AYY,

we

Przy potraktowaniu wzmacniacza jako idealnego o nieskonczonym wzmocnieniu ( A — oo )

wzOr powyzszy upraszcza si¢ do postaci

_Y1Y3
T Y (Y Y, Y, +Y,)+YY,

stanowiacej czgsto punkt wyjsciowy przy projektowaniu filtréw elektrycznych.
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Przykiad 18.2
Jako przyklad rozpatrzmy obwdd elektryczny RC z pigcioma wzmacniaczami napigciowymi
o skonczonych wzmocnieniach przedstawiony na rys. 18.21. Nalezy wyznaczy¢ transmitancje
napigciowa 7=U,,,/U,,, tego obwodu stosujac metodg graféw przeptywowych Masona.

(V) Y, Yy

.'.--.-\_ _/.---'.l
"\Y‘_‘/’I \ \f 6/

Rys. 18.21. Obwdd elektryczny do przyktadu 18.2

Graf przeptywu sygnaléw odpowiadajacy temu obwodowi, utworzony w sposéb
automatyczny zgodnie z regulami podanymi w punkcie poprzednim, przedstawiony jest na

rys. 18.22.

U wie

Yy
YSE

Rys. 18.22. Graf przeptywu sygnatéw dla obwodu z rys. 18.21
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Po zastosowaniu reguty Masona otrzymuje si¢ nastgpujaca posta¢ transmitancji napigciowej T

obwodu.

RIS (W K3£ Ye
Ys4 sty Ys4 Y YSS Y,

NA% swy
. Yo Ky, Y] KLY,
YSSY YSSY YS4Y Ys4Y

SWy SWy SWy swy

K,

gdzie Y, =Y, +Y,+Y,+Y,, Ys=Ys+Y+Y,, Y, =Y, +Y,. Po uproszczeniu wzoru

s SWy

otrzymuje si¢ rozwigzanie zadania w postaci

(K1Y1Y4 + K, 1LY, )Yss + KV Y Y,
Y, YsY, _Y62Ys4 - K Y vy, _Y42Ys5 —KLYY

swy

Podstawiajac konkretne wartoSci na poszczegélne admitancje obwodu otrzymuje sig

transmitancj¢ operatorowa obwodu T=T7(s).

Przykiad 18.3
Jako nastepny przyklad rozpatrzymy obwdd RC z trzema wzmacniaczami operacyjnymi O

wzmocnieniach A, przedstawiony na rys. 18.23, realizujacymi funkcj¢ transmitancji

napieciowej T(s) = —= .

we

G
— ©
G ] Cz ¥
— = |
o—{  }—
(Vo)

Rys. 18.23. Struktura obwodu RC z trzema wzmacniaczami operacyjnymi
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Graf Masona odpowiadajacy temu obwodowi przedstawiony jest na rys. 18.24. Zawiera on

pie¢ petli, wérdd ktérych wystepuja petle roztaczne po dwie i po trzy.

1
2

Rys. 18.24. Graf Masona odpowiadajacy obwodowi z rys. 18.23
Stosujac regut¢ Masona otrzymuje si¢ nastgpujaca postac transmitancji napigciowe;j.

4G G Gy
Ys2 Ys4 Ys6

T(s)= M(s)

gdzie mianownik transmitancji M(s) dany jest wzorem

1 3
M(s)=1+ 1A+ASC1 + AsC, + A"GyG, +2
2 Ys4 Ys6 Ys2Ys4 Ys4Ys6
Lo Lage 22 3 1 g
42 ) 2_|_AsC1C2_+_AsG2G3C2 L2 -2
Ys4 Ys6 YSZYS4 YSZYS4YS6 Ys2Ys4YsG

W praktyce przyjmuje si¢ zwykle wzmacniacz operacyjny jako element idealny o
wzmocnieniu A — oo . Przy takim zalozeniu transmitancja upraszcza si¢ do postaci funkcji

bikwadratowej typu dolnoprzepustowego
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G,G:G,

T(s)=—
0,55C,C,(G, + G,)+ 5G,G,C, +0,5G,G, (G, + G,)

Zadania sprawdzajgce

Zadanie 18.1

Okresli¢ impedancj¢ wejsciowa uktadu przedstawionego na rys. 18.25.

| i
;
L

We

Rys. 18.25. Schemat uktadu do zadania 18.1.

Rozwiqzanie
Uktad zyratora obciazonego pojemnoscia realizuje soba indukcyjnos¢ L, przy czym L = RfC .

Schemat uktadu po zastgpieniu Zyratora i pojemnosci jedna indukcyjnoscia L przedstawiony

jest narys. 18.26.

Y-

=
0—» 0
o
—

Z

We

Rys. 18.26. Schemat uktadu zastgpczego do rys. 18.15
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Jest to uktad polaczenia rownolegtego rezystancji R i impedancji indukcyjnej Z;=sL, wobec

czego impedancja wejsciowa catego uktadu jest réwna

_R-sL _ sR!RC
" R+sL sR’C+R

Zadanie 18.2

Wyznaczy¢ macierz tancuchowa zastepcza uktadu przedstawionego na rys. 18.27

---------------------------------------

o

Massasassssssnasasasesann basssssasasman LrzrmzEr=rEEzmzzzEzmmmmm=d

Rys. 18.27. Uktad potaczen czwoérnikow do zadania 18.2
Rozwiqzanie
Uktad przedstawiony na rysunku moze by¢ potraktowany jako potaczenie tancuchowe trzech

czwornikéw, jak to przedstawiono na rys. 18.27. Dwa czwdrniki sa zZyratorami o macierzy

tancuchowej

Trzeci czwornik stanowi kondensator C. Macierz fancuchowa tego czwoérnika wyraza sig

WZOorem

1 0
A, =
sC 1

Macierz tancuchowa uktadu 3 czwoérnikéw potaczonych kaskadowa wyraza si¢ wzorem
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AcAAA | O R Ofo R 1 sCR
R G o sc 16 1] o 1

z

Latwo mozna pokazaé, ze wynik koncowy odpowiada czwdérnikowi o strukturze

przedstawionej na rys. 18.28, z indukcyjnoscig nieuziemiona rowng L = CRZ2 .

o o

Rys. 18.28. Schemat zastgpczy potaczenia czwérnikow z rys. 18.17

Zadanie 18.3
Zrealizowac uktad sumatora tréjwejSciowego z wykorzystaniem wzmacniacza operacyjnego o

wzmocnieniach rownych k, =-1, k, =5, k; =2.

Rozwiqzanie

Wykorzystamy w realizacji schemat uktadu z rys. 18.9. Przyjmiemy arbitralnie wartos¢
rezystancji Ry sprzgzenia zwrotnego rowna Ry=10kQ, co odpowiada konduktancji
G, =107*S. Dla uzyskania wzmocnienia k; = -1 nalezy przyja¢ G, =10"*S, co odpowiada
R =10kQ. Realizacja k,= -5 wymaga zastosowania G, =5-10"*S (R, = 2kQ). Uzyskanie
ky=2 jest mozliwe przy wyborze G; =2-10"S (R} =5k€). Warunek zréwnowazenia

konduktancji w obu weztach wejSciowych wzmacniacza wymaga, aby
G, +G, +G; +G, =G; +G;

Podstawiajac  odpowiednie = warto$ci otrzymuje si¢ nastgpujaca posta¢  warunku

zréwnowazenia konduktancji
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G, +7-10" =G} +2-10™

Przyjmujac G, =0 (brak rezystora) oraz G; =5-10"S (R} =2kQ) otrzymuje si¢ schemat

uktadu sumatora przedstawiony na rys. 18.29.

10 ko 10 ko2
I“"|1 [ | |

2k
o—~_ | -

o0 ——0 U,

U, +

5k

2 ke

Rys. 18.29. Schemat sumatora trojwejsciowego do zadania 18.3
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