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Lekcja 1. Podstawowe prawa obwodów elektrycznych 

 

Wst�p 
Lekcja pierwsza wprowadza podstawowe poj�cia i prawa obwodów elektrycznych, w tym 

pr�d i napi�cie, elementy liniowe obwodu w postaci rezystora, cewki i kondensatora oraz 

�ródła sterowane i niezale�ne. Najwa�niejszym prawem teorii obwodów jest prawo pr�dowe i 

napi�ciowe Kirchhoffa, podane tutaj w postaci ogólnej. Z prawa Kirchhoffa wynikaj� reguły 

upraszczania obwodów, zdefiniowane dla poł�czenia szeregowego, równoległego oraz 

transfiguracji gwiazda-trójk�t i trójk�t-gwiazda. 

 
 

1.1. Podstawowe poj�cia obwodów 

Teoria obwodów stanowi jedn� z dziedzin elektrotechniki zajmuj�c� si� stron� teoretyczn� 

zjawisk wyst�puj�cych w obwodach elektrycznych, w tym metodami analizy rozpływu 

pr�dów i rozkładu napi�� obwodu w stanie ustalonym i nieustalonym. Przyjmuje si�, �e 

no�nikami elektryczno�ci s� cz�stki elementarne: elektrony i protony wyst�puj�ce w atomie. 

W przypadku przewodników elektrycznych najwa�niejsz� rol� odgrywaj� elektrony 

swobodne, stanowi�ce trwałe no�niki ujemnego ładunku q, wyzwolone z przyci�gania j�dra 

atomu oraz jony, stanowi�ce cz�steczki naładowane dodatnio lub ujemnie. Ładunek 

elektryczny elektronu, oznaczany jest liter� e a jego warto�� e=1,602⋅10-19C. 

Pr�d elektryczny powstaje jako uporz�dkowany ruch ładunków elektrycznych i jest uto�samiany 

w teorii obwodów z poj�ciem nat��enia pr�du elektrycznego. W ogólno�ci definiowany jest jako 

granica stosunku ładunku elektrycznego przepływaj�cego przez przekrój poprzeczny elementu do 

rozpatrywanego czasu, gdy czas ten d��y do zera. Pr�d elektryczny oznaczany b�dzie liter� i (du�� lub 

mał�). Jest wielko�ci� skalarn� a jej jednostk� w układzie SI jest amper (A). 

Ka�demu punktowi w �rodowisku przewodz�cym pr�d elektryczny mo�na przyporz�dkowa� 

pewien potencjał mierzony wzgl�dem punktu odniesienia. Ró�nica potencjałów mi�dzy dwoma 

punktami tego �rodowiska nazywana jest napi�ciem elektrycznym. Jednostk� napi�cia elektrycznego 

jest volt (V). 
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1.2. Elementy obwodu elektrycznego 

Za obwód elektryczny uwa�a� b�dziemy takie poł�czenie elementów ze sob�, �e istnieje mo�liwo�� 

przepływu pr�du w tym poł�czeniu. Obwód jest odwzorowywany poprzez swój schemat, na którym 

zaznaczone s� symbole graficzne elementów oraz sposób ich poł�czenia ze sob�, tworz�cy okre�lon� 

struktur�.  

Na struktur� obwodu elektrycznego poza elementami składaj� si� równie� gał�zie, w�zły i 

oczka. Gał�� obwodu jest tworzona przez jeden lub kilka elementów poł�czonych ze sob� w 

okre�lony sposób. W�złem obwodu jest zacisk b�d�cy ko�cówk� gał�zi, do którego mo�na doł�czy� 

nast�pn� gał�� lub kilka gał�zi. Gał�� obwodu tworz� elementy ograniczone dwoma w�złami. Oczko 

obwodu to zbiór gał�zi poł�czonych ze sob� i tworz�cych drog� zamkni�t� dla pr�du elektrycznego. 

Oczko ma t� wła�ciwo��, �e po usuni�ciu dowolnej gał�zi ze zbioru pozostałe gał�zie nie tworz� drogi 

zamkni�tej. W obwodzie o zadanej strukturze istnieje �ci�le okre�lona liczba w�złów, natomiast liczba 

oczek jest wprawdzie sko�czona ale bli�ej nieokre�lona. 

Element jest cz��ci� składow� obwodu niepodzieln� pod wzgl�dem funkcjonalnym bez utraty 

swych cech charakterystycznych. Na elementy obwodu składaj� si� �ródła energii elektrycznej oraz 

elementy akumuluj�ce energi� lub rozpraszaj�ce j�. W ka�dym elemencie mog� zachodzi� dwa lub 

nawet wszystkie trzy wymienione tu procesy, cho� jeden z nich jest zwykle dominuj�cy. Element jest 

idealny je�li charakteryzuje go tylko jeden rodzaj procesu energetycznego. 

 Elementy posiadaj�ce zdolno�� akumulacji oraz rozpraszania energii tworz� klas� elementów 

pasywnych. Nie wytwarzaj� one energii a jedynie j� przetwarzaj�. Najwa�niejsze z nich to rezystor, 

kondensator oraz cewka. Elementy maj�ce zdolno�� generacji energii nazywane s� �ródłami. 

Zaliczamy do nich niezale�ne �ródło napi�cia i pr�du oraz �ródła sterowane.  

 Ka�dy element obwodu mo�e by� opisany równaniami algebraicznymi lub ró�niczkowymi, 

wi���cymi pr�d i napi�cie na jego zaciskach. Element jest liniowy, je�li równanie opisuj�ce go jest 

liniowe. W przeciwnym wypadku element jest nieliniowy. 

1.2.1. Rezystor 

Rezystor, zwany równie� opornikiem nale�y do klasy elementów pasywnych rozpraszaj�cych energi�. 

W teorii obwodów rezystor uwa�a si� za element idealny i przypisuje mu tylko jedn� cech� 

(parametr), zwan� rezystancj� lub oporem. W dalszej cz��ci rozwa�a� b�dziemy wył�cznie rezystor 

liniowy. Rezystancj� (oporno��) oznacza� b�dziemy liter� R a jej odwrotno�� jest nazywana 

konduktancj� i oznaczana liter� G, przy czym R = 1/G. Symbol graficzny rezystora liniowego 

przedstawiony jest na rys. 1.1.  
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Rys. 1.1. Oznaczenie rezystora liniowego 

 

Opis matematyczny rezystora wynika z prawa Ohma, zgodnie z którym 

 

 RR Riu =  (0.1) 

 

Spadek napi�cia na rezystorze liniowym jest proporcjonalny do pr�du przepływaj�cego przez niego a 

współczynnik proporcjonalno�ci jest równy rezystancji R. Warto�� rezystancji rezystora liniowego 

przyjmuje warto�� stał�. Jednostk� rezystancji jest om (Ω) a konduktancji siemens (S). 

 W realizacji praktycznej opornik jest wykonywany najcz��ciej z drutu metalowego o długo�ci 

l, polu przekroju poprzecznego S i rezystancji wła�ciwej ρ. Rezystancja takiego opornika jest wprost 

proporcjonalna do l i ρ a odwrotnie proporcjonalna do S, st�d R = ρ l/S. 

 

1.2.2. Cewka 

Cewka zwana równie� induktorem nale�y równie� do klasy elementów pasywnych. Ma 

zdolno�� gromadzenia energii w polu magnetycznym. Cewce idealnej przypisuje si� tylko 

jedn� wła�ciwo��, zwan� indukcyjno�ci� własn� (w skrócie indukcyjno�ci�) L. W przypadku 

cewki liniowej indukcyjno�� definiuje si� jako stosunek strumienia Ψ skojarzonego z cewk� 

do pr�du płyn�cego przez ni�, to znaczy  

 

 
Li

L
Ψ=  (0.2) 

 

Strumie� skojarzony Ψ cewki o z zwojach jest równy sumie strumieni wszystkich zwojów 

cewki, to jest φz=Ψ  (φ - strumie� skojarzony z jednym zwojem cewki, z – liczba zwojów). 

Jednostk� indukcyjno�ci jest henr (H), przy czym 1H = 1Ωs. Napi�cie cewki wyra�one jest 

jako pochodna strumienia wzgl�dem czasu  
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dt

d
uL

Ψ=  (0.3) 

 

W przypadku cewki liniowej, dla której strumie� jest iloczynem pr�du i indukcyjno�ci L, 

LLi=Ψ , relacja napi�ciowo-pr�dowa upraszcza si� do postaci 

 

 
dt

di
Lu L

L =  (0.4) 

 

Na rys. 1.2 przedstawiono symbol graficzny cewki liniowej o indukcyjno�ci L.  

 
Rys. 1.2. Symbol graficzny cewki liniowej 

 

Zauwa�my, �e przy stałej warto�ci pr�du cewki napi�cie na niej jest równe zeru, gdy� 

pochodna warto�ci stałej wzgl�dem czasu jest równa zeru. St�d cewka w stanie ustalonym 

obwodu przy pr�dzie stałym zachowuje si� jak zwarcie.  

Interesuj�ce zjawiska powstaj� w układzie dwu cewek poło�onych blisko siebie, w 

których zachodzi wzajemne przenikanie si� strumieni magnetycznych. Je�li dwie cewki o 

indukcyjno�ciach własnych 1L  i 2L s� tak usytuowane, �e strumie� wytworzony przez jedn� z 

nich jest skojarzony z drug� to takie cewki nazywamy sprz��onymi magnetycznie. Na rys. 1.3 

przedstawiono oznaczenie cewek sprz��onych magnetycznie. Gwiazdkami oznaczono 

pocz�tki uzwoje� ka�dej cewki. 

 
Rys. 1.3. Oznaczenie cewek sprz��onych magnetycznie 
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Obok indukcyjno�ci własnej wprowadza si� dla nich poj�cie indukcyjno�ci wzajemnej M, 

jako stosunek strumienia magnetycznego wytworzonego w cewce pierwszej i skojarzonego z 

cewk� drug� do pr�du płyn�cego w cewce pierwszej, a wi�c 

 

 
2

12

1

21

ii
M

Ψ
=

Ψ
=  (1.5) 

 

gdzie 21ψ oznacza strumie� skojarzony z cewka drug� wytworzony przez pr�d płyn�cy w 

cewce pierwszej a 12ψ  – strumie� skojarzony z cewka pierwsz� wytworzony przez pr�d 

płyn�cy w cewce drugiej. Jednostk� indukcyjno�ci wzajemnej jest równie� henr.  

Istnienie sprz��enia magnetycznego powoduje indukowanie si� napi�� na cewce 

wskutek zmian pr�du płyn�cego w cewce drugiej. Zgodnie z prawem indukcji 

elektromagnetycznej napi�cie wytworzone na skutek indukcji wzajemnej okre�lone jest 

wzorem 

 

 
dt
di

M
dt
di

LuM
21

11 ±=  (1.6) 

 
dt
di

M
dt
di

LuM
12

22 ±=  (1.7) 

 

Znak plus lub minus wyst�puj�cy we wzorze jest uzale�niony od przyj�tego zwrotu pr�du 

wzgl�dem pocz�tku uzwojenia cewki. Przyjmuje si� znak plus, je�li pr�dy w obu elementach 

sprz��onych magnetycznie maj� jednakowe zwroty wzgl�dem zacisków oznaczaj�cych 

pocz�tek uzwojenia (oznaczone na rysunku gwiazdk�). Przy zwrotach przeciwnych przyjmuje 

si� znak minus. Z zale�no�ci powy�szych wida�, �e w elementach sprz��onych magnetycznie 

energia elektryczna mo�e by� przekazywana z jednego elementu do drugiego za 

po�rednictwem pola magnetycznego. Co wi�cej, nawet przy braku przepływu pr�du przez 

cewk�, mo�e na niej pojawi� si� napi�cie pochodz�ce ze sprz��enia magnetycznego od cewki 

drugiej. 

 

1.2.3. Kondensator 

 Kondensator jest elementem pasywnym, w którym istnieje mo�liwo�� gromadzenia 

energii w polu elektrycznym. Kondensatorowi idealnemu przypisuje si� tylko jedn� 
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wła�ciwo�� zwan� pojemno�ci� C. W przypadku kondensatora liniowego pojemno�� C jest 

definiowana jako stosunek ładunku q zgromadzonego w kondensatorze do napi�cia mi�dzy 

okładzinami tego kondensatora 

 
Cu
q

C =  (1.8) 

W układzie SI jednostk� ładunku jest kulomb (C), a pojemno�ci farad (F), przy czym 

1 F = 1 C/V. Zale�no�� wi���ca napi�cie i pr�d kondensatora dana jest w postaci równania 

ró�niczkowego  

 

 
dt

du
Ci C

C =  (1.9) 

 

Symbol graficzny kondensatora przedstawiony jest na rys. 1.4. 

 
Rys. 1.4. Symbol graficzny kondensatora 

 

Podobnie jak w przypadku cewki, je�li napi�cie na zaciskach kondensatora jest stałe, jego 

pr�d jest równy zeru (pochodna warto�ci stałej wzgl�dem czasu jest zerem). Kondensator 

zachowuje si� wtedy jak przerwa (pomimo istnienia napi�cia pr�d nie płynie). 

 

1.2.4. Niesterowane �ródło napi�cia i pr�du 

�ródło niesterowane (niezale�ne) pr�du b�d� napi�cia, zwane w skrócie �ródłem pr�du i 

�ródłem napi�cia, jest elementem aktywnym, generuj�cym energi� elektryczn�, powstaj�c� 

zwykle z zamiany innego rodzaju energii, na przykład z energii mechanicznej, słonecznej, 

j�drowej itp. W teorii obwodów rozwa�a� b�dziemy �ródła idealne nale��ce do klasy �ródeł 

napi�ciowych b�d� pr�dowych. Symbol idealnego niesterowanego �ródła napi�cia 

przedstawiony jest na rys. 1.5a, natomiast �ródła pr�du na rys. 1.5.b.  
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Rys. 1.5. Symbole graficzne niesterowanego �ródła a) napi�cia, b) pr�du 

 

Niesterowane �ródła pr�du i napi�cia maj� nast�puj�ce wła�ciwo�ci. 

• Napi�cie na zaciskach idealnego �ródła napi�cia nie zale�y od pr�du przepływaj�cego 

przez to �ródło, a zatem nie zale�y od jego obci��enia. 

• Przy stałym napi�ciu u panuj�cym na zaciskach oraz pr�dzie i wynikaj�cym z 

obci��enia, rezystancja wewn�trzna idealnego �ródła napi�ciowego, definiowana w 

postaci zale�no�ci ró�niczkowej 0==
di
du

Rw . St�d idealne �ródło napi�cia 

charakteryzuje si� rezystancj� wewn�trzna równ� zeru (zwarcie z punktu widzenia 

rezystancyjnego). 

• Pr�d idealnego �ródła pr�du nie zale�y od obci��enia tego �ródła, a wi�c od napi�cia 

panuj�cego na jego zaciskach.  

• Przy stałym pr�dzie płyn�cym przez idealne �ródło pr�dowe i dowolnym (bli�ej 

nieokre�lonym) napi�ciu panuj�cym na jego zaciskach rezystancja wewn�trzna 

idealnego �ródła pr�dowego jest równa niesko�czono�ci. St�d idealne �ródło pr�dowe 

z punktu widzenia rezystancyjnego reprezentuje sob� przerw�. 

 

Rys. 1.6 przedstawia charakterystyki pr�dowo-napi�ciowe obu rodzajów idealnych �ródeł 

niesterowanych: napi�cia (rys. 1.6a) i pr�du (rys. 1.6b).  
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Rys. 1.6. Charakterystyki pr�dowo-napi�ciowe idealnych �ródeł niesterowanych:  

a) �ródło napi�cia, b) �ródło pr�du 

 
 

Dla �ródła napi�ciowego charakterystyka jest równoległa do osi pr�dowej (warto�� napi�cia u 

stała), a dla �ródła pr�dowego równoległa do osi napi�ciowej (warto�� pr�du i stała). Tak 

podane charakterystyki odnosz� si� do �ródeł stałych. W przypadku �ródeł sinusoidalnych 

idealno�� jest rozumiana jako stało�� parametrów �ródła (amplituda, faza pocz�tkowa oraz 

cz�stotliwo�� niezale�ne od obci��enia). 

 Przykładami �ródła napi�cia stałego jest akumulator, �ródła napi�cia zmiennego - 

generator synchroniczny, �ródła pr�dowego - elektroniczny zasilacz pr�dowy o 

stabilizowanym, niezale�nym od obci��enia pr�dzie, itp. 

 

1.2.5. �ródła sterowane pr�du i napi�cia 

W odró�nieniu od �ródeł niesterowanych, których pr�d lub napi�cie (b�d� parametry 

charakteryzuj�ce je, np. amplituda i cz�stotliwo��) były stałe, ustalone na etapie wytworzenia, 

�ródła sterowane z definicji zale�� od wielko�ci steruj�cych, którymi mog� by� pr�d lub 

napi�cie dowolnego innego elementu w obwodzie. 

�ródło sterowane jest wi�c elementem czterozaciskowym i charakteryzuje si� tym, �e 

napi�cie lub pr�d na jego zaciskach wyj�ciowych s� proporcjonalne do napi�cia lub pr�du 

zwi�zanego z druga par� zacisków steruj�cych. Wyró�ni� mo�na cztery rodzaje �ródeł 

sterowanych: 

• �ródło napi�cia sterowane napi�ciem, opisane równaniem  

12 auu =  

• �ródło napi�cia sterowane pr�dem, opisane równaniem  

12 riu =  

• �ródło pr�du sterowane napi�ciem, opisane równaniem  

12 gui =  

• �ródło pr�du sterowane pr�dem, opisane równaniem  

12 bii =  
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Schematy graficzne wszystkich wymienionych tu rodzajów �ródeł sterowanych pr�du i 

napi�cia przedstawione s� na rys. 1.7.  

 
Rys. 1.7. Schematy graficzne �ródeł sterowanych 

 
 

Wielko�ci r, g oraz a i b stanowi� współczynniki proporcjonalno�ci mi�dzy wielko�ci� 

steruj�ca i sterowan� tych �ródeł. Przyjmuj� one najcz��ciej warto�ci rzeczywiste, cho� w 

ró�nego rodzaju modelach mog� by� równie� opisane funkcj� zespolon�. Nale�y nadmieni�, 

�e �ródła sterowane stanowi� bardzo popularne modele wielu elementów elektrycznych i 

elektronicznych, takich jak transformatory idealne, maszyny elektryczne, tranzystory 

bipolarne i polowe, wzmacniacze operacyjne napi�ciowe i pr�dowe, itp. 

 

1.3. Prawa Kirchhoffa 

Pod poj�ciem analizy obwodu elektrycznego rozumie si� proces okre�lania rozpływu pr�dów 

i rozkładu napi�� w obwodzie przy zało�eniu, �e znana jest struktura obwodu oraz warto�ci 

wszystkich jego elementów. Podstaw� analizy obwodów elektrycznych stanowi� prawa 

Kirchhoffa, podane przez niemieckiego fizyka Gustawa Kirchhoffa w dziewi�tnastym wieku. 

Wyró�nia si� dwa prawa okre�laj�ce rozpływ pr�dów i rozkład napi�� w obwodzie. Pierwsze 

prawo Kirchhoffa kojarzy si� zwykle z bilansem pr�dów w w��le obwodu elektrycznego a 

drugie z bilansem napi�� w oczku. 

 

1.3.1. Prawo pr�dowe 

Suma pr�dów w ka�dym w��le obwodu elektrycznego jest równa zeru 
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 0=�
k

ki  (1.10) 

 

Sumowanie dotyczy wszystkich pr�dów, które dopływaj� lub odpływaj� z danego oczka, przy 

czym wszystkie pr�dy wpływaj�ce do w�zła brane s� z jednakowym znakiem a wszystkie 

pr�dy wypływaj�ce z w�zła ze znakiem przeciwnym (nie jest istotne czy znak plus dotyczy 

pr�dów wpływaj�cych czy wypływaj�cych). Sposób tworzenia równania pr�dowego 

Kirchhoffa zilustrujemy dla jednego w�zła obwodu przedstawionego na rys. 1.8.  

 

 
Rys. 1.8. Przykład w�zła obwodu elektrycznego 

 

Prawo Kirchhoffa dla tego w�zła z uwzgl�dnieniem kierunków pr�dów w w��le zapiszemy w 

postaci 

 

054321 =−−++ iiiii  

 

Mo�na je równie� zapisa� jako bilans pr�dów dopływaj�cych i odpływaj�cych od w�zła w 

postaci 

 

54321 iiiii +=++  

 

Dla ka�dego obwodu mo�na napisa� dokładnie n-1 niezale�nych równa� pr�dowych, gdzie n 

oznacza całkowit� liczb� w�złów a (n-1) liczb� w�złów niezale�nych. Bilans pr�dów w 

pozostałym n-tym w��le obwodu wynika z równa� pr�dowych napisanych dla n-1 w�złów 
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(jest to w�zeł zale�ny zwany w�złem odniesienia). Wybór w�zła odniesienia jest całkowicie 

dowolny. 

 

1.3.2. Prawo napi�ciowe 

Suma napi�� w ka�dym oczku obwodu elektrycznego jest równa zeru 

 

 0=�
k

ku  (1.11) 

 

Sumowanie dotyczy napi�� gał�ziowych wyst�puj�cych w danym oczku zorientowanych 

wzgl�dem dowolnie przyj�tego kierunku odniesienia. Napi�cie gał�ziowe zgodne z tym 

kierunkiem jest brane z plusem a przeciwne z minusem. Sposób pisania równa� wynikaj�cych 

z prawa napi�ciowego Kirchhoffa poka�emy na przykładzie oczka obwodu przedstawionego 

na rys. 1.9. 

 
Rys. 1.9. Przykład oczka obwodu z oznaczeniami napi�� gał�ziowych 

 

Uwzgl�dniaj�c kierunki napi�� gał�ziowych równanie napi�ciowe Kirchhoffa dla tego oczka 

przyjmie posta� 

 

04321 =−−++ euuuu  

 

Mo�na je równie� zapisa� jako bilans napi�� �ródłowych i odbiornikowych w postaci 

 

4321 uuuue −++=  

 

Dla ka�dego obwodu mo�na napisa� tyle równa� oczkowych ile oczek wyodr�bnimy w tym 

obwodzie, przy czym cz��� równa� oczkowych b�dzie równaniami zale�nymi (wynikaj�cymi 
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z liniowej kombinacji innych równa�). Liczba równa� oczkowych branych pod uwag� w 

analizie jest wi�c równa liczbie oczek niezale�nych. 

 

Przykład 1.1 

Napiszmy równania Kirchhoffa dla obwodu z rys. 1.10.  

 
Rys. 1.10. Schemat obwodu poddanego analizie w przykładzie 1.1 

 

Rozwi�zanie 

Zgodnie z prawami Kirchhoffa równania obwodu przyjm� nast�puj�c� posta�. 

• Równania pr�dowe: 
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• Równania napi�ciowe: 

0

0
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Przedstawiony tu układ równa� jest wystarczaj�cy do uzyskania wszystkich innych wielko�ci 

pr�dowych b�d� napi�ciowych w obwodzie. Nale�y go jedynie uzupełni� o równania 

definicyjne wi���ce pr�d i napi�cie ka�dego elementu. Po takim uzupełnieniu uzyskuje si� 

pełny opis obwodu a jego rozwi�zanie pozwala wyznaczy� rozpływ pr�dów i rozkład napi�� 

w obwodzie. 

Szczególnie proste zale�no�ci otrzymuje si� dla obwodu rezystancyjnego, 

zawieraj�cego oprócz �ródeł wymuszaj�cych jedynie rezystory oraz (ewentualnie) �ródła 

sterowane o rzeczywistych współczynnikach sterowania. Dla takich obwodów równania 

elementów rezystancyjnych s� dane w postaci zale�no�ci algebraicznych, które wstawione do 

równa� Kirchhoffa pozwalaj� utworzy� układ równa� algebraicznych o liczbie zmiennych 



 13 

równych liczbie równa�. Sposób tworzenia takiego układu równa� poka�emy na przykładzie 

obwodu z rys. 1.11. 

 

Przykład 1.2 

Nale�y okre�li� rozpływ pr�dów i rozkład napi�� w obwodzie rezystancyjnym o strukturze 

przedstawionej na rys. 1.11. Warto�ci elementów s� nast�puj�ce: R1 = 2Ω, R2 = 2Ω, R3 = 3Ω, 

R4 = 4Ω, e = 10V, iz1 = 2A, iz2 = 5A. 

 
Rys. 1.11. Struktura obwodu poddanego analizie w przykładzie 1.2 

 

Rozwi�zanie 

Z równa� Kirchhoffa otrzymuje si�  
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Równania elementów rezystancyjnych: ,111 iRuR = ,222 iRuR = 333 iRuR = , 444 iRuR =  tworz� 

wspólnie z równaniami Kirchhoffa nast�puj�cy układ równa� algebraicznych: 

eiRiR

eiRiRiR

iiii

iiii

z

z
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−=−−
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4422

332211
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Po wstawieniu danych liczbowych do powy�szych równa� otrzymuje si�: 
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W wyniku rozwi�zania tego układu równa� otrzymuje si�: i1 = 3,187A, i2 = 0,875A, 

i3 = 3,812A oraz i4 = -2,062A. Łatwo sprawdzi� przez podstawienie obliczonych warto�ci do 

układu równa�, �e bilans pr�dów w ka�dym w��le oraz bilans napi�� w ka�dym oczku 

obwodu jest zerowy. 

 

1.4. Przekształcenia obwodów 

W analizie obwodów elektrycznych wa�n� rol� odgrywa upraszczanie struktury obwodu, 

polegaj�ce na zast�powaniu wielu elementów poł�czonych szeregowo lub równolegle poprzez 

jeden element zast�pczy. Umo�liwia to zmniejszenie liczby równa� w opisie obwodu i 

uproszczenie etapu rozwi�zania tych równa�. Wyró�ni� mo�na cztery podstawowe rodzaje 

poł�cze� elementów, do których stosuje si� przekształcenie. S� to:  

• poł�czenie szeregowe 

• poł�czenie równoległe  

• poł�czenie gwiazdowe  

• poł�czenie trójk�tne. 

 

1.4.1. Układ poł�czenia szeregowego elementów 

W poł�czeniu szeregowym elementów koniec jednego elementu jest bezpo�rednio poł�czony 

z pocz�tkiem nast�pnego. Rys. 1.12 przedstawia schemat ogólny poł�czenia szeregowego 

rezystorów.  

 
Rys. 1.12. Poł�czenie szeregowe elementów 
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Pr�d ka�dego elementu obwodu jest jednakowy i równy i, natomiast napi�cie na zaciskach 

zewn�trznych obwodu jest równe sumie napi�� poszczególnych elementów tworz�cych 

poł�czenie. Napi�ciowe równanie Kirchhoffa dla obwodu z rys. 1.12 przyjmuje wi�c posta� 

 

 iRRRu N )...( 21 +++=  (1.12) 

 

Przy oznaczeniu sumy rezystancji przez R 

 

 NRRRR +++= ...21  (1.13) 

 

otrzymuje si� uproszczenie N rezystorów poł�czonych szeregowo do jednego rezystora 

zast�pczego o rezystancji R opisanej wzorem (1.13). Rezystancja wypadkowa poł�czenia 

szeregowego rezystorów jest równa sumie rezystancji poszczególnych elementów tworz�cych 

to poł�czenie. 

 

1.4.2. Układ poł�czenia równoległego elementów 

W poł�czeniu równoległym pocz�tki i ko�ce wszystkich elementów s� ze sob� bezpo�rednio 

poł�czone, jak to pokazano dla elementów rezystancyjnych na rys. 1.13. 

 

 
Rys. 1.13. Poł�czenie równoległe elementów 

 

Z poł�czenia tego wynika, �e napi�cie na wszystkich elementach jest jednakowe a pr�d 

wypadkowy jest równy sumie pr�dów wszystkich elementów obwodu. Pr�dowe prawo 

Kirchhoffa dla obwodu z rys. 1.13 mo�na wi�c zapisa� w postaci 

 

 uGGGi N )...( 21 +++=  (1.11) 
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przy czym Gi (i = 1, 2, ..., N) stanowi� konduktancje rezystorów, Gi=1/Ri. Przy oznaczeniu 

sumy konduktancji przez G, gdzie 

 

 NGGGG +++= ...21  (1.12) 

 

otrzymuje si� uproszczenie N rezystorów poł�czonych równolegle do jednego rezystora 

zast�pczego o konduktancji G opisanej wzorem (1.12). Jak wida� w poł�czeniu równoległym 

rezystorów konduktancja wypadkowa jest równa sumie konduktancji poszczególnych 

rezystorów. 

 Szczególnie prosty jest wzór na rezystancj� zast�pcz� dla 2 rezystorów poł�czonych 

równolegle. W tym przypadku 21 GGG += . Uwzgl�dniaj�c, �e RG /1=  po prostych 

przekształceniach otrzymuje si�  

 

21

21

RR
RR

R
+

= . 

 

Nale�y jednak podkre�li�, �e przy trzech (i wi�cej) elementach poł�czonych równoległe 

wygodniejsze jest operowanie na konduktancjach a przej�cie na rezystancj� zast�pcz� 

wykonuje si� w ostatnim kroku po ustaleniu warto�ci sumy konduktancji. 

 

1.4.3. Transfiguracja gwiazda-trójk�t i trójk�t-gwiazda 

Operowanie uproszczonym schematem wynikaj�cym z poł�czenia szeregowego i 

równoległego elementów jest najwygodniejszym sposobem redukcji obwodu. W przypadku 

gdy nie ma elementów poł�czonych szeregowo czy równolegle mo�liwe jest dalsze 

uproszczenie przez zastosowanie przekształcenia gwiazda-trójk� lub trójk�t-gwiazda. 

Oznaczenia elementów obwodu trójk�ta i gwiazdy s� przedstawione na rys. 1.14.  
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Rys. 1.14. Poł�czenie trójk�tne i gwiazdowe elementów 

 

Transfiguracja trójk�ta na gwiazd� lub gwiazdy na trójk�t polega na przyporz�dkowaniu 

danej konfiguracji elementów konfiguracji zast�pczej, równowa�nej jej z punktu widzenia 

zacisków zewn�trznych (te same pr�dy przy tych samych napi�ciach mi�dzyzaciskowych). 

Dla uzyskania niezmienionych pr�dów zewn�trznych obwodu gwiazdy i trójk�ta rezystancje 

mi�dzy parami tych samych zacisków gwiazdy i trójk�ta powinny by� takie same. Zostało 

udowodnione, �e warunki powy�sze s� automatycznie spełnione, je�li przy zamianie gwiazdy 

na trójk�t spełnione s� nast�puj�ce warunki na rezystancje 
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RRR ++=  (1.13) 
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Podobnie przy zamianie trójk�ta na gwiazd� rezystancje gwiazdy musz� spełnia� warunki 
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Przekształcenia równowa�ne obwodu wykorzystuj�ce reguły poł�czenia szeregowego, 

równoległego oraz przekształcenia gwiazda-trójk�t i trójk�t-gwiazda umo�liwiaj� dalsz� 

redukcj� tego obwodu i po wykonaniu odpowiedniej liczby przekształce� sprowadzenie go do 

pojedynczego elementu zast�pczego. 

 

Przykład 1.3 

Okre�li� rezystancj� zast�pcz� obwodu przedstawionego na rys. 1.15, widzian� z zacisków 

1-2. Warto�ci rezystancji s� nast�puj�ce: Ω= 21R , Ω= 42R , Ω= 33R , Ω= 24R , Ω= 45R , 

Ω= 56R , Ω= 57R  oraz Ω= 108R . 

 

 
Rys. 1.15. Struktura obwodu do przykładu 1.3. 

 

Rozwi�zanie 

Z punktu widzenia zacisków wej�ciowych 1-2 w obwodzie nie mo�na wyró�ni� �adnego 

poł�czenia szeregowego czy równoległego elementów. Dla uproszczenia struktury tego 

obwodu konieczne jest wi�c zastosowanie przekształcenia gwiazda-trójk�t lub trójk�t-

gwiazda w stosunku do rezystorów poło�onych najdalej od w�złów wej�ciowych (w wyniku 

przekształcenia nie mog� ulec likwidacji w�zły wej�ciowe obwodu). Zamieniaj�c gwiazd� 

zło�on� z rezystorów 2R , 3R  i 5R  na równowa�ny jej trójk�t otrzymuje si� 
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4

43
4323 =⋅++=R  
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4

43
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33,13
3

44
4425 =⋅++=R  

 

Schemat obwodu po przekształceniach przedstawiony jest na rys. 1.16.  

 

 
Rys. 1.16. Schemat obwodu z rys. 1.15 po przekształceniu gwiazda-trójk�t 

 

 W obwodzie tym mo�na ju� wyró�ni� poł�czenia równoległe elementów R1 i R23 oraz R4 i 

R35. Wykorzystuj�c reguł� upraszczania elementów poł�czonych równolegle otrzymuje si� 
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Rezystory Rz1 i Rz2 s� poł�czone szeregowo. Ich rezystancja zast�pcza jest równa 

 

 Rz3=Rz1+Rz2=3,333  

 

Jest ona poł�czona równolegle z rezystorem R25. St�d rezystancja zast�pcza tego poł�czenia 

wynosi 

 

667,2
33,13333,3
33,13333,3

4 =
+
⋅=zR  
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Rezystory R6, Rz4 i R7 s� poł�czone szeregowo. Ich rezystancja zast�pcza wynosi wi�c  

 

Rz5=R6+Rz4+R7=12,667  

 

Rezystancja ta jest z kolei poł�czona równolegle z rezystancj� R8 tworz�c wypadkow� 

rezystancj� obwodu widzian� z zacisków zewn�trznych. St�d całkowita rezystancja zast�pcza 

obwodu wyra�a si� wzorem 

 

Ω=
+
⋅

=
+

= 588,5
10667,12
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85
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R
z

z
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Jak wida� w powy�szym przykładzie przekształcenie gwiazda-trójk�t umo�liwiło dalsze 

uproszczenie obwodu i otrzymanie ostatecznego wyniku na rezystancj� widzian� z zacisków 

wej�ciowych. Nale�y jednak zaznaczy�, �e przekształcenia gwiazda-trójk�t i trójk�t-gwiazda 

s� bardziej zło�one obliczeniowo w stosunku do reguły upraszczania poł�czenia szeregowego 

i równoległego. Stosuje si� je tylko wtedy, gdy w obwodzie nie da si� wyró�ni� �adnych 

poł�cze� szeregowych i równoległych. 

 

Zadania sprawdzaj�ce 

Zadanie 1.1 

Stosuj�c prawa Kirchhoffa wyznaczy� pr�dy w obwodzie przedstawionym na rysunku 1.17, 

je�li R1=1Ω, R2=5Ω, R3=10Ω, R4=4Ω, a warto�ci �ródeł s� nast�puj�ce: e=10V, i=5A. 
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Rys. 1.17. Schemat obwodu do zadania 1.1. 

 

Rozwi�zanie 

Korzystaj�c z praw Kirchhoffa otrzymuje si� układ równa� opisuj�cych obwód w postaci 
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Po wstawieniu warto�ci liczbowych parametrów i rozwi�zaniu układu równa� otrzymuje si�: 

i1 = 1,011A, i2 = 1,798A, i3 = -0,786A oraz i4 = 4,214A. 

 

Zadanie 1.2 

Stosuj�c prawa Kirchhoffa wyznaczy� pr�dy w obwodzie przedstawionym na rysunku 1.18, 

je�li R1 = 1Ω, R2 = 2Ω, R3 = 5Ω, R4 = 5Ω, a warto�ci �ródeł s� nast�puj�ce: e = 20V, iz1 = 1A, 

iz2 = 2A. 

 
Rys. 1.18. Schemat obwodu do zadania 1.2. 

 

Rozwi�zanie 

Korzystaj�c z praw Kirchhoffa otrzymuje si� układ równa� opisuj�cych obwód w postaci 
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Po wstawieniu warto�ci liczbowych otrzymuje si�: i1 = -0,375A, i2 = 1,375A, i3 = 3,375A oraz 

i4 = 2A. 
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Zadanie 1.3 

Wyznaczy� rezystancj� wypadkow� obwodu przedstawionego na rys. 1.19 

 

 
Rys. 1.19. Schemat obwodu do zadania 1.3 

 

Rozwi�zanie 

Nale�y najpierw zastosowa� transformacj� trójk�t-gwiazda lub gwiazda-trójk�t w odniesieniu 

do wybranych trzech rezystorów obwodu, a nast�pnie wykorzysta� uproszczenia wynikaj�ce z 

powstałych poł�cze� szeregowych i równoległych w obwodzie. Po wykonaniu tych działa� 

otrzymuje si� Rwe = 3,18Ω. 

 

Zadanie 1.4 

Wyznaczy� rezystancj� wypadkow� obwodu przedstawionego na rys. 1.20 

 

 
Rys. 1.20. Schemat obwodu do zadania 1.4 
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Rozwi�zanie 

Poniewa� w obwodzie nie mo�na wyró�ni� �adnych poł�cze� szeregowych i równoległych 

nale�y najpierw zastosowa� transformacj� trójk�t-gwiazda lub gwiazda-trójk�t w odniesieniu 

do wybranych trzech rezystorów obwodu (np. transfiguracja gwiazdy 2Ω, 3Ω i 5Ω na 

równowa�ny trójk�t) a nast�pnie wykorzysta� uproszczenia wynikaj�ce z powstałych 

poł�cze� szeregowych i równoległych w obwodzie. Po wykonaniu tych działa� otrzymuje si� 

warto�� rezystancji zast�pczej obwodu równ� Rwe = 1,59Ω. 
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Lekcja 2. Metoda symboliczna analizy obwodów w stanie ustalonym 

przy wymuszeniu sinusoidalnym 

 

Wst�p 

Spo�ród wielu ró�nych rodzajów wymusze� stosowanych w obwodach elektrycznych, do 

najwa�niejszych nale�y wymuszenie sinusoidalne, ze wzgl�du na to, �e w praktyce 

codziennej mamy do czynienia z napi�ciem i pr�dem sinusoidalnym generowanym w 

elektrowniach. Analiza obwodów RLC przy wymuszeniu sinusoidalnym nastr�cza pewne 

problemy zwi�zane z konieczno�ci� rozwi�zania układu równa� ró�niczkowych, 

wynikaj�cych z opisu ogólnego kondensatorów i cewek. W lekcji drugiej poznamy metod� 

symboliczn� analizy obwodów RLC w stanie ustalonym przy wymuszeniu sinusoidalnym. 

Dzi�ki tej metodzie układ równa� ró�niczkowo-całkowych opisuj�cych obwód RLC 

zostaje sprowadzony do układu równa� algebraicznych typu zespolonego. Wprowadzone 

zostanie poj�cie warto�ci skutecznej zespolonej, impedancji i admitancji zespolonej oraz 

prawa Kirchhoffa dla warto�ci skutecznych zespolonych. Prawo pr�dowe i napi�ciowe 

Kirchhoffa dla obwodów RLC w metodzie symbolicznej stosuje si� identycznie jak dla 

obwodów rezystancyjnych pr�du stałego zast�puj�c rezystancj� poj�ciem impedancji 

zespolonej. W rezultacie otrzymuje si� warto�ci zespolone odpowiedzi, którym mo�na 

przyporz�dkowa� warto�ci chwilowe zgodnie z metod� symboliczn�. Uzupełnieniem tej 

lekcji s� wykresy wektorowe przedstawiaj�ce na płaszczy�nie zespolonej relacje mi�dzy 

warto�ciami skutecznymi pr�dów i napi�� gał�ziowych w obwodzie. 

 

 

2.1. Parametry sygnału sinusoidalnego  

Sygnały sinusoidalne zwane równie� harmonicznymi s� opisane w dziedzinie czasu 

nast�puj�cym wzorem (w opisie przyj�to oznaczenie sygnału napi�ciowego) 

 

 )sin()( ψω += tUtu m  (2.1) 

 

Wielko�ci wyst�puj�ce w opisie maj� nast�puj�ce nazwy i oznaczenia: 

u(t) - warto�� chwilowa napi�cia 
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Um - warto�� maksymalna (szczytowa) napi�cia zwana równie� amplitud� 

ψ  - faza pocz�tkowa napi�cia odpowiadaj�ca chwili t=0 

ψω +t  - k�t fazowy napi�cia w chwili t 

f=1/T - cz�stotliwo�� mierzona w hercach (Hz) 

T - okres przebiegu sinusoidalnego  

fπω 2=  - pulsacja mierzona w radianach na sekund�. 

 

Warto�ci chwilowe sygnałów oznacza� b�dziemy mał� liter� a warto�ci maksymalne, 

skuteczne i wielko�ci operatorowe du��.  

 

 
Rys. 2.1. Sygnał sinusoidalny 

 

Rys. 2.1 przedstawia przebieg sygnału sinusoidalnego napi�cia z oznaczeniami 

poszczególnych jego parametrów. O� odci�tych ma podwójne oznaczenie: czasu oraz fazy 

(aktualny k�t fazowy). 

 Przebiegi zmienne w czasie dobrze charakteryzuje warto�� skuteczna. Dla przebiegu 

okresowego f(t) o okresie T jest ona definiowana w postaci 
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Łatwo udowodni�, �e warto�� skuteczna przebiegu okresowego nie zale�y od wybory fazy 

pocz�tkowej. Dla okre�lenia warto�ci skutecznej sygnału sinusoidalnego przyjmiemy sygnał 

napi�ciowy o fazie pocz�tkowej równej zeru.  

 

 )sin()( tUtu m ω=  (2.3) 

 

Warto�� skuteczna tego sygnału okre�lona jest wi�c zale�no�ci� 
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Wykonuj�c operacj� całkowania otrzymuje si� 

 

 
2

0

2
2

0

2

0

22

5,02sin25,05,0

)2cos1(5,0)(sin

m
Tm

m

T

m

T

m

TUt
U

TU

dttUdttU

=−

=−= ��

ω
ω

ωω
 (2.5) 

 

St�d po podstawieniu do wzoru (2.4) otrzymuje si� 

 

 
2
mU

U =  (2.6)  

 

Analogicznie w przypadku pr�du sinusoidalnego  

 

 )sin()( im tIti ψω +=  (2.7) 

 

otrzymujemy identyczn� relacj� 

 

 
2
mI

I =  (2.8) 
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Dla sygnału sinusoidalnego warto�� skuteczna jest wi�c 2  razy mniejsza ni� jego warto�� 

maksymalna. 

 Drugim parametrem charakteryzuj�cym sygnał sinusoidalny jest warto�� �rednia, czyli 

pole zawarte pod krzyw� odniesione do czasu, w którym ta warto�� jest obliczana. Warto�� 

�redni� sygnału w okresie T definiuje zale�no�� 

 

 �
+

=
Tt

t
�r dttf

T
F

0

0

)(
1

 (2.9) 

 

Ze wzgl�du na symetri� funkcji sinusoidalnej warto�� �rednia całookresowa jest z definicji 

równa zeru. W elektrotechnice u�ywa si� poj�cia warto�ci �redniej półokresowej, w której 

przyjmuje si� 2/TT → . W tym przypadku mo�na udowodni�, �e warto�� �rednia 

półokresowa dla sygnału sinusoidalnego jest powi�zana z warto�ci� maksymaln� poprzez 

relacj� 

 

 m

Tt

t
m�r UdttU

T
U

o

o

637,0)sin(
2/

1
2/

== �
+

ω  (2.10) 

 

 Nale�y zauwa�y�, �e napi�cie stałe u(t)=U jest szczególnym przypadkiem sygnału 

sinusoidalnego, dla którego cz�stotliwo�� jest równa zeru (f=0) a warto�� chwilowa jest stała 

i równa u(t)=Um sin(ψ )=U. Jest to wa�na wła�ciwo��, gdy� dzi�ki temu metody analizy 

obwodów o wymuszeniu sinusoidalnym mog� mie� zastosowanie równie� do wymusze� 

stałych przy zało�eniu f=0. Dla sygnału stałego warto�� maksymalna, skuteczna i �rednia s� 

sobie równe i równaj� si� danej warto�ci stałej. 

 

2.2. Metoda symboliczna analizy obwodów RLC w stanie ustalonym przy 

wymuszeniu sinusoidalnym 

Analiza obwodów zawieraj�cych elementy RLC przy wymuszeniu sinusoidalnym napotyka 

na pewne trudno�ci zwi�zane z wyst�pieniem w opisie cewki i kondensatora równa� 

ró�niczkowych. Trudno�ci te łatwo jest pokona� w stanie ustalonym. Stanem ustalonym 

obwodu nazywa� b�dziemy taki stan, w którym charakter odpowiedzi jest identyczny jak 

charakter wymuszenia, to znaczy odpowiedzi� na wymuszenie sinusoidalne jest odpowied� 

równie� sinusoidalna o tej samej cz�stotliwo�ci cho� o ró�nej amplitudzie i fazie 
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pocz�tkowej. Dla stanu ustalonego obwodu wprowadzona zostanie metoda symboliczna 

sprowadzaj�ca wszystkie operacje ró�niczkowe i całkowe do działa� algebraicznych na 

liczbach zespolonych. 

Dla wprowadzenia tej metody przyjmijmy, �e rozwa�any jest obwód szeregowy RLC 

(rys. 2.2) zasilany ze �ródła napi�cia sinusoidalnego )sin()( ψω += tUtu m .  

 
Rys. 2.2. Poł�czenie szeregowe elementów RLC 

 

Z prawa napi�ciowego Kirchhoffa wynika nast�puj�cy zwi�zek mi�dzy napi�ciami 

elementów tego obwodu 

 

 CLR uuutu ++=)(  (2.11) 

 

Bior�c pod uwag� podstawowe zale�no�ci definicyjne dla rezystora, cewki i kondensatora  

 

 RiuR = ,  

 �= idtCuC /1   

 
dt
di

LuL =   

 

otrzymuje si� 

 

 
dt
di

Lidt
C

RitUm ++=+ �
1

)sin( ψω  (2.12) 

 

Jest to równanie ró�niczkowo-całkowe opisuj�ce zale�no�ci mi�dzy warto�ciami chwilowymi 

pr�du i napi�cia wymuszaj�cego w obwodzie. Pełne rozwi�zanie tego równania sprowadza si� 
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do wyznaczenia dwu składowych pr�du, stanowi�cych odpowied� obwodu w stanie 

ustalonym i stanie przej�ciowym: 

1. składowej ustalonej, której charakter zmian w czasie jest taki sam jak sygnału 

wymuszaj�cego (przy sinusoidalnym wymuszeniu odpowied� równie� sinusoidalna o tej 

samej cz�stotliwo�ci) 

2. składowej przej�ciowej stanowi�cej rozwi�zanie równania ró�niczkowego pochodz�cego 

od niezerowych warunków pocz�tkowych. 

 

Składowa przej�ciowa zanika zwykle szybko w czasie i pozostaje jedynie składowa ustalona. 

Stan po zanikni�ciu składowej przej�ciowej nazywamy stanem ustalonym obwodu. Składow� 

ustalon� pr�du w obwodzie mo�na otrzyma� nie rozwi�zuj�c równania ró�niczkowego 

opisuj�cego ten obwód a korzystaj�c jedynie z tzw. metody symbolicznej. Istotnym 

elementem tej metody jest zast�pienie przebiegów czasowych ich reprezentacj� zespolon�. 

Przyjmijmy, �e pr�d )sin()( im tIti Ψ+= ω  oraz napi�cie )sin()( Ψ+= tUtu m ω  zast�pione 

zostały przez wektory wiruj�ce w czasie, odpowiednio I(t) oraz U(t) okre�lone w postaci 

 

 tjj
m eeUtU ωψ=)(  (2.13) 

 tjj
m eeItI i ωψ=)(  (2.14) 

 

Po zast�pieniu warto�ci czasowych pr�du i napi�cia w równaniu (2.12) poprzez ich 

reprezentacj� w postaci wektorów wiruj�cych otrzymuje si� 

 

 �++= dttI
Cdt

tdI
LtRItU )(

1)(
)()(  (2.15) 

 

Po wykonaniu operacji ró�niczkowania i całkowania równanie powy�sze przyjmuje posta� 

 

 tjj
m

tjj
m

tjj
m

tjj
m eeI

Cj
eeLIjeeRIeeU iii ωψωψωψωψ

ω
ω 1++=  (2.16) 

 

Dziel�c obie strony równania przez tje ω  i przechodz�c do warto�ci skutecznych (w tym celu 

nale�y podzieli� obie strony równania przez 2 ) otrzymuje si� 
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 iii jmjmjmjm e
I

Cj
e

I
Lje

I
Re

U ψψψψ

ω
ω
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1

222
++=  (2.17) 

 

Oznaczmy przez ψjm e
U

U
2

=  warto�� skuteczn� zespolon� napi�cia, a przez ijm e
I

I ψ

2
=  

warto�� skuteczn� zespolon� pr�du. Wtedy równanie (2.15) mo�na zapisa� w nast�puj�cej 

postaci obowi�zuj�cej dla warto�ci skutecznych zespolonych 

 

 I
Cj

LIjRIU
ω

ω 1++=  (2.18) 

 

Składnik  

 

 RIUR =  (2.19) 

 

odpowiada napi�ciu skutecznemu zespolonemu na rezystorze. Wielko�� 

 

 LIjUL ω=  (2.20) 

 

reprezentuje warto�� skuteczn� zespolon� napi�cia na cewce, a składnik  

 

 I
Cj

UC ω
1=  (2.21) 

 

odpowiada warto�ci skutecznej zespolonej napi�cia na kondensatorze. Wszystkie napi�cia i 

pr�d w obwodzie s� warto�ciami zespolonymi. Równanie (2.18) wyra�a prawo napi�ciowe 

Kirchhoffa odnosz�ce si� do warto�ci skutecznych zespolonych dla obwodu szeregowego 

RLC. Stwierdza ono, �e przy wymuszeniu sinusoidalnym warto�� skuteczna napi�cia 

wymuszaj�cego w obwodzie szeregowym RLC jest równa sumie warto�ci skutecznych 

zespolonych napi�� na poszczególnych elementach tego obwodu. 

 Analizuj�c posta� równania (2.18) mo�na zauwa�y� prost� analogi� do równania 

opisuj�cego obwód rezystancyjny. W tym celu wprowadzimy uogólnienie rezystancji w 

postaci poj�cia impedancji zespolonej wi���cej warto�ci skuteczne pr�du i napi�cia na 
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elementach R, L, C w stanie ustalonym przy wymuszeniu sinusoidalnym. Z ostatnich równa� 

na podstawie prawa Ohma mo�na napisa� nast�puj�ce przyporz�dkowania: 

� Dla rezystora 

 RZR =  (2.22) 

impedancja ZR jest równa rezystancji tego rezystora. 

 

� Dla cewki  

 LjZL ω=  (2.23) 

impedancja ZL jest liczb� zespolon� (urojon�) zale�n� liniowo od cz�stotliwo�ci. 

 

� Dla kondensatora  

 
C

j
Cj

ZC ωω
11 −==   (2.24) 

impedancja ZC jest tak�e zespolona i odwrotnie proporcjonalna do cz�stotliwo�ci. 

 

Warto�� LX L ω=  nosi nazw� reaktancji indukcyjnej a warto�� 
C

XC ω
1=  reaktancji 

pojemno�ciowej. W zwi�zku z powy�szym mo�na napisa� LL jXZ = , CC jXZ −= . 

Wprowadzaj�c oznaczenie wypadkowej impedancji obwodu przez Z, gdzie CLR ZZZZ ++=  

zale�no�� pr�dowo-napi�ciow� w obwodzie szeregowym RLC mo�na zapisa� w postaci, 

znanej jako prawo Ohma dla warto�ci symbolicznych 

 

 ZIU =  (2.25) 

 

lub  

 ijeI
Z
U

I ψ==  (2.26) 

 

gdzie moduł pr�du 

 

 
22 )/1( CLR

U
Z
U

I
ωω −+

==  (2.27) 
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natomiast k�t fazowy pr�du  

 

 
R

CL
i

ωωψψ /1
arctg

−−=  (2.28a) 

 

Faza pocz�tkowa wektora napi�cia wymuszaj�cego jest tu oznaczona przez ψ , a faza 

pocz�tkowa wektora pr�du – przez iψ . Ró�nica faz nazywana jest przesuni�ciem fazowym 

pr�du wzgl�dem napi�cia i oznaczana liter� ϕ , przy czym  

 

 
R

CL
i

ωωψψϕ /1
arctg

−=−=  (2.28b) 

 

K�t przesuni�cia fazowego ϕ  odgrywa ogromn� rol� w elektrotechnice, zwłaszcza w 

zagadnieniach mocy. K�t ten jest uwa�any za dodatni dla obwodów o charakterze 

indukcyjnym a za ujemny dla obwodów o charakterze pojemno�ciowym. 

 Zauwa�my, �e warto�ciom skutecznym pr�du oraz napi�cia mo�na przyporz�dkowa� 

funkcj� czasu. Bior�c pod uwag�, �e przej�cie z przebiegu czasowego na opis zespolony 

(symboliczny) odbywa si� według schematu 

 

 ψψω jm
m e

U
tUtu

2
)sin()( →+=  (2.29) 

 

powrót z warto�ci zespolonej do postaci czasowej polega na pomno�eniu modułu warto�ci 

skutecznej przez 2  i uzupełnieniu wyniku przez dopisanie funkcji )sin( ψω +t . St�d 

przykładowo, je�li wynik zespolony pr�du dany jest w postaci 
�5010 jeI = , to odpowiadaj�cy 

mu przebieg czasowy ma posta� )50sin(210)( �+= tti ω . Istnieje równie� �cisła analogia 

mi�dzy konduktancj� (odwrotno�� rezystancji) a odwrotno�ci� impedancji. Analogicznie do 

poj�cia konduktancji w obwodzie rezystancyjnym wprowadza si� poj�cie admitancji 

zespolonej dla obwodu RLC. Admitancja jest definiowana jako odwrotno�� impedancji. 

Oznaczana jest najcz��ciej liter� Y, przy czym  

 

 Y = 1/Z (2.30) 
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Admitancja kondensatora jest równa CjYC ω= , cewki 
L

j
Lj

YL ωω
11 −== , natomiast 

admitancja rezystora jest równa jego konduktancji YR=G=1/R. Podobnie odwrotno�� 

reaktancji X nosi specjaln� nazw� susceptancji. Warto�� susceptancji dla kondensatora jest 

równa CBC ω= , natomiast dla cewki LBL ω/1= .  

 

2.3 Prawa Kirchhoffa dla warto�ci symbolicznych 

Przy zast�pieniu warto�ci rzeczywistych przez warto�ci zespolone równania ró�niczkowe 

zostały zast�pione przez równania algebraiczne. Nast�piła zatem algebraizacja równa� 

opisuj�cych obwód. Wszystkie elementy RLC traktowane s� w podobny sposób i 

reprezentowane przez swoje impedancje symboliczne w postaci zespolonej. Impedancje 

zespolone mog� by� interpretowane jako uogólnienie rezystancji. Dla obwodu 

reprezentowanego w postaci symbolicznej obowi�zuj� prawa Kirchhoffa, które maj� 

identyczn� posta� jak dla obwodu rzeczywistego, z ta ró�nic�, �e zamiast wielko�ci 

chwilowych u�ywa si� wielko�ci zespolonych. 

 

Prawo pr�dowe Kirchhoffa 

Suma pr�dów zespolonych w dowolnym w��le obwodu elektrycznego jest równa zeru, co 

zapiszemy w postaci 

 

 � =
k

kI 0  (2.31) 

 

W równaniu tym wszystkie pr�dy dane s� w postaci zespolonej. 

  

Prawo napi�ciowe Kirchhoffa 

Suma napi�� zespolonych w ka�dym oczku obwodu elektrycznego jest równa zeru, co 

zapiszemy w postaci 

 

 � =
k

kU 0  (2.32) 

 

W równaniu tym symbolem U oznaczono wszystkie napi�cia w postaci zespolonej, zarówno 

na gał�ziach pasywnych jak i �ródłowych obwodu. Sposób sumowania (znak plus lub minus) 
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zarówno pr�dów jak i napi�� jest taki sam jak w przypadku operowania warto�ciami 

rzeczywistymi. 

  

2.4. Wykresy wektorowe obwodu 

W przypadku analizy obwodów RLC w stanie ustalonym wa�nym poj�ciem jest wykres 

wektorowy przedstawiaj�cy w sposób orientacyjny zale�no�ci mi�dzy poszczególnymi 

wektorami pr�du i napi�cia w obwodzie. Jak wiadomo ka�dej liczbie zespolonej mo�na 

przyporz�dkowa� reprezentacj� geometryczn� w postaci odpowiedniej zale�no�ci wektorowej 

przedstawionej na płaszczy�nie, w której o� pozioma odpowiada cz��ci rzeczywistej a o� 

pionowa cz��ci urojonej liczby zespolonej. Konstruuj�c wykres nale�y pami�ta�, �e 

pomno�enie wektora przez operator j jest równowa�ne jego obrotowi o k�t 90 stopni 

przeciwnie do ruchu wskazówek zegara gdy� operator j jest równy 
�90je . Podobnie 

pomno�enie wektora przez operator -j jest równowa�ne jego obrotowi o k�t 90 stopni zgodnie 

z ruchem wskazówek zegara gdy� operator -j jest równy 
�90je− . Pomno�enie wektora przez 

liczb� rzeczywist� nie zmienia pozycji wektora w przestrzeni o ile jest to liczba dodatnia lub 

zmienia zwrot wektora o o180  je�li liczba ta jest ujemna. 

Z zale�no�ci pr�dowo-napi�ciowych dla rezystora jest oczywiste, �e  

 

 RR RIU =  (2.33) 

 

co wobec rzeczywistych, dodatnich warto�ci R oznacza, �e napi�cie na rezystorze jest w fazie 

z pr�dem tego rezystora. Dla cewki obowi�zuje  

 

 LL LIjU ω=  (2.34) 

 

co oznacza, �e napi�cie na cewce wyprzedza pr�d o k�t �90 . Podobnie napi�cie na 

kondensatorze opó�nia si� wzgl�dem swojego pr�du o k�t �90 , gdy�  

 

 CC I
C

jU
ω
1−=  (2.35) 

 

Na rys. 2.3 przedstawiono wykresy wektorowe dla rezystora, cewki i kondensatora z 

zaznaczeniem przesuni�� k�towych mi�dzy wektorami pr�du i napi�cia. 
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Rys. 2.3. Wykresy wektorowe dla a) rezystora, b) cewki, c) kondensatora 

 

 

Przedstawione powy�ej zasady konstruowania przesuni�� k�towych mi�dzy wektorami pr�du 

i napi�cia umo�liwiaj� podanie ogólnych zasad post�powania przy konstruowaniu wykresu 

wektorowego dla dowolnego obwodu RLC. 

Wykres wektorowy z definicji uwzgl�dnia przede wszystkim przesuni�cia k�towe 

mi�dzy poszczególnymi wektorami. Relacje ilo�ciowe (długo�ci) poszczególnych wektorów 

s� mniej istotne i zwykle uwzgl�dniane w sposób jedynie przybli�ony. Wykres rozpoczyna si� 

zwykle od ko�ca obwodu (gał�zi najdalej poło�onej od �ródła). Je�li gał�� jest poł�czeniem 

szeregowym elementów rozpoczynamy od pr�du tej gał�zi, a w przypadku poł�czenia 

równoległego – od napi�cia. Nast�pnie rysuje si� na wykresie na przemian napi�cia i pr�dy 

kolejnych gał�zi, dochodz�c w ten sposób do �ródła. Budow� wykresu ko�czy si� w 

momencie doj�cia do pr�du i napi�cia �ródłowego obwodu. Relacja wektora pr�du 

�ródłowego wzgl�dem napi�cia decyduje o charakterze obwodu. Je�li napi�cie wypadkowe 

(�ródłowe) wyprzedza pr�d wypadkowy lub inaczej mówi�c pr�d opó�nia si� wzgl�dem 

napi�cia - obwód ma charakter indukcyjny. Je�li natomiast napi�cie opó�nia si� wzgl�dem 

pr�du lub pr�d wyprzedza napi�cie - mówimy o charakterze pojemno�ciowym obwodu. Je�li 

nie istnieje przesuni�cie fazowe pr�du wypadkowego wzgl�dem napi�cia (k�t fazowy równy 

zeru) mówimy o tzw. stanie rezonansu obwodu, lub po prostu charakterze rezystancyjnym 

danego obwodu. Charakter rezystancyjny obwodu mo�e powsta� nawet przy istnieniu w 

obwodu indukcyjno�ci i pojemno�ci w przypadku gdy nast�puje kompensacja odpowiednich 
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składowych indukcyjnej i pojemno�ciowej wektorów. Sposób post�powania przy 

sporz�dzaniu wykresów wektorowych przedstawimy na przykładzie konkretnego obwodu. 

 

Przykład 2.1 

 Narysowa� wykres wektorowy pr�dów i napi�� dla obwodu RLC o strukturze 

przedstawionej na rys. 2.4. 

 

 
Rys. 2.4. Schemat obwodu RLC do przykładu 2.1 

 

Rozwi�zanie 

Na rys. 2.5 przedstawiono wykres wektorowy pr�dów i napi�� w obwodzie RLC z rys. 2.4.  

 

 
Rys. 2.5. Wykres wektorowy pr�dów i napi�� dla obwodu z rys. 2.4 
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Sporz�dzanie wykresu rozpoczyna si� od pr�du I3 dobudowuj�c kolejno wektory napi�� i 

pr�dów gał�zi przesuwaj�c si� w stron� �ródła: 
3RU , 

3LU , 
2RU , 2I , 1I , 

1CU , E. Jak wida� 

obwód ma charakter pojemno�ciowy, gdy� napi�cie wypadkowe E opó�nia si� wzgl�dem 

odpowiadaj�cego mu pr�du 1I . 

 

Zadania sprawdzaj�ce 

Zadanie 2.1 

Wyznaczy� rozpływy pr�dów w obwodzie z rys. 2.6 w stanie ustalonym. Przyj�� nast�puj�ce 

warto�ci parametrów: )1000sin(25)( tti = A, Ω= 10R , C = 0,0001F, L = 5mH. 

 

 
Rys. 2.6. Schemat obwodu do zadania 2.1 

 

Rozwi�zanie 

Warto�ci symboliczne elementów obwodu: 

1000=ω  

5=I  

5jLjZL == ω  

10/1 jCjZC −== ω  

 

Impedancje obwodu RLC: 

1,01,0
111

j
ZZR

Y
CL

−=++=  

oje
Y

Z 45

2
101 ==  

 

Pr�dy i napi�cie w obwodzie: 
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ojeZIU 45

2
50==  

oj
R e

R
U

I 45

2
5==  

oj

L
L e

Z
U

I 45

2
10 −==  

oj

C
C e

Z
U

I 135

2

5==  

 

Warto�ci chwilowe pr�dów i napi�cia 

 

)451000sin(50)( ottu +=  

)451000sin(5)( o
R tti +=  

)451000sin(10)( o
L tti −=  

)1351000sin(5)( o
C tti +=  

 

 

Zadanie 2.2 

Wyznaczy� pr�dy i napi�cia w obwodzie przedstawionym na rys. 2.7. Przyj�� nast�puj�ce 

warto�ci elementów: )90100sin(220)( otte −= V, Ω= 101R , Ω= 52R , C = 0,001F, 

L = 0.05H. 

 

 
Rys. 2.7. Schemat obwodu do zadania 2.2 

 

Rozwi�zanie 

Warto�ci symboliczne elementów obwodu: 
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100=ω  
ojeE 9020 −=  

5jLjZL == ω  

10/1 jCjZC −== ω  

 

Impedancje obwodu: 

5,25,2
2

2 j
ZR

ZR
Z

L

L
RL +=

+
=  

5,75,121 jZRZZ CRL −=++=  

 

Pr�dy i napi�cia w obwodzie: 

18,171,0/ jZEI −==  

18,171,4 jIZU RLRL −==  

94,023,01 j
Z

U
I

L

RL −−==  

23,094,02 j
R

U
I RL −==  

06,776,11 jIZU CC −−==  

8,111,711
jIRU R −==  

 

Zadanie 2.3 

Sporz�dzi� wykres wektorowy pr�dów i napi�� w obwodzie przedstawionym na rys. 2.8. 

 

 
Rys. 2.8. Schemat obwodu do zadania 2.3 

 

Rozwi�zanie  
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Wykres rozpoczyna si� od pr�du I3, dodaj�c kolejno napi�cia na R3 i L3, napi�cie UC2, pr�d 

IC2, pr�d I1 oraz napi�cie E. Pełny wykres wektorowy przedstawiony jest na rys. 2.9. 

 

 
Rys. 2.9. Wykres wektorowy obwodu z rys. 2.8 

 

 

K�t fazowy przesuni�cia pr�du wzgl�dem napi�cia zasilaj�cego jest równy ϕ . Bior�c pod 

uwag�, �e napi�cie wyprzedza pr�d obwód ma charakter indukcyjny. 
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Lekcja 3. Zagadnienia mocy w obwodach RLC przy 
wymuszeniu sinusoidalnym 
 

Wst�p 

Jednym z najwa�niejszych poj�� w elektrotechnice jest moc elektryczna. Jest ona �ci�le 

zwi�zana ze zjawiskami energetycznymi zachodz�cymi w obwodzie o wymuszeniu 

sinusoidalnym. Wielko�ciom pr�du i napi�cia przyporz�dkowa� mo�na ró�ne rodzaje mocy.  

Lekcja trzecia po�wi�cona jest zagadnieniom mocy chwilowej p(t), mocy czynnej P, 

mocy biernej Q oraz mocy pozornej S. Poznamy wzory wi���ce poszczególne rodzaje mocy z 

pr�dami i napi�ciami w obwodzie RLC przy wymuszeniu sinusoidalnym w stanie ustalonym. 

Podane zostan� wzory wyra�aj�ce energi� zgromadzon� w cewce i kondensatorze, a na tej 

podstawie modele rzeczywistej cewki i kondensatora, uwzgl�dniaj�ce ich stratno�ci. Ostatnim 

fragmentem lekcji s� zagadnienia dopasowania odbiornika do �ródła rzeczywistego o 

niezerowej impedancji wewn�trznej. 

 

3.1. Moc chwilowa  

Warto�� chwilow� napi�cia i pr�du gał�zi oznaczymy odpowiednio przez )sin()( tUtu m ω=  

oraz )sin()( ϕω −= tIti m  przyjmuj�c dla uproszczenie faz� pocz�tkow� napi�cia równ� zeru. 

Moc chwilowa p(t), jako jedyna z mocy jest funkcj� czasu i definiuje si� j� w postaci iloczynu 

warto�ci chwilowych pr�du )(ti oraz napi�cia )(tu w obwodzie 

 

  )()()( titutp =   (3.1) 

 

Przy wymuszeniu sinusoidalnym moc chwilowa opisana jest wzorem 

 

  
[ ]

)]2cos([cos

)2cos(cos
2

)sin()sin()()()(

ϕω

ϕωϕϕωω

−−=

=−−=−==

tIU

t
IU

ttIUtitutp mm
mm   (3.2) 

 

Z powy�szej zale�no�ci wida�, �e moc chwilowa zawiera dwie składowe: stał� )cos(ϕIU  

oraz zmienn� w czasie )2cos( ϕω −tIU  o cz�stotliwo�ci dwukrotnie wi�kszej od 

cz�stotliwo�ci napi�cia i pr�du w obwodzie. Jest zatem wielko�ci� zmienn� w czasie opisan� 
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funkcj� okresow� harmoniczn�. Moc chwilowa nie znajduje wi�kszego zastosowania 

praktycznego, natomiast jest niezb�dna dla zdefiniowania mocy czynnej. 

 

3.2. Moc czynna 

Moc czynn� definiuje si� jako warto�� �redni� za okres z mocy chwilowej, to jest  

 

  �
+

=
Tt

t

dttp
T

P
0

0

)(
1

  (3.3) 

 

Podstawiaj�c do powy�szego wzoru funkcj� okre�laj�c� moc chwilow� w obwodzie, po 

wykonaniu operacji całkowania otrzymuje si� 

 

  ϕcosIUP =   (3.4) 

 

Moc czynna w obwodzie o wymuszeniu sinusoidalnym jest wi�c wielko�ci� stał� równ� 

iloczynowi modułów warto�ci skutecznych napi�cia i pr�du oraz cosinusa k�ta przesuni�cia 

fazowego mi�dzy wektorem napi�cia i pr�du. Współczynnik ten odgrywa ogromn� rol� w 

praktyce i nosi specjaln� nazw� współczynnika mocy ( ϕcos ).  

Moc czynna stanowi składow� stał� mocy chwilowej. Jest ona nieujemna dla obwodu 

RLC a w granicznym przypadku przy 2/πϕ ±=  jest równa zeru. Moc czynna osi�ga warto�� 

najwi�ksz� IUP =  wtedy, gdy 0=ϕ , to znaczy gdy odbiornik ma charakter 

rezystancyjny, 1cos =ϕ . Warto�� najmniejsz� (P=0) moc osi�ga w przypadku granicznym, 

gdy 2/πϕ ±= , to znaczy gdy odbiornikiem jest cewka idealna lub kondensator idealny, 

.0cos =ϕ  Oznacza to, �e na elementach reaktancyjnych nie wydziela si� moc czynna. 

  Z przytoczonych rozwa�a� wynika, �e moc czynna jest tym wi�ksza im mniejszy jest 

k�t przesuni�cia fazowego mi�dzy pr�dem i napi�ciem. Mo�e wydziela� si� jedynie na 

elementach rezystancyjnych i odpowiada energii, która wydziela si� w jednostce czasu w 

postaci ciepła w tych elementach. Uwzgl�dniaj�c, �e przesuni�cie fazowe pr�du i napi�cia na 

rezystorze jest równe zeru ( 1cos =ϕ ) wzór na moc czynn� wydzielan� w rezystorze mo�e 

by� wyra�ony w trzech równorz�dnych postaciach 

 

  22
cos UGIRIUP === ϕ   (3.5) 
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w których pr�d I oraz napi�cie U odpowiadaj� rezystorowi R. Jednostk� mocy czynnej jest 

wat (W) , przy czym 1W=1AV. W praktyce stosuje si� równie� wielokrotno�ci wata w 

postaci kilowata (1kW=1000W) lub megawata (1MW=106W) oraz warto�ci ułamkowe, np. 

miliwat (mW) lub mikrowat (�W ). 

 

 

3.3. Moc bierna 
W obwodach elektrycznych pr�du sinusoidalnego definiuje si� trzeci� wielko�� energetyczn� 

b�d�c� iloczynem napi�cia i pr�du oraz sinusa k�ta przesuni�cia fazowego mi�dzy nimi. 

Wielko�� ta oznaczana jest liter� Q i nazywana moc� biern� 

 

  ϕsinIUQ =   (3.6) 

 

Jednostk� mocy biernej jest war (var) b�d�cy skrótem nazwy woltamper reaktywny. 

Ze wzgl�du na wyst�powanie w definicji mocy biernej funkcji sinusoidalnej jest 

oczywiste, �e moc bierna jest tym mniejsza im mniejszy jest k�t przesuni�cia fazowego pr�du 

i napi�cia. St�d w przypadku rezystora, dla którego przesuni�cie fazowe jest równe zeru 

( 0sin =ϕ ) moc bierna jest zerowa Moc bierna mo�e si� wi�c wydziela� jedynie na 

elementach reaktancyjnych, gdy� tylko dla nich przesuni�cie fazowe pr�du i napi�cia jest 

ró�ne od zera. Przesuni�cie fazowe pr�du i napi�cia na elementach reaktancyjnych (cewce i 

kondensatorze) przyjmuje warto�� +90 dla cewki oraz -90 dla kondensatora, co oznacza, �e 

sinus k�ta jest odpowiednio równy równy +1 dla cewki (moc bierna cewki jest uwa�ana za 

dodatni�) oraz –1 dla kondensatora (moc bierna kondensatora jest uwa�ana za ujemn�). St�d 

przy pomini�ciu znaku wzór na moc biern� elementów reaktancyjnych o reaktancji X mo�e 

by� przedstawiony w trzech równorz�dnych postaciach 

 

  
22 1

sin U
X

IXIUQ === ϕ   (3.7) 

 

W ogólno�ci k�t przesuni�cia fazowego ϕ  uwa�a si� za dodatni dla obwodów o charakterze 

indukcyjnym (napi�cie wyprzedza pr�d) a za ujemny dla obwodów o charakterze 

pojemno�ciowym (napi�cie opó�nia si� wzgl�dem pr�du). Moc bierna obwodów o 
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charakterze indukcyjnym jest w sumie moc� indukcyjn�, kojarzona z liczb� dodatni� a moc 

bierna obwodów o charakterze pojemno�ciowym jest w sumie moc� pojemno�ciow� i 

kojarzon� z liczb� ujemn�. 

 

3.4. Moc pozorna 
Czwartym rodzajem mocy wprowadzanym w obwodach elektrycznych jest tak zwana moc 

pozorna. Jest ona proporcjonalna do warto�ci skutecznych pr�du i napi�cia, i oznaczana liter� 

S. Moc pozorna definiowana jest formalnie jako liczba zespolona w postaci iloczynu warto�ci 

skutecznej zespolonej napi�cia U i warto�ci skutecznej sprz��onej pr�du I 

 

  *UIS =   (3.8) 

 

Tak zdefiniowana moc pozorna przedstawia sob� sum� mocy czynnej (cz��� rzeczywista S) 

oraz mocy biernej (cz��� urojona S), st�d 

 

  jQPS +=   (3.9) 

 

Uwzgl�dniaj�c, �e operator j oznacza przesuni�cie wektora o k�t �90 , ostatniej zale�no�ci na 

moc pozorn� przyporz�dkowa� mo�na wykres wektorowy mocy, tzw. trójk�t mocy 

przedstawiony na rys. 3.1.  

 

     
a)       b) 

Rys. 3.1. Wykres wektorowy mocy dla obwodu a) o charakterze indukcyjnym,  

b) o charakterze pojemno�ciowym  
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Bior�c pod uwag� kierunek przesuni�cia pr�du wzgl�dem napi�cia na rys. 3.1a wykres mocy 

dotyczy obwodu o charakterze indukcyjnym a rys. 3.1b obwodu o charakterze 

pojemno�ciowym. Wykres ten nazywany jest równie� trójk�tem mocy. W trójk�cie mocy 

składowa czynna i bierna s� przyprostok�tnymi natomiast moc pozorna przeciwprostok�tn�. 

 Zale�no�� na moc pozorn� zespolon� mo�na przedstawi� równie� w postaci 

wykładniczej ϕjeSS = . W zale�no�ci tej S  wyra�a moduł mocy pozornej, który mo�e by� 

wyra�ony w postaci iloczynu modułów warto�ci skutecznych pr�du i napi�cia 

 

  22 QPIUS +==   (3.10) 

 

Z wykresu wektorowego obwodu przedstawionego na rys. 3.1 mo�liwe jest wyznaczenie 

współczynnika mocy. Mianowicie 

 

  
S
P=ϕcos   (3.11) 

 

Warto�� współczynnika mocy wyznaczona z powy�szej zale�no�ci jest identyczna z 

warto�ci� wynikaj�c� z relacji pr�dowo-napi�ciowych zachodz�cych dla wielko�ci 

bramowych obwodu. Dla ułatwienia korzystania z poj�� mocy zestawiono poni�ej 

najwa�niejsze postacie wzorów na moc czynn�, biern� i pozorn� 

 

� Moc pozorna 

 jQPUIS +== *   (3.12) 

 

� Moc czynna 

 
R

U
RISIUP R

R

2
2

)Re(cos ==== ϕ   (3.13) 

 

� Moc bierna 
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X

U
XISIUQ X

X

2
2

)Im(sin ==== ϕ   (3.14) 

 

3.5. Bilans mocy 
W obwodzie elektrycznym, jak w ka�dym układzie fizycznym obowi�zuje prawo zachowania 

energii. W przypadku obwodów prawo to przekształca si� w tak zwane prawo bilansu mocy. 

Je�li całkowit� moc pozorn� wytworzon� przez �ródło (lub wiele �ródeł wyst�puj�cych w 

obwodzie) oznaczymy przez Sg a sumaryczn� moc pozorn� wydzielon� w elementach 

odbiornika przez So, to bior�c pod uwag� prawo zachowania energii obie moce musz� by� 

sobie równe, to znaczy Sg=So. Jest to tak zwana zasada bilansu mocy w obwodach 

elektrycznych.  

 W tak sformułowanej zasadzie bilansu mocy przyjmuje si� standardowo, �e zwroty 

pr�dów i napi�� w elementach odbiornikowych s� przeciwne sobie a w elementach 

�ródłowych takie same. Je�li przyjmiemy ujednolicon� zasad� znakowania pr�dów i napi�� na 

gał�ziach obwodu, zakładaj�c�, �e niezale�nie od rodzaju elementu zwroty pr�du i napi�cia 

na gał�zi s� przeciwne sobie, to zasad� bilansu mocy mo�na sformułowa� w ten sposób, �e 

suma mocy liczonej po wszystkich elementach w obwodzie elektrycznym jest równa zeru, 

Sg+So=0. 

Dla zilustrowania wprowadzonych tu poj�� mocy oraz zasady bilansowania si� mocy 

rozpatrzymy przykład obwodu przedstawionego na rys. 3.2. 

 

Przykład 3.1 

Niech dany b�dzie obwód RLC o strukturze przedstawionej na rys. 3.2 zasilany z 

sinusoidalnego �ródła napi�cia )45sin(2100)( �+= tte ω V o warto�ci 
s

rad
1=ω . Warto�ci 

elementów obwodu s� nast�puj�ce: Ω= 1R , FC 5,0= , HL 1= .  
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Rys. 3.2. Schemat obwodu do przykładu 3.1 

 

 

Nale�y wyznaczy� warto�ci skuteczne zespolone pr�dów i napi�� elementów oraz moce w 

obwodzie. 

 

Rozwi�zanie 

Warto�ci zespolone impedancji i napi�cia wymuszaj�cego w obwodzie przy danych 

warto�ciach elementów s� równe: 1jLjZL == ω , 2/1 jCjZC −=−= ω , 
ojeE 45100= . 

Impedancja zast�pcza poł�czenia równoległego L i R równa si� 
oj

L

L
RL e

ZR
RZ

Z 45707.0=
+

= . 

Impedancja zast�pcza poł�czenia szeregowego C i RLZ  jest równa 

oj
RLC ejjZZZ 6,7178,125,05,0 −=−+=+= . Zgodnie z prawem Ohma pr�d I w obwodzie jest 

równy 

o

o

o

j

j

j

C e
e

e
Z
E

I 6,116

6,71

45

3,63
58,1
100 ===

−
 

Napi�cia na poszczególnych elementach obwodu dane s� w postaci 

 
oj

CCC eIZU 6,266,106==  

oj
CRLRL eIZU 6,16175,44==  

 

Pr�dy cewki i rezystora obliczone z prawa Ohma równaj� si� 
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oj

L

RL
L e

Z
U

I 6,7175,44==  

ojRL
R e

R
U

I 6.16175,44==  

 

Na rys. 3.3 przedstawiono wykres wektorowy pr�dów i napi�� w obwodzie. 

 

 
Rys. 3.3. Wykres wektorowy pr�dów i napi�� w obwodzie z rys. 3.2 

 

 

Poszczególne rodzaje mocy wydzielonej w obwodzie równaj� si�: 

� Moc pozorna wydawana przez �ródło 

AV)60001998(6330 6,71* ⋅−==⋅= − jeIES
oj

C  

� Moc czynna rezystora 

W1998
2 == RIP RR  

� Moc bierna cewki i kondensatora 

var2000)Im( * =⋅= LRLL IUQ  

var8000)Im( * −=⋅= CCC IUQ  

Całkowita moc bierna wydzielona na cewce i kondensatorze równa si� 

var6000−=+= CL QQQ  

Moc wydzielona na rezystorze oraz cewce i kondensatorze równa si� dokładnie mocy 

dostarczonej przez �ródło. Bilans mocy generowanej przez �ródło i mocy wydzielonej w 

odbiorniku jest zatem równy zeru. 
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3.6 Energia magazynowana w cewce i kondensatorze 
Cewka i kondensator traktowane jako idealne elementy obwodowe nale�� do elementów 

magazynuj�cych energi� elektryczn� i z tego punktu widzenia odgrywaj� ogromn� rol� w 

elektrotechnice 

. 

3.6.1 Energia magazynowana w idealnym kondensatorze 
Rozpatrzmy kondensator o pojemno�ci C zasilony z generatora napi�ciowego u(t). Obliczymy 

energi� dostarczon� do tego kondensatora w czasie od t0 do t. Energia ta mo�e by� obliczona 

jako całka z mocy chwilowej 

 

  �=
t

t

dpttW
0

)(),( 0 ττ   (3.15) 

 

Uwzgl�dniaj�c wzór na moc chwilow� i dokonuj�c odpowiednich operacji całkowania 

otrzymujemy 
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Załó�my, �e czas t0 jest tak� chwil�, w której napi�cie u(t) jest zerowe. W takim razie wzór na 

energi� upraszcza si� do postaci 

 

  )(
2
1

),( 2
)(

0
0 tCuuduCttW

tu

== �   (3.17) 

 

Zasadnicz� cech� kondensatora idealnego jest jego bezstratno��, co oznacza, �e energia 

zgromadzona na nim pozostaje w nim zmagazynowana. Zatem kondensator naładowany do 

napi�cia stałego U posiada energi� równ� 

 

  2

2
1

CUW =   (3.18) 
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Jest to bardzo wa�na własno�� kondensatora, wykorzystywana do magazynowania energii 

elektrycznej. 

 

3.6.2 Energia magazynowana w idealnej cewce 
Rozpatrzmy cewk� o indukcyjno�ci L zasilon� z generatora napi�ciowego u(t). Obliczymy 

energi� dostarczon� do tej cewki w czasie od t0 do t. Energia ta, podobnie jak w przypadku 

kondensatora, mo�e by� obliczona jako całka z mocy chwilowej 

 

  �=
t

t

dpttW
0

)(),( 0 ττ   (3.19) 

 

Uwzgl�dniaj�c wzór na moc chwilow� i dokonuj�c odpowiednich operacji całkowania 

otrzymujemy 
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Załó�my, �e czas t0 jest tak� chwil�, w której pr�d cewki i(t) jest zerowy. W takim razie wzór 

na energi� upraszcza si� do postaci 

 

  )(
2
1

),( 2
)(

0
0 tLiidiLttW

tu

== �   (3.21) 

 

Zasadnicz� cech� cewki idealnej jest jej bezstratno��, co oznacza, �e energia dostarczona do 

niej pozostaje w niej zmagazynowana. Zatem cewka, przez która przepływa pr�d stały I 

posiada energi� równ� 

 

  2

2
1

LIW =   (3.22) 
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W odró�nieniu od kondensatora, w którym energia zwi�zana była z napi�ciem mi�dzy 

okładkami (ładunkiem) energia cewki jest uzale�niona od pr�du (strumienia magnetycznego). 

St�d przyjmuje si�, �e kondensator magazynuje energi� w polu elektrycznym a cewka w polu 

magnetycznym. 

 

 

3.7 Rzeczywiste modele cewki i kondensatora 
W dotychczasowych rozwa�aniach traktowali�my cewk� i kondensator jako elementy idealne, 

posiadaj�ce tylko jedn� cech�: indukcyjno�� w przypadku cewki i pojemno�� w przypadku 

kondensatora. Bardziej realistyczne modele tych elementów wymagaj� uwzgl�dnienia ich 

stratno�ci, któr� mo�emy zamodelowa� przy pomocy rezystancji. 

 

3.7.1 Cewka rzeczywista 
W przypadku cewki rzeczywistej zbudowanej z wielu zwojów drutu (zwykle miedzianego) 

naturalny model wymaga uwzgl�dnienia rezystancji zwojów. Najcz��ciej przyjmuje si� model 

szeregowy cewki, przedstawiony na rys. 3.4, w którym indukcyjno�� i rezystancja tworz� 

poł�czenie szeregowe. 

 

 

 

 
Rys. 3.4. Szeregowy model cewki rzeczywistej 
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Cewk� rzeczywist� charakteryzuje jej dobro� QL definiowana jako stosunek maksymalnej 

energii zgromadzonej w polu magnetycznym do energii rozproszonej w rezystancji w ci�gu 

okresu T 

 

  
)(

2 max

TW
W

Q
R

L
L π=   (3.23) 

 

Uwzgl�dniaj�c zale�no�ci energetyczne obowi�zuj�ce dla cewki i rezystora mo�na łatwo 

udowodni�, �e wzór powy�szy dla modelu szeregowego cewki upraszcza si� do postaci  

 

  
R
L

QL

ω=   (3.24) 

 

Mno��c licznik i mianownik tej zale�no�ci przez moduł pr�du (wspólnego dla obu 

elementów) wzór na dobro� mo�na wyrazi� jako stosunek modułu napi�cia na indukcyjno�ci 

do modułu napi�cia na rezystancji 

 

  
R

L
L U

U
Q =   (3.25) 

 

Je�li uwzgl�dnimy wykres wektorowy pr�dów i napi�� dla szeregowego modelu cewki 

(rys. 3.5) otrzymamy nast�puj�c� zale�no�� 
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Rys.3.5. Wykres wektorowy dla modelu szeregowego cewki 

 

 

  ϕtg=LQ   (3.26) 

 

Dobro� obwodu jest wi�c równa tangensowi k�ta przesuni�cia fazowego mi�dzy wektorem 

pr�du i napi�cia na cewce. W przypadku cewki idealnej k�t fazowy jest równy o90 (napi�cie 

na rezystorze szeregowym d��y do zera), st�d taka cewka ma dobro� niesko�czon�. 

 

 

3.7.2 Kondensator rzeczywisty 
Model kondensatora rzeczywistego powinien uwzgl�dnia� naturaln� upływno�� izolacji 

mi�dzyokładkowej (sko�czon� rezystancj� izolacji). Naturalny sposób uwzgl�dnienia tego 

pr�du to przyj�cie modelu równoległego, w którym na całkowity pr�d kondensatora składa si� 

pr�d pojemno�ci C oraz konduktancji G jak to przedstawiono na rys. 3.6. 

 

 
Rys. 3.6. Równoległy model kondensatora rzeczywistego 

 

Kondensator rzeczywisty charakteryzuje jego dobro� QC definiowana jako stosunek 

maksymalnej energii pola elektrycznego kondensatora do energii rozproszonej w rezystancji 

w ci�gu okresu T 

 

  
)(

2 max

TW
W

Q
R

C
C π=   (3.27) 
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Uwzgl�dniaj�c zale�no�ci energetyczne obowi�zuj�ce dla kondensatora i rezystora mo�na 

łatwo udowodni�, �e wzór powy�szy dla modelu równoległego kondensatora upraszcza si� do 

postaci  

 

  CR
G
C

QC ωω ==   (3.28) 

 

Dobro� kondensatora mierzona w modelu równoległym jest tym wi�ksza im mniejsza jest 

jego upływno�� (wi�ksza rezystancja), a wi�c odwrotnie ni� dla modelu szeregowego cewki. 

Mno��c licznik i mianownik tej zale�no�ci przez moduł napi�cia (wspólnego dla obu 

elementów) wzór na dobro� mo�na wyrazi� jako stosunek modułu pr�du pojemno�ciowego 

do modułu pr�du upływno�ciowego rezystancji 

 

  
R

C
C I

I
Q =   (3.29) 

 

Je�li uwzgl�dnimy wykres wektorowy pr�dów i napi�� dla równoległego modelu 

kondensatora (rys. 3.7) otrzymamy nast�puj�c� zale�no�� 

 

 
Rys. 3.7. Wykres wektorowy dla modelu równoległego kondensatora 

 

 



 55 

ϕtg=CQ   (3.30) 

 

Dobro� obwodu jest wi�c równa tangensowi k�ta przesuni�cia fazowego mi�dzy wektorem 

wypadkowym pr�du i napi�cia na kondensatorze. W przypadku kondensatora idealnego k�t 

fazowy jest równy o90  (warto�� pr�du upływno�ciowego d��y do zera), st�d taki kondensator 

ma dobro� niesko�czon�. 

 

3.8 Dopasowanie odbiornika do �ródła  
Rzeczywiste �ródło energii elektrycznej mo�na przedstawi� w postaci szeregowego 

poł�czenia idealnego �ródła napi�cia E oraz impedancji wewn�trznej �ródła Zg jak to 

przedstawiono na rys. 3.8 

 

 
Rys. 3.8. Model rzeczywistego �ródła napi�ciowego generatora 

 

Rozwa�my elementarny obwód zło�ony z rzeczywistego �ródła napi�cia oraz impedancji 

odbiornika Z jak to przedstawiono na rys. 3.9. 

 

 
Rys. 3.9. Rzeczywiste �ródło napi�cia obci��one impedancj� Z 
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Przyjmijmy ogólny model impedancji wewn�trznej �ródła w postaci 

 

  ggg jXRZ +=   (3.31) 

 

Podobnie zało�ymy, �e impedancj� odbiornika stanowi poł�czenie szeregowe rezystancji R 

oraz reaktancji X, to jest 

 

  jXRZ +=   (3.32) 

 

Dopasowanie odbiornika do generatora rozumiemy jako dobór takiej impedancji odbiornika, 

przy której odbiornik pobiera ze �ródła maksymaln� moc czynn�. Z analizy obwodu 

przedstawionego na rys. 3.9 wynika, �e moc P odbiornika jest okre�lona zale�no�ci� 

 

  ( ) ( )22

2

2

2
2

XXRR

RE
R

ZZ

E
RIP

ggg
+++

=
+

==   (3.33) 

 

Przy ustalonej warto�ci rezystancji odbiornika wyra�enie powy�sze osi�ga maksimum dla  

 

  gXX −=   (3.34) 

 

Znak minus oznacza, �e reaktancja odbiornika powinna mie� charakter odwrotny do 

reaktancji generatora. Przy indukcyjnym charakterze impedancji �ródła, odbiornik powinien 

mie� charakter pojemno�ciowy. 

Po uwzgl�dnieniu tej zale�no�ci wyra�enie na moc przyjmie uproszczon� posta� 

 

  ( )2

2

RR

RE
P

g +
=   (3.35) 

 

Wydzielenie maksymalnej mocy czynnej na rezystorze wymaga, aby pochodna funkcji mocy 

wzgl�dem rezystancji R równała si� zeru, czyli  
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  0
)( =

dR
RdP

  (3.36) 

 

czyli 

 

  
( ) ( )

( ) 0
2

4

2

=
+

+−+
E

RR

RRRRR

g

gg   (3.37) 

 

Równane powy�sze jest spełnione dla warto�ci rezystancji obci��enia równej rezystancji 

�ródła, czyli 

 

  gRR =   (3.38) 

 

Mo�na łatwo sprawdzi�, �e przy takim warunku druga pochodna funkcji mocy wzgl�dem 

rezystancji jest ujemna, co oznacza, �e mamy do czynienia z maksimum mocy. Ostatecznie 

stwierdzamy, �e warunkiem dopasowania odbiornika do generatora ze wzgl�du na moc 

czynn� jest 

 

 ggg jXRZZ −== *   (3.39) 

 

Łatwo jest pokaza�, �e przy spełnieniu powy�szego warunku na impedancji odbiornika 

wydzieli si� maksymalna moc czynna maxP  równa  

 

  
gR

E
P

4

2

max =   (3.40) 

 

Bior�c pod uwag�, �e w obwodzie istniej� dwie identyczne rezystancje (odbiornika i 

generatora), przez które przepływa identyczny pr�d moc maksymalna odbiornika stanowi 

50% całkowitej mocy wydzielanej przez �ródło idealne. 

 

Zadania sprawdzaj�ce  
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Zadanie 3.1 

Sporz�dzi� bilans mocy w obwodzie przedstawionym na rys. 3.10. Przyj�� nast�puj�ce 

warto�ci elementów: )sin(250)( tte ω= V, 
s

rad
1=ω , H10=L , F1,0=C , Ω= 151R , 

Ω= 102R . 

 

Rys. 3.10. Schemat obwodu do zadania 3.1 

 

Rozwi�zanie 

Warto�ci symboliczne elementów obwodu: 

1=ω  

50=E  

10jLjZL == ω  

10/1 jCjZC −== ω  

 

Impedancje obwodu: 

1,0
1111

2

=++=
CLAB ZZRZ

 

10=ABZ  

251 =+= RZZ AB  

 

Pr�dy i napi�cia w obwodzie: 

2/ == ZEI  

20== ABAB IZU  

21 j
Z

U
I

C

AB ==  
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22 j
Z

U
I

L

AB −==  

2
2

3 ==
R

U
I AB  

 

Moc wydawana prze �ródło 

0100250* jEISE +=⋅==  

 

Moce elementów 

WRIPR 601
2

1
==  

WRIPR 402
2

32
==  

var40
2

2 == LIQL ω  

var40
12

1 −=−=
C

IQC ω
 

 

Moc całkowita odbiornika 

0100
21

jjQjQPPS CLRRodb +=++=  

 

Moc odbiornika jest dokładnie równa mocy �ródła. 

 

 

 

Zadanie 3.2 

Dobra� tak warto�ci rezystancji 1R  i indukcyjno�ci L aby w odbiorniku obwodu z rys. 3.11 

wydzieliła si� maksymalna moc czynna. Obliczy� t� moc. Dane liczbowe elementów obwodu: 

tte sin2100)( = V, Ω= 50gZ , Ω= 20CX , Ω= 202R . 

 



 60 

 
Rys. 3.11. Schemat obwodu do zadania 3.2 

 

Rozwi�zanie 

Impedancja całkowita odbiornika 

1010
2020
2020

11 jjXR
j

j
jXRZ LL −++=

−
⋅−++=  

Wobec zerowej warto�ci cz��ci urojonej impedancji generatora 0=gX  cz��� urojona 

impedancji odbiornika musi by� tak�e równa zeru, czyli 

Ω=→= 100)Im( LXZ  

 

Dopasowanie odbiornika do generatora pod wzgl�dem mocy czynnej wymaga, aby 

)Re()Re( gZZ =  

Ω=→=+ 405010 11 RR  

 

Pr�d w obwodzie 

1
5050

100 =
+

=
+

=
gZZ

E
I  

 

Moc wydawana przez �ródło 

100* == EISE  

 

Moc odbiornika 

50
2 == RIP  
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Na odbiorniku w warunkach dopasowania mocy wydziela si� połowa mocy �ródła. Druga 

połowa wydziela si� na rezystancji �ródła. 
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Lekcja 4. Metody analizy zło�onych obwodów RLC w stanie ustalonym przy 

wymuszeniu sinusoidalnym 

 

Wst�p 
Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym tylko w najprostszym 

przypadku poł�czenia szeregowego lub równoległego elementów jest zagadnieniem prostym, 

nie wymagaj�cym rozwi�zywania układu równa�. W wi�kszo�ci bardziej zło�onych 

obwodów nale�y liczy� si� z rozwi�zaniem wielu równa� algebraicznych typu zespolonego.  

 Lekcja czwarta po�wi�cona b�dzie skutecznym metodom analizy zło�onych obwodów 

RLC w stanie ustalonym przy wymuszeniach sinusoidalnych. Podstawowym zało�eniem przy 

wymuszeniu sinusoidalnym jest przyj�cie opisu symbolicznego elementów obwodu, zgodnie 

z którym cewka opisana jest impedancj� zespolon� LjZL ω=  a kondensator impedancj� 

C
jZC ω

1−= . �ródło sinusoidalne zast�puje si� jego warto�ci� skuteczn� zespolon�, 

okre�lan� według zasad podanych w lekcji drugiej. 

 Znanych jest wiele metod umo�liwiaj�cych analiz� dowolnie zło�onych obwodów 

elektrycznych, spo�ród których omówimy metod� klasyczn�, opart� na prawach Kirchhoffa, 

zastosowaniu twierdzenia Thevenina i Nortona oraz metod� w�złow� i oczkow�. W 

przypadku wielu wymusze� o ró�nych cz�stotliwo�ciach niezb�dne jest zastosowanie tak 

zwanej zasady superpozycji obowi�zuj�cej dla obwodów liniowych, wprowadzonej w 

ko�cowej fazie lekcji. 

 

 

4.1. Metoda równa� Kirchhoffa 

W metodzie tej wykorzystuje si� w bezpo�redniej formie prawo pr�dowe i napi�ciowe 

Kirchhoffa uzupełnione o równania symboliczne opisuj�ce poszczególne elementy obwodu. 

W efekcie zastosowania praw Kirchhoffa otrzymuje si� układ równa� algebraicznych o 

zespolonych współczynnikach. Je�li zało�ymy, �e obwód posiada b gał�zi i n w�złów to w 

równaniach opisuj�cych obwód wykorzystuje si� (n-1) równa� pochodz�cych z prawa 

pr�dowego Kirchhoffa. Pozostałe (b-n+1) równa� wynika z prawa napi�ciowego Kirchhoffa 

dla (b-n+1) oczek niezale�nych (dowolnie wybranych) w obwodzie.  
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 Jak z powy�szych rozwa�a� wynika w metodzie klasycznej wykorzystuj�cej 

bezpo�rednio prawa Kirchhoffa istnieje potrzeba rozwi�zania układu b równa� z b 

niewiadomymi. Jest to wi�c metoda zło�ona obliczeniowo, zwłaszcza je�li we�mie si� pod 

uwag�, �e wszystkie równania s� zespolone. W efekcie metod� t� stosuje si� głównie w 

przypadku obwodów o małej liczbie elementów. Metod� zlustrujemy przykładem liczbowym 

obliczania pr�dów i napi�� w obwodzie przedstawionym na rys. 4.1. 

  

Przykład 4.1 

Stosuj�c równania Kirchhoffa nale�y obliczy� wszystkie pr�dy i napi�cia w obwodzie 

przedstawionym na rys. 4.1. Przyj�� nast�puj�ce warto�ci parametrów obwodu: Ω= 2R , 

C=0,5F, L=1H, )sin(210)( tte ω= V, )45sin(5)( �−= tti ω A, 
s

rad
1=ω . 

 

 
Rys. 4.1. Schemat obwodu do przykładu 4.1 

 

Rozwi�zanie 

Przy sinusoidalnym wymuszeniu zastosujemy podej�cie symboliczne, zgodnie z którym 

przebiegi czasowe s� zast�pione warto�ciami zespolonymi. W przypadku �ródeł przyjmuje 

si�: 1010 0 == jeE , 
ojeI 45

2
5 −= . Impedancja cewki jest równa 1jLjZ L == ω , a 

impedancja kondensatora 2
1

j
C

jZC −=−=
ω

. 

Przy oznaczeniach pr�dów i napi�� jak na rys. 4.1 z praw Kirchhoffa wynikaj� 

nast�puj�ce równania pr�dowe i napi�ciowe 

 

0

0

0

32

321

21

=−
=−−+
=−−

IZRI

IIII

RIIZE

C

L
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Po uporz�dkowaniu równa� i wstawieniu warto�ci liczbowych otrzymuje si� układ 3 równa� 

zespolonych w postaci 

 

 

022
2

5

102

32

45
321

21

=+

−=−−

=+

−

IjI

eIII

IjI
oj  

 

W obwodzie wyró�nione zostały 3 gał�zie, w których obliczany jest pr�d, st�d jego pełny opis 

zawiera 3 niezale�ne równania. Rozwi�zanie tych równa� prowadzi do wyniku 

 
�5,26

1 18,11510 jejI =+=  

�7,33
2 01,955,7 jejI −=−=  

�3,56
3 01,95,75 jejI =+=  

 

Warto�ci chwilowe pr�dów s� zatem wyra�one w postaci nast�puj�cych funkcji 

sinusoidalnych 

 

)5,26sin(218,11)(1
�+= tti ω  

)7,33sin(201,9)(2
�−= tti ω  

)3,56sin(201,9)(3
�+= tti ω  

 

Wykorzystuj�c prawo Ohma otrzymuje si� nast�puj�ce warto�ci napi�� na elementach 

pasywnych 

 
�5,116

11 18,11 j
L eIZU ==  

�7,.33
22 02,18 jeRIU −==  

 

Warto�ci chwilowe napi�� wyra�one s� w postaci funkcji sinusoidalnych 
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)5,116sin(218,11)(1
�+= ttu ω  

)7,33sin(202,18)(2
�−= ttu ω  

 

Łatwo sprawdzi�, �e bilans pr�dów i napi�� w obwodzie jest spełniony. Mianowicie w 

przypadku pr�dów (jeden w�zeł niezale�ny) 

 

0321 =−−+ IIII   

 

oraz napi�� (dwa oczka niezale�ne) 

 

0

0

32

21

=−
=−−

IZRI

UUE

C

 

 

 

4.2. Metoda oparta na twierdzeniu Thevenina  
Jednym z wa�niejszych twierdze� w teorii obwodów jest twierdzenie Thevenina. Pozwala 

ono zast�pi� zło�ony obwód elektryczny o dowolnej strukturze i warto�ciach elementów, 

przez obwód prosty b�d�cy poł�czeniem szeregowym jednej impedancji zast�pczej oraz 

�ródła napi�ciowego. Umo�liwia znaczne uproszczenie struktury obwodu, a w nast�pstwie w 

bardzo prosty sposób wyznaczy� pr�d lub napi�cie jednej wybranej gał�zi obwodu. 

 

Twierdzenie Thevenina 

Dowolny, aktywny obwód liniowy mo�na zast�pi� od strony wybranych zacisków gał�zi AB 

uproszczonym obwodem równowa�nym, zło�onym z szeregowego poł�czenia jednego 

idealnego �ródła napi�cia i impedancji zast�pczej obwodu. Warto�� �ródła zast�pczego 

oblicza si� na podstawie analizy obwodu oryginalnego jako napi�cie panuj�ce na zaciskach 

AB po odł�czeniu gał�zi AB. Impedancja zast�pcza widziana z zacisków AB dotyczy obwodu 

po wył�czeniu gał�zi AB i po zwarciu wszystkich �ródeł napi�cia oraz rozwarciu �ródeł 

pr�du. 

 Na rys. 4.2 przedstawiono sposób transformacji obwodu zgodnie z twierdzeniem 

Thevenina.  
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Rys. 4.2. Transformacja obwodu zgodnie z twierdzeniem Thevenina 

 

Pr�d I wyst�puj�cy w gał�zi AB obwodu oryginalnego jest równy pr�dowi I w tej samej 

gał�zi obwodu uproszczonego. Napi�cie ABU  wyst�puj�ce na rysunku reprezentuje �ródło 

zast�pcze, natomiast impedancja ABZ  jest impedancj� zast�pcz� obwodu. Przy zało�eniu, �e 

gał�� AB w której obliczamy pr�d reprezentowana jest przez impedancj� Z, pr�d tej gał�zi 

mo�na obliczy� korzystaj�c z prawa napi�ciowego Kirchhoffa  

 

 0)( =+− ABAB ZZIU  (4.1) 

 

z którego wynika wyra�enie na pr�d gał�zi w nast�puj�cej postaci 

 

 
AB

AB

ZZ
U

I
+

=  (4.2) 

 

Metoda Thevenina w wi�kszo�ci przypadków znakomicie upraszcza analiz� obwodu. Jest 

szczególnie u�yteczna w przypadkach, w których trzeba wyznaczy� tylko jeden pr�d w 

obwodzie, gdy� mo�na dokona� tego bez konieczno�ci rozwi�zywania układu równa� 

algebraicznych lub przy znacznej redukcji liczby tych równa�. 

 

Przykład 4.2 

Korzystaj�c z twierdzenia Thevenina wyznaczy� pr�d I w gał�zi AB obwodu mostka 

przedstawionego na rys. 4.3, je�li )sin(210)( tte ω= V, Ω= 5,70R , Ω= 51R , Ω= 52R  a 

reaktancje cewki i kondensatora s� równe odpowiednio Ω== 5LX L ω  oraz 

Ω== 10/1 CXC ω , Ω== 5/1 00 CX C ω . 
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Rys. 4.3. Schemat obwodu do przykładu 4.2 

 

Rozwi�zanie  

Na rys. 4.4a przedstawiono schemat obwodu do wyznaczenia impedancji zast�pczej 

Thevenina. 

 

 
Rys. 4.4. Postaci obwodu do wyznaczania a) impedancji zast�pczej Thevenina,  

b) napi�cia �ródła zast�pczego 

 

 Łatwo pokaza�, �e impedancja zast�pcza tego obwodu jest równa 

 

105,2
105

)10(5
55
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Rys. 4.4b przedstawia obwód do obliczenia warto�ci �ródła zast�pczego ABU  w schemacie 

zast�pczym Thevenina. Obliczaj�c kolejno pr�dy  

 

1
21

1 =
+

=
RR

E
I  

j
jXjX

E
I

CL

22 =
−

=  

 

napi�cie ABU  okre�la si� ze wzoru 

 

15211 −=−= IZIRU CAB  

 

 
Rys. 4.5 Schemat obwodu zast�pczego wynikaj�cego z twierdzenia Thevenina 

 

Wykorzystuj�c obwód zast�pczy Thevenina z rys. 4.5 i prawo napi�ciowe Kirchhoffa, 

warto�� skuteczn� zespolon� pr�du I okre�la si� ze wzoru 

 

�26
26

00

34,1
18,11

15
55,7105,2

15 j
j

CAB

AB e
ejjjXRZ

U
I −−=−=

−++
−=

−+
=  

 

Warto�ci chwilowe pr�du i(t) wyznaczane s� z zale�no�ci 

 

A)26sin(34,1)( �−−= tti ω  

 

Zauwa�my, �e zastosowanie twierdzenia Thevenina umo�liwiło rozwi�zanie obwodu 

wzgl�dem jednego wybranego pr�du bez konieczno�ci rozwi�zania układu równa� 

algebraicznych. 
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4.3. Metoda oparta na twierdzeniu Nortona 
Pozwala ono zast�pi� zło�ony obwód elektryczny o dowolnej strukturze i warto�ciach 

elementów, przez obwód prosty b�d�cy poł�czeniem równoległym jednej impedancji 

zast�pczej oraz idealnego �ródła pr�dowego. 

 

Twierdzenie Nortona 

Dowolny aktywny obwód liniowy mo�na od strony wybranych zacisków AB zast�pi� 

obwodem równowa�nym, zło�onym z równoległego poł�czenia idealnego �ródła pr�du i 

impedancji zast�pczej obwodu. Warto�� �ródła zast�pczego oblicza si� w obwodzie 

oryginalnym jako pr�d zwarciowy gał�zi AB. Impedancja zast�pcza widziana z zacisków AB 

dotyczy obwodu po wył�czeniu gał�zi AB i po zwarciu wszystkich �ródeł napi�cia oraz 

rozwarciu �ródeł pr�du i jest identyczna z impedancj� zast�pcz� w twierdzeniu Thevenina. 

 Rys. 4.6 przedstawia schemat transformacji obwodu zgodnie z twierdzeniem Nortona. 

 

 
Rys. 4.6. Schemat transformacji obwodu według twierdzenia Nortona 

 

 Pr�d I oraz napi�cie U wyst�puj�ce w gał�zi AB obwodu oryginalnego s� równe 

odpowiednio pr�dowi I oraz napi�ciu U w tej samej gał�zi obwodu uproszczonego. �ródło 

pr�dowe zI  wyst�puj�ce na rysunku reprezentuje �ródło zast�pcze, natomiast impedancja 

ABZ  jest impedancj� zast�pcz� obwodu. Przy zało�eniu, �e gał�� AB reprezentowana jest 

przez impedancj� Z, napi�cie tej gał�zi oblicza si� z prawa pr�dowego Kirchhoffa 

0
11 =��

�

�
��
�

�
+−

AB
z ZZ

UI , które pozwala wyrazi� poszukiwane napi�cie gał�zi w postaci 
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AB

z

ZZ
I

U
/1/1 +

=  (4.3) 

 

Znajomo�� napi�cia pozwala wyznaczy� na podstawie prawa Ohma pr�d gał�zi korzystaj�c z 

zale�no�ci ./ ZUI =  Podobnie jak metoda Thevenina, zastosowanie twierdzenia Nortona 

umo�liwia obliczenie pr�du i napi�cia tylko jednej gał�zi obwodu. Zwykle z punktu widzenia 

obliczeniowego wygodniejsze jest u�ycie metody Thevenina. 

 

4.4. Równowa�no�� twierdzenia Thevenina i Nortona 

Twierdzenie Thevenina i Nortona pozwalaj� wyznaczy� uproszczone schematy zast�pcze 

tego samego układu elektrycznego z punktów AB obwodu wyj�ciowego. Oba schematy 

uproszczone stanowi� wi�c obwody zast�pcze równowa�ne sobie, co oznacza, �e pr�d i 

napi�cie w gał�zi AB, która nie uległa zmianie w wyniku transformacji, s� takie same. 

Oznacza to, �e gał�� szeregowa zawieraj�ca idealne �ródło napi�cia E i impedancj� Z mo�e 

by� bez zmiany pr�du w obwodzie zewn�trznym zast�piona gał�zi� równoległ� zawieraj�c� 

idealne �ródło pr�dowe I oraz impedancj� Z, jak to zilustrowano na rys. 4.7.  

 

 
Rys. 4.7. Równowa�no�� obwodów zast�pczych Thevenina i Nortona 

 

 

Wzajemne relacje mi�dzy warto�ciami �ródła pr�du i napi�cia okre�la wzór 

 

 
Z
U

I =  (4.4) 
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przy zamianie gał�zi szeregowej na równoległ� oraz  

 

 ZIU =  (4.5) 

 

przy zamianie gał�zi równoległej na szeregow�. Impedancja Z w obu obwodach zast�pczych 

pozostaje taka sama. Dla zilustrowania korzy�ci płyn�cych z równowa�no�ci obu twierdze� 

rozpatrzmy obwód z rys. 4.8a zawieraj�cy zarówno �ródła pr�du jak i napi�cia. Zastosowanie 

równowa�no�ci twierdzenia Thevenina i Nortona pozwala uzyska� obwód zawieraj�cy 

wył�cznie jeden typ �ródeł (pr�dowych) jak to przedstawiono na rys. 4.8. 

 

 
Rys. 4.8. Przykład transformacji obwodu wykorzystuj�cej równowa�no�� obwodów 

zast�pczych Thevenina i Nortona: a) obwód oryginalny zawieraj�cy �ródła pr�du i napi�cia, 

b) obwód po transformacji zawieraj�cy wył�cznie �ródła pr�dowe 

 

4.5. Metoda potencjałów w�złowych 

Metoda potencjałów w�złowych, zwana równie� metod� w�złow�, jest jedn� z 

najogólniejszych i najcz��ciej stosowanych metod, pozwalaj�cych wyznaczy� pr�dy 

wszystkich gał�zi wyst�puj�cych w obwodzie. Jako zmienne przyjmuje si� w niej potencjały 

poszczególnych w�złów obwodu okre�lane wzgl�dem jednego arbitralnie wybranego w�zła 

uznanego za w�zeł odniesienia („masy”), którego potencjał przyjmuje si� za równy zeru. 

Liczba równa� w tej metodzie jest równa liczbie w�złów niezale�nych a wi�c znacznie 

mniejsza ni� w metodzie wykorzystuj�cej bezpo�rednio układ równa� otrzymanych w wyniku 

zastosowania praw Kirchhoffa. 

 Metoda w�złowa wynika bezpo�rednio z równa� pr�dowych Kirchhoffa napisanych 

dla wszystkich w�złów niezale�nych w obwodzie. Pr�d ka�dej gał�zi obwodu jest wyra�any 
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za po�rednictwem potencjałów w�złowych. Zostało wykazane, �e ka�dy obwód liniowy RLC 

mo�e by� opisany równaniem macierzowym potencjałów w�złowych o postaci  

 

 zrIYV =  (4.6) 

 

w której Y jest macierz� w�złow� o wymiarach NN × , gdzie N jest liczb� w�złów 

niezale�nych w obwodzie, V jest wektorem niezale�nych potencjałów w�złowych o wymiarze 

N a zrI  jest wektorem pr�dów �ródłowych stanowi�cych wymuszenie. Macierz w�złowa Y 

okre�lona jest w postaci 
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a wektory V oraz zrI  dane s� jak nast�puje 
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Elementy iiY  poło�one na głównej diagonalnej macierzy Y nazywane s� admitancjami 

własnymi w�zła i-tego. W przypadku obwodów RLC bez �ródeł sterowanych admitancja 

własna w�zła i-tego jest równa sumie admitancji wszystkich gał�zi wł�czonych w i-tym 

w��le. Elementy ijY  poło�one poza główn� diagonaln� s� admitancjami wzajemnymi 

mi�dzy w�złem i-tym oraz j-tym. Admitancja wzajemna dwu w�złów jest równa admitancji 

ł�cz�cej te w�zły wzi�tej ze znakiem minus. Admitancja wzajemna w�zła i-tego oraz j-tego 
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jest taka sama jak w�zła j-tego oraz i-tego, tzn. jiij YY = . Macierz admitancyjna Y dla 

obwodów RLC bez �ródeł sterowanych jest wi�c macierz� symetryczn�. 

 Elementy wektora wymusze� pr�dowych zrI  s� równe sumie wszystkich pr�dów 

�ródłowych wpływaj�cych do danego w�zła, przy czym pr�d �ródłowy dopływaj�cy do w�zła 

bierze si� ze znakiem plus a pr�d odpływaj�cy od w�zła ze znakiem minus. 

 Nale�y podkre�li�, �e metoda potencjałów w�złowych dopuszcza istnienie w 

obwodzie jedynie �ródeł wymuszaj�cych typu pr�dowego. Je�li w obwodzie wyst�puj� 

równie� �ródła napi�ciowe nale�y je przekształci� w odpowiednie �ródła pr�dowe 

wykorzystuj�c do tego celu równowa�no�� Thevenina – Nortona (patrz rys. 4.7). Sposób 

formułowania równa� w�złowych zilustrujemy na przykładzie obwodu przedstawionego na 

rys. 4.9. 
 

Przykład 4.3 

Korzystaj�c z przedstawionych reguł formułowania równa� w�złowych nale�y napisa� 

równanie potencjałów w�złowych dla obwodu przedstawionego na rys. 4.9. 

 

 
Rys. 4.9. Schemat obwodu do przykładu 4.3 

 

Rozwi�zanie 

 Obwód zawiera 3 w�zły niezale�ne: 1V , 2V  oraz 3V  mierzone wzgl�dem w�zła 

odniesienia jak to oznaczono na rysunku. Oznaczaj�c admitancje przez Y, gdzie Y=1/Z 

otrzymuje si� macierz potencjałów w�złowych Y oraz wektor pr�dów wymuszaj�cych zrI  w 

postaci 
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Równanie potencjałów w�złowych obwodu przyjmuje posta�  

 

zrIYV = , 

 

 w której 
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V . 

 Na podstawie obliczonych warto�ci napi�� w�złowych obwodu mo�na w prosty 

sposób korzystaj�c z prawa napi�ciowego Kirchhoffa dla poszczególnych gał�zi obwodu 

wyznaczy� pr�dy gał�ziowe. Wystarczy w tym celu zastosowa� b�d� prawo Ohma (je�li gał�� 

zawiera jedynie element pasywny) lub równanie napi�ciowe Kirchoffa dla gał�zi szeregowej 

zawieraj�cej �ródło napi�cia i element pasywny. Przykładowo dla obwodu z rys. 4.9 

odpowiednie zale�no�ci przyjmuj� posta� 

 

)( 2122 VVYI −=  

)( 3233 EVYI −=  

)( 3244 VVYI −=  

)( 5355 EVYI +=  

366 VYI =  

 

Nale�y podkre�li�, �e metoda potencjałów w�złowych wymaga rozwi�zania układu N 

równa�, gdzie N oznacza liczb� w�złów niezale�nych. Zwykle liczba w�złów jest du�o 

mniejsza ni� liczba elementów obwodu, st�d metoda potencjałów w�złowych jest znacznie 

efektywniejsza ni� metoda klasyczna wykorzystuj�ca bezpo�rednio prawa Kirchhoffa. 



 75 

 Reguły tworzenia opisu w�złowego przedstawione powy�ej zakładały istnienie 

jedynie elementów pasywnych RLC oraz �ródeł wymuszaj�cych typu pr�dowego. Dzi�ki 

takiemu zało�eniu s� one bardzo proste i łatwe w stosowaniu. 

 W przypadku wyst�pienia �ródeł sterowanych w obwodzie trudno jest poda� formuł� 

ogóln� pozwalaj�c� okre�li� zarówno macierz admitancyjn� jak i wektor wymusze� 

pr�dowych. Zasada tworzenia opisu admitancyjnego w takim przypadku korzysta 

bezpo�rednio ze stwierdzenia, �e opis admitancyjny powstaje jako uporz�dkowany zbiór 

równa� wynikaj�cych z prawa pr�dowego Kirchhoffa, w których wszystkie pr�dy gał�ziowe 

zostały wyra�one poprzez potencjały w�złowe i warto�ci �ródeł wymuszaj�cych. Macierz 

admitancyjna Y wynika wówczas z uporz�dkowania macierzowego powstałego układu 

równa�. Tak� metod� tworzenia równa� w�złowych zilustrujemy na przykładzie obwodu 

przedstawionego na rys. 4.10. 

 

Przykład 4.4 

Korzystaj�c z praw pr�dowych Kirchhoffa wyznaczy� opis admitancyjny obwodu 

przedstawionego na rys. 4.10. 

 

 
Rys. 4.10. Schemat obwodu do przykładu 4.4 

 

Rozwi�zanie 

W obwodzie wyst�puj� dwa �ródła sterowane, z których jedno jest sterowane napi�ciem 

U2=(V2-V1) a drugie pr�dem I1=V1/Z1. Bior�c pod uwag�, �e napi�cie w�zła trzeciego jest 

równe V3=E, w opisie obwodu przy zastosowaniu metody w�złowej wyst�puj� jedynie dwa 

niezale�ne potencjały w�złowe V1 i V2. Z prawa pr�dowego Kirchhoffa napisanego dla dwu 

w�złów o potencjałach V1 i V2 wynikaj� nast�puj�ce równania 
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Wyra�aj�c wszystkie pr�dy gał�ziowe przez napi�cia w�złowe 
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i podstawiaj�c je do równa� pr�dowych Kirchhoffa otrzymuje si� 
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Porz�dkuj�c powy�szy układ równa� i zapisuj�c go w postaci zale�no�ci macierzowej 

otrzymuje si� ostatecznie układ równa� w�złowych  
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Jest to układ dwu równa� z dwoma nieznanymi napi�ciami w�złowymi V1 oraz V2. Po 

rozwi�zaniu tych równa� mo�na wyznaczy� wszystkie poszukiwane pr�dy w obwodzie, 

korzystaj�c z przytoczonych wcze�niej równa�. 

 Nale�y zwróci� uwag� na uproszczenia wynikaj�ce z istnienia w obwodzie idealnego 

�ródła napi�cia. �ródło takie ustala potencjał okre�lonego w�zła (gdy jest wł�czone 

wzgl�dem w�zła odniesienia) lub uzale�nia potencjał jednego w�zła wzgl�dem drugiego (gdy 

jest wł�czone mi�dzy dwoma w�złami niezale�nymi). W obu przypadkach prowadzi to do 

redukcji liczby równa� opisuj�cych obwód. 

4.6. Metoda pr�dów oczkowych 

W metodzie pr�dów oczkowych, zwanej równie� metod� oczkow�, wprowadza si� pr�dy 

oczkowe jako zmienne, czyli pr�dy przypisane niezale�nym oczkom wyst�puj�cym w 

obwodzie. Przykładowy wybór oczek niezale�nych i oznaczenie pr�dów oczkowych obwodu 

przedstawiono na rys. 4.11.  
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Rys. 4.11. Przykład wyboru oczek niezale�nych w obwodzie 

 

Oznaczmy w ogólno�ci wektor pr�dów oczkowych w postaci  

 

 

�
�
�
�

�

	










�

�

=

oN

o

o

o

I

I

I

...
2

1

I  (4.10) 

 

w której okI  oznacza pr�d oczkowy k-tego oczka. Dla uzyskania opisu oczkowego 

wykorzystuje si� prawo napi�ciowe Kirchhoffa napisane dla wszystkich oczek niezale�nych 

obwodu. Nast�pnie wyra�a si� wszystkie pr�dy gał�ziowe poprzez pr�dy oczkowe (pr�d 

gał�ziowy jest równy sumie lub ró�nicy pr�dów oczkowych przeprowadzonych przez dan� 

gał��) i otrzymuje opis obwodu w postaci układu równa� oczkowych  

 

 EZI =o  (4.11) 

 

gdzie macierz oczkowa Z oraz wektor napi�� wymuszaj�cych E przyjmuj� posta� 
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Elementy iiZ  poło�one na głównej diagonalnej macierzy Z nazywamy impedancjami 

własnymi oczka i-tego. Przy zało�eniu, �e wszystkie pr�dy oczkowe maj� identyczny zwrot, 

dla obwodów RLC bez �ródeł sterowanych impedancja własna oczka i-tego jest równa sumie 

impedancji wszystkich gał�zi wyst�puj�cych w oczku. Elementy ijZ  poło�one poza główn� 

diagonaln� s� impedancjami wzajemnymi mi�dzy oczkiem i-tym oraz j-tym. Impedancja 

wzajemna dwu oczek przy identycznym zwrocie wszystkich pr�dów oczkowych jest równa 

impedancji wspólnej dla obu oczek wzi�tej ze znakiem minus. Impedancja wzajemna oczka i-

tego oraz j-tego jest taka sama jak oczka j-tego oraz i-tego, tzn. jiij ZZ = . Macierz Z jest wi�c 

macierz� symetryczn�. 

Element k-ty wektora wymusze� napi�ciowych E jest równy sumie wszystkich napi�� 

�ródłowych wyst�puj�cych w k-tym oczku. Przy zało�onej orientacji oczka napi�cie �ródłowe 

dodaje si� ze znakiem plus je�li jego zwrot jest identyczny z t� orientacj� a ze znakiem minus 

je�li ten zwrot jest przeciwny. Sposób tworzenia opisu oczkowego zilustrujemy na 

przykładzie obwodu z rys. 4.12. 

  

Przykład 4.5 

Dla obwodu przedstawionego na rys. 4.12 napisa� równanie pr�dów oczkowych przy 

zało�eniu układu oczek niezale�nych jak na rysunku. 
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Rys. 4.12 Schemat obwodu do przykładu 4.5 

 

Rozwi�zanie 

Obwód zawiera 3 oczka niezale�ne, st�d wymiar macierzy oczkowej jest równy 3, 

podobnie jak długo�� wektora pr�dów oczkowych oraz wektora napi�� wymuszaj�cych. 

Korzystaj�c z podanej wcze�niej reguły tworzenia opisu oczkowego otrzymuje si� 
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Bior�c pod uwag� �e obwód zawiera trzy nieznane pr�dy oczkowe tworz�ce wektor pr�dów 

[ ] T
oooo III 321=I , równanie oczkowe EZI =o  stanowi zbiór trzech równa� liniowych. 

Rozwi�zanie tego układu równa� pozwala okre�li� te zmienne. Znajomo�� pr�dów 

oczkowych pozwala wyznaczy� wszystkie pr�dy gał�ziowe obwodu. Mianowicie 

 

131 oo III −=  

12 oII =  
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213 oo III −=  

24 oII =  

235 oo III −=  

36 oII −=  

 

Metoda pr�dów oczkowych wymaga rozwi�zania układu N równa�, gdzie N oznacza liczb� 

oczek niezale�nych. Podobnie jak w metodzie w�złowej liczba oczek jest zwykle du�o 

mniejsza ni� liczba elementów obwodu, st�d metoda pr�dów oczkowych jest du�o bardziej 

efektywna ni� metoda klasyczna wykorzystuj�ca bezpo�rednio prawa Kirchhoffa. 

 

4.7. Zasada superpozycji 

Omówione wcze�niej metody analizy symbolicznej stanowi� dobry i skuteczny sposób 

rozwi�zania problemu przy istnieniu w obwodzie �ródeł sinusoidalnych o tej samej 

cz�stotliwo�ci, gdy� dla ka�dego �ródła elementy reaktancyjne LC przedstawiaj� sob� te 

same warto�ci reaktancji. Istotna trudno�� wyst�puje dopiero przy istnieniu w obwodzie wielu 

�ródeł o ró�nych cz�stotliwo�ciach. W takim przypadku nie istnieje poj�cie impedancji 

wspólnej dla ka�dego �ródła, co uniemo�liwia zastosowanie metody symbolicznej. Jedynym 

rozwi�zaniem pozostaje wtedy zastosowanie zasady superpozycji. Obowi�zuje ona tylko dla 

obwodów liniowych. Jej tre�� jest nast�puj�ca. 

 

Zasada superpozycji 

Odpowied� czasowa obwodu elektrycznego liniowego przy warunkach pocz�tkowych 

zerowych jest równa sumie odpowiedzi czasowych na ka�de wymuszenie z osobna. 

 

 Tak ogólnie sformułowana zasada obowi�zuje zarówno w stanie ustalonym jak i 

nieustalonym obwodu. W przypadku analizy stanów ustalonych jej zastosowanie w analizie 

obwodów polega na rozbiciu danego obwodu o wielu wymuszeniach na wiele obwodów 

zawieraj�cych po jednym wymuszeniu, rozwi�zaniu ka�dego z nich oddzielnie a nast�pnie 

zsumowaniu odpowiedzi czasowych ka�dego obwodu. Nale�y pami�ta� przy tym o zasadzie, 

�e eliminowane �ródła s� zast�powane zwarciem (je�li �ródło jest napi�ciowe) lub 

rozwarciem (gdy �ródło jest pr�dowe). 
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Nale�y podkre�li�, �e zgodnie z zasad� superpozycji sumowanie odpowiedzi 

pochodz�cych od ró�nych wymusze� mo�e odbywa� si� wył�cznie w dziedzinie czasu. 

Sumowanie warto�ci zespolonych od poszczególnych wymusze� byłoby powa�nym bł�dem, 

gdy� sugerowałoby istnienie rozwi�zania obwodu zawieraj�cego tylko jedn� harmoniczn�. 

Ilustracj� stosowania zasady superpozycji w analizie obwodów przedstawiono na rys. 4.13. 

 

 
Rys. 4.13. Ilustracja zasady superpozycji w obwodach liniowych 

 

 

Przykład 4.6 

Stosowanie praktyczne zasady superpozycji zostanie zilustrowane na przykładzie obwodu z 

rys. 4.14a zawieraj�cego dwa �ródła, z których jedno jest stałe a drugie sinusoidalne. Nale�y 

dokona� analizy obwodu stosuj�c zasad� superpozycji. Przyj�� nast�puj�ce warto�ci 

elementów: Ω= 2R , HL 2= , FC 1= , )45sin(210)( �+= tti ω A, Vte 2)( = , 
s

rad
1=ω . 
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Rys. 4.14 Schematy obwodów do przykładu 4.6: a) schemat obwodu oryginalnego o dwu 

�ródłach, b) schemat obwodu dla �ródła stałego, c) schemat obwodu dla �ródła 

sinusoidalnego 

 

Rozwi�zanie 

Ze wzgl�du na wyst�pienie w obwodzie 2 ró�nych typów wymusze� (�ródło napi�ciowe stałe 

i �ródło pr�dowe sinusoidalne) konieczne jest zastosowanie w analizie zasady superpozycji.  

Na rys. 4.14c przedstawiono schemat obwodu przy istnieniu �ródła sinusoidalnie zmiennego 

i(t) a na rys. 4.14b obwód dla �ródła napi�ciowego o warto�ci stałej e(t) = E. Wymuszenie 

stałe mo�e by� rozpatrywane równie� jak sinusoidalne o cz�stotliwo�ci równej zeru. Bior�c 

pod uwag�, �e dla �ródła stałego 0=ω , reaktancja cewki staje si� zerowa ( 0== LX L ω ) a 

reaktancja kondensatora równa niesko�czono�ci ( ∞== CXC ω/1 ). Oznacza to, �e z punktu 

widzenia wymuszenia stałego w stanie ustalonym cewka stanowi zwarcie a kondensator 

przerw�. 

 Dla obwodu o wymuszeniu sinusoidalnym warto�ci reaktancji indukcyjnej i 

pojemno�ciowej s� odpowiednio równe: Ω== 2LX L ω , Ω== 1/1 CXC ω . Rozwi�zuj�c 

obwód przy wymuszeniu sinusoidalnym otrzymuje si� 
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Warto�ciom zespolonym pr�du towarzysz� nast�puj�ce postacie rozwi�zania w czasie 
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)162sin(247,4)()(
1

�−= tti I ω  

)108sin(294,8)()(
2

�+= tti I ω  

)6,71sin(247,4)()(
3

�−= tti I ω  

)162sin(247,4)()(
4

�−−= tti I ω  

 

Rozwi�zanie obwodu z rys. 4.14b przy wymuszeniu stałym nie wymaga stosowania metody 

symbolicznej, gdy� jest to obwód rezystancyjny, dla którego mo�na od razu poda� 

rozwi�zanie w czasie. Poszczególne pr�dy równaj� si� 

 

1)()( )(
3

)(
1 ===

R
E

titi EE  

0)()( )(
4

)(
2 == titi EE  

 

Całkowite rozwi�zanie na pr�dy w obwodzie jest sum� rozwi�za� obwodu dla wymuszenia 

sinusoidalnego oraz stałego. St�d 

 

A)162sin(247,41)(1
�−+= tti ω  

A)108sin(294,8)(2
�+= tti ω  

A)71sin(247,41)(3
�−+= tti ω  

A)162sin(247,4)(4
�−−= tti ω  

 

Nale�y podkre�li�, �e odpowiednio do zasady superpozycji sumowanie odpowiedzi 

pr�dowych na wymuszenie stałe i sinusoidalne mogło odby� si� wył�cznie w dziedzinie 

czasu.  

 

Zadania sprawdzaj�ce 

Zadanie 4.1 

Stosuj�c metod� Thevenina obliczy� pr�d w gał�zi AB obwodu przedstawionego na rys. 4.15. 

Dane liczbowe elementów: Ω= 41R , Ω= 82R , Ω= 23R , Ω= 24R , tte ωsin230)( = V. 
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Rys. 4.15 Schemat obwodu do zadania 4.1 

 

Rozwi�zanie 

Impedancja z zacisków AB obwodu (rys. 4.16a) jest równa 

 

    

 
Rys. 4.16 Schematy obwodu do obliczania: a)impedancji ZAB, b) napi�cia UAB, c) pr�du Ix 
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Pr�dy w obwodzie z rys. 4.16b: 
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Napi�cie UAB 

 

41122 =−= IRIRU AB  

 

Poszukiwany pr�d Ix z obwodu zast�pczego Thevenina (rys. 4.16c)  
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x Z

U
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Zadanie 4.2 

Napisa� równanie potencjałów w�złowych dla obwodu przedstawionego na rys. 4.17 

 

 
Rys. 4.17 Schemat obwodu do zadania 4.2 

 

Rozwi�zanie 

Przy podanych na rysunku oznaczeniach potencjałów w�złów mierzonych wzgl�dem w�zła 

odniesienia bezpo�rednie zastosowanie prawa pr�dowego Kirchhoffa do wszystkich w�złów 

obwodu i wyra�enie pr�dów poprzez potencjały w�złowe pozwala uzyska� równanie 

w�złowe w postaci 
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Zadanie 4.3 

Napisa� macierzowe równanie oczkowe dla obwodu przedstawionego na rys. 4.18 

 

 
Rys. 4.18 Schemat obwodu do zadania 4.3 

 

Rozwi�zanie  

Z prawa napi�ciowego Kirchhoffa zastosowanego do trzech oczek zaznaczonych na rysunku 

po wyra�eniu pr�dów gał�ziowych poprzez pr�dy oczkowe otrzymujemy równanie oczkowe 

o postaci 
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Zadanie 4.4  
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Wyznaczy� rozwi�zanie obwodu z rys. 4.19 stosuj�c zasad� superpozycji. Przyj�� 

)90sin(22)( otti += ω A, 5)( == Ete V, Ω= 1R , HL 1= , FC 5,0= , 
s

rad
1=ω . 

 
Rys. 4.19 Schemat obwodu do zadania 4.4 

 

Rozwi�zanie 

A) Rozwi�zanie obwodu dla składowej stałej (�ródło E) 

Obwód dla składowej stałej przedstawiono na rys. 4.20a. Cewka w stanie ustalonym dla 

składowej stałej jest zwarciem a kondensator przerw�. 

 

 
Rys. 4.20 Schemat obwodu dla poszczególnych �ródeł: a) �ródło napi�cia stałego,  

b) �ródło pr�du sinusoidalnego 

 

Dla pr�du stałego tylko jeden pr�d, )(E
Ri , jest ró�ny od zera. Jego warto�� jest równa 

 

5)( ==
R
E

i E
R  

0)()( == E
C

E
L ii  

 

B) Rozwi�zanie obwodu dla składowej zmiennej (�ródło i(t)) 
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Obwód dla składowej sinusoidalnej przedstawiono w postaci symbolicznej na rys. 4.20b. 

Parametry symboliczne obwodu s� nast�pujace: 
ojeI 902= , 1jLjZL == ω , 

2/1 jCjZC −== ω . Impedancja zast�pcza cewki i kondensatora jest równa 
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Napi�cie i pr�dy w obwodzie: 
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Warto�ci pr�dów wyra�one w postaci czasowej: 

 

)90sin(22)()( oI
C tti −=  

)90sin(24)()( oI
L tti +=  

0)()( =ti I
R  

 

Całkowite rozwi�zanie obwodu jest sum� obu składowych: 

 

A)90sin(22)()()( )()( oI
C

E
CC ttititi −=+=  
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E
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Lekcja 5. Analiza obwodów sprz��onych magnetycznie 

 

Wst�p 

Interesuj�ce zjawiska powstaj� w obwodach zawieraj�cych cewki poło�one blisko siebie, w 

których strumienie magnetyczne obu cewek zachodz� na siebie. Nast�puje wówczas zjawisko 

sprz��enia magnetycznego obu obwodów i przenoszenia energii z jednego obwodu do 

drugiego. 

 W lekcji pi�tej dokonamy analizy zjawisk powstaj�cych w obwodach sprz��onych 

magnetycznie. Wprowadzone zostan� metody analizy takich obwodów, wykorzystuj�ce 

eliminacj� sprz��e� magnetycznych. Sprz��enia magnetyczne umo�liwiaj� budow� 

urz�dzenia zwanego transformatorem, transformuj�cego poziom napi�cia wej�ciowego w 

wyj�ciowe o innej warto�ci. Ostatnia cz��� lekcji po�wi�cona b�dzie analizie transformatora 

powietrznego i transformatora zbudowanego na rdzeniu ferromagnetycznym. W tym ostatnim 

przypadku mamy do czynienia z obwodem nieliniowym, do którego stosuje si� specjalne 

metody analizy. 

 
 

5.1. Zjawiska fizyczne przy sprz��eniu magnetycznym cewek 

Przyjmijmy, �e dwie cewki s� poło�one blisko siebie w taki sposób, �e strumie� magnetyczny 

jednej cewki obejmuje równie� drug�. Całkowity strumie� skojarzony z dan� cewk� 

(strumie� skojarzony jest sum� strumieni φ  ka�dego zwoju cewki, co przy z zwojach o 

identycznym strumieniu daje φz=Ψ ) jest wtedy sum� obu strumieni je�li ich kierunki s� 

zgodne lub ich ró�nic�, je�li kierunki strumieni s� przeciwne. Strumienie obu cewek 

zapiszemy wówczas w postaci. 

 

 12111 Ψ±Ψ=Ψ  (5.1) 

 21222 Ψ±Ψ=Ψ  (5.2) 

 

Strumie� 11Ψ  wytworzony jest w cewce pierwszej od pr�du tej cewki a strumie� 12Ψ  

wytworzony w cewce pierwszej pochodzi od pr�du cewki drugiej skojarzonej z pierwsz�. 
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Podobnie strumie� 22Ψ  wytworzony jest w cewce drugiej od pr�du tej cewki a strumie� 21Ψ  

wytworzony w cewce drugiej pochodzi od pr�du cewki pierwszej skojarzonej z drug�. 

Uwzgl�dniaj�c poj�cie indukcyjno�ci własnej i wzajemnej wprowadzone w rozdziale 

pierwszym dla cewek liniowych sprz��onych magnetycznie obowi�zuj� nast�puj�ce relacje: 

 

• Indukcyjno�ci własne 

 
1

11
1 i

L
Ψ=  (5.3) 

 
2

22
2 i

L
Ψ=  (5.4) 

 

• Indukcyjno�ci wzajemne 

 
2

12
12 i

M
Ψ=  (5.5) 

 
1

21
21 i

M
Ψ=  (5.6) 

 

Dla �rodowisk o tej samej przenikalno�ci magnetycznej obie indukcyjno�ci wzajemne s� 

sobie równe, to znaczy MMM == 2112 . Dla dwu cewek sprz��onych magnetycznie definiuje 

si� współczynnik sprz��enia jako �redni� geometryczn� współczynników sprz��enia obu 

cewek, przy czym współczynnik sprz��enia jednej cewki z drug� jest okre�lany jako stosunek 

strumienia głównego cewki pochodz�cego od pr�du własnego do strumienia całkowitego 

cewki. Współczynnik sprz��enia cewek oznacza� b�dziemy liter� k. Spełnia on nast�puj�c� 

relacj� 

 

 21LLkM =  (5.7) 

 

z której wynika, �e współczynnik sprz��enia k jest równy 

 

 
21LL

M
k =  (5.8) 
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Przy idealnym (pełnym) sprz��eniu cewek warto�� współczynnika sprz��enia jest równa 

jeden (k=1). Indukcyjno�� wzajemna jest wówczas �redni� geometryczn� indukcyjno�ci 

własnych obu cewek. Przy braku sprz��enia magnetycznego mi�dzy cewkami warto�� k=0. 

Sprz��enie magnetyczne powoduje indukowanie si� napi�cia w cewce od zmian pr�du 

własnego cewki i od zmian pr�du cewki z ni� sprz��onej. Wzory okre�laj�ce odpowiednie 

napi�cia na cewkach sprz��onych magnetycznie dane s� wówczas w postaci 

 

 
dt
di

M
dt
di

L
dt

d
u 21

1
1

1 ±=Ψ=  (5.9) 

 

 
dt
di

M
dt
di

L
dt

d
u 12

2
2

2 ±=Ψ=  (5.10) 

 

Znak plus lub minus wyst�puj�cy we wzorze odpowiada sprz��eniu b�d� dodatniemu (znak 

plus) b�d� ujemnemu (znak minus). Rodzaj sprz��enia zale�y od kierunku pr�du cewki 

wzgl�dem pocz�tku uzwojenia. Rys. 5.1 przedstawia sytuacje odpowiadaj�ce sprz��eniu 

dodatniemu a rys. 5.2 ujemnemu. 

 

    
Rys. 5.1. Ilustracja sprz��enia dodatniego dwu cewek 

 

    
Rys. 5.2. Ilustracja sprz��enia ujemnego dwu cewek 

 

Zauwa�my, �e przy istnieniu sprz��enia magnetycznego w cewce generowane jest napi�cie na 

cewce nawet przy pr�dzie własnym cewki równym zeru. Oznacza to przenoszenie si� energii 

z jednego obwodu do drugiego drog� magnetyczn�. 
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5.2. Analiza obwodów magnetycznie sprz��onych przy wymuszeniu sinusoidalnym 

 

5.2.1. Równania symboliczne elementów sprz��onych magnetycznie 

Analiza obwodów ze sprz��eniami magnetycznymi w stanie ustalonym przy wymuszeniu 

sinusoidalnym mo�e by� przeprowadzona przy zastosowaniu metody symbolicznej, w której 

w miejsce ró�niczkowania wprowadza si� działania na liczbach zespolonych. Dla 

wymuszenia sinusoidalnego wzory ró�niczkowe upraszczaj� si� do zale�no�ci algebraicznych 

typu zespolonego, które podobnie jak dla indukcyjno�ci własnych wyprowadzonych w 

rozdziale drugim mo�na zapisa� w postaci 

 

 2111 MIjILjU ωω ±=  (5.11) 

 1222 MIjILjU ωω ±=  (5.12) 

 

Znak plus obowi�zuje dla sprz��enia dodatniego (strumienie magnetyczne obu cewek 

sumuj� si�) a znak minus dla sprz��enia ujemnego (strumienie magnetyczne obu cewek 

odejmuj� si�). Jak wida� z powy�szych wzorów cewki sprz��one magnetycznie reprezentuj� 

sob� reaktancje, przy czym mo�na tu wyró�ni� dwa rodzaje reaktancji: reaktancj� 

indukcyjn� własn� (zwan� dot�d reaktancj� indukcyjn�) i reaktancj� indukcyjn� 

wzajemn�. Wprowad�my nast�puj�ce oznaczenia 

 

MX M ω=  - reaktancja indukcyjna wzajemna 

MjZM ω=  - impedancja indukcyjna wzajemna. 

 

Napi�cie skuteczne zespolone na cewkach sprz��onych mo�na wówczas opisa� 

nast�puj�cymi wzorami 

 

 2112111 MIjILjIZIZU ML ωω ±=±=  (5.13) 

 1221222 MIjILjIZIZU ML ωω ±=±=  (5.14) 

 

w których 1LZ  oraz 2LZ  oznaczaj� impedancje indukcyjno�ci własnych cewki pierwszej i 

drugiej, 11 LjZ L ω= , 22 LjZ L ω= . Dla wyznaczenia warto�ci skutecznej napi�cia na cewce 

sprz��onej musz� by� znane zarówno warto�� skuteczna pr�du jednej cewki jak i drugiej, 
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sprz��onej z ni�. Znak sprz��enia (plus lub minus) powoduje zmniejszanie (sprz��enie 

ujemne) lub zwi�kszanie (sprz��enie dodatnie) napi�cia danej cewki.  

Najwa�niejszym elementem analizy obwodów ze sprz��eniami magnetycznymi jest 

wyznaczenie pr�dów poszczególnych gał�zi w obwodzie. Bezpo�rednie zastosowanie 

poznanych dot�d metod analizy obwodów (metoda w�złowa, oczkowa, Thevenina czy 

Nortona) wymaga w pierwszej kolejno�ci wyeliminowania sprz��enia magnetycznego cewek, 

a wi�c pozbycia si� wpływu pr�du jednej cewki na napi�cie cewki drugiej. 

 

5.2.2. Eliminacja sprz��e� magnetycznych 

Eliminacja sprz��e� magnetycznych jest mo�liwa bezpo�rednio na podstawie analizy 

struktury obwodu i uwzgl�dnienia poło�enia pocz�tków uzwoje� cewek wzgl�dem w�złów 

wspólnych (lub uznanych za wspólne przy braku ich bezpo�redniego poł�czenia). W tym 

przypadku mo�na wyró�ni� dwa rodzaje poł�cze�: 

• dwie cewki sprz��one magnetycznie maj� jednakowo usytuowane pocz�tki uzwoje� 

wzgl�dem w�zła - takie cewki uwa�a� b�dziemy za jednoimienne (rys. 5.3) 

 

   
Rys. 5.3. Cewki jednoimienne 

 

• dwie cewki sprz��one magnetycznie maj� przeciwnie usytuowane pocz�tki uzwoje� 

wzgl�dem w�zła - takie cewki uwa�a� b�dziemy za ró�noimienne (rys. 5.4). 

 

   
Rys. 5.4. Cewki ró�noimienne 

 

W przypadku cewek jednoimiennych eliminacja sprz��enia magnetycznego prowadzi do 

obwodu zast�pczego przedstawionego na rys. 5.5.. 
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Rys. 5.5. Eliminacja sprz��enia magnetycznego cewek jednoimiennych 

 
 

W gał�ziach zawieraj�cych cewki pojawiła si� impedancja wzajemna ze znakiem minus a w 

gał�zi wspólnej impedancja wzajemna ze znakiem plus. Łatwo mo�na pokaza�, �e przy takim 

sposobie eliminacji sprz��e� magnetycznych napi�cia na zaciskach zewn�trznych 1, 2 i 3 przy 

niezmienionych pr�dach zewn�trznych w obu obwodach równaj� si� sobie (co jest warunkiem 

równowa�no�ci). 

Schemat z rys. 5.6 odpowiada eliminacji sprz��enia w przypadku dwu cewek 

ró�noimiennych.  

 

 
Rys. 5.6. Eliminacja sprz��enia magnetycznego cewek ró�noimiennych 

 
 

W gał�ziach zawieraj�cych cewki pojawiła si� impedancja wzajemna ze znakiem plus a w 

gał�zi wspólnej impedancja wzajemna ze znakiem minus. Łatwo udowodni�, �e przy takim 

sposobie eliminacji sprz��e� napi�cia na zaciskach zewn�trznych 1, 2 i 3 w obu obwodach 

(oryginalnym i po eliminacji sprz��enia) przy tych samych pr�dach zewn�trznych równaj� si� 

sobie (co jest warunkiem równowa�no�ci).  

Przy eliminacji sprz��e� magnetycznych przyj�ty zwrot pr�dów nie ma �adnego 

wpływu na ko�cow� posta� obwodu bez sprz��e�. Ma na ni� wpływ jedynie usytuowanie 
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pocz�tków uzwoje� cewek wzgl�dem wspólnego w�zła, czyli jednoimienno�� lub 

ró�noimienno�� cewek sprz��onych magnetycznie. 

W obu przypadkach otrzymuje si� obwody bez sprz��e�, równowa�ne oryginalnym 

jedynie pod wzgl�dem pr�dowym. Napi�cia w obu obwodach w cz��ci podlegaj�cej 

przekształceniu s� całkowicie ró�ne. Rzeczywiste napi�cia panuj�ce na elementach 

podlegaj�cych transformacji powinny by� okre�lane bezpo�rednio na podstawie obwodu 

oryginalnego i powinny uwzgl�dnia� sprz��enie magnetyczne (wzory 5.13 i 5.14). 

 Nale�y podkre�li�, �e przy wielu cewkach sprz��onych ze sob�, eliminacja ka�dego 

sprz��enia mi�dzy dwoma wybranymi cewkami mo�e zachodzi� niezale�nie od pozostałych 

sprz��e�, co znakomicie ułatwia przeprowadzenie procesu eliminacji sprz��e�. 

 

Przykład 5.1 

Na rys. 5.7a przedstawiony jest obwód zawieraj�cy trzy cewki sprz��one magnetycznie ze 

sob�. Stosuj�c metod� eliminacji sprz��e� do ka�dej pary cewek sprz��onych ze sob� 

otrzymuje si� schemat obwodu bez sprz��e�, równowa�ny pod wzgl�dem pr�dowym 

obwodowi ze sprz��eniami (rys. 5.7b). 

 

 
Rys. 5.7. Przykład eliminacji sprz��e� magnetycznych wielu cewek: a) obwód oryginalny,  

b) obwód po eliminacji sprz��e� 

 

 Przy analizie obwodów elektrycznych zawieraj�cych sprz��enia magnetyczne 

pierwszym krokiem jest eliminacja sprz��e� magnetycznych zgodnie z zasadami podanymi 
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wy�ej. Dzi�ki temu ka�dy element obwodu staje si� uzale�niony jedynie od swojego pr�du. 

Schemat obwodu po eliminacji sprz��e� jest równowa�ny obwodowi oryginalnemu jedynie 

pod wzgl�dem pr�dowym. St�d obwód taki mo�e słu�y� wył�cznie obliczeniu pr�dów. Dla 

wyznaczenia napi�� gał�ziowych nale�y wróci� do obwodu pierwotnego ze sprz��eniami 

magnetycznymi. Napi�cia na elementach sprz��onych oblicza� nale�y uwzgl�dniaj�c 

sprz��enia mi�dzy cewkami przy wykorzystaniu wzorów (5.13) i (5.14). 

 

Przykład 5.2 

Obliczy� rozpływ pr�dów i rozkład napi�� na poszczególnych elementach obwodu 

elektrycznego ze sprz��eniami magnetycznymi, przedstawionego na rys. 5.8. Nale�y przyj�� 

nast�puj�ce warto�ci elementów: Ω= 101R , HL 21 = , HL 22 = , HM 1= , FC 02,0=  oraz 

wymuszenie napi�ciowe sinusoidalne )4510sin(2100)( �+= tte V. 

 

 
Rys. 5.8. Schemat obwodu elektrycznego do przykładu 5.2 

 

Rozwi�zanie 

Dla podanych wy�ej warto�ci parametrów obwodu impedancje zespolone odpowiadaj�ce 

poszczególnym elementom s� równe: 

 

10=ω  

2011 jLjZ == ω  

2022 jLjZ == ω  

10jMjZM == ω  

5/1 jCjZC −=−= ω  

�45100 jeE =  
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Pierwszym etapem analizy jest eliminacja sprz��enia magnetycznego mi�dzy cewkami. 

Schemat obwodu po eliminacji przedstawiony jest na rys. 5.9.  

 

 
Rys. 5.9. Schemat obwodu po eliminacji sprz��e� magnetycznych 

 

Rozwi�zanie tego obwodu wzgl�dem pr�dów gał�ziowych uzyskamy redukuj�c obci��enie 

�ródła do jednej impedancji zast�pczej. Stanowi j� poł�czenie szeregowe impedancji 

indukcyjnej i pojemno�ciowej 

 

25530 jjjZLC =−=  

 

 oraz układu równoległego rezystora i cewek 

 

618
2010

)1010(30
j

j
jj

ZRL −=
+

−⋅=  

 

 Impedancja zast�pcza jest wi�c równa 

 

1918 jZZZ LCRL +=+=  

 

Pr�d I w obwodzie okre�lony jest wzorem 

 

 10,082,3
1918

100 45

j
j

e
Z
E

I
j

−=
+

==
�
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Spadek napi�cia na poł�czeniu równoległym elementów jest równy 

 

 77,2413,6812 jIZU RL −=⋅=  

 

Pr�dy w gał�ziach równoległych s� równe  

 

 27,283,0
30
12

1 j
j
U

I −−==  

17,264,4
1010

12
2 j

j
U

I +=
−

=  

 

W nast�pnym etapie po obliczeniu pr�dów mo�na przej�� do obliczenia napi�� posługuj�c si� 

schematem oryginalnym obwodu (ze sprz��eniami magnetycznymi). Korzystaj�c z prawa 

Ohma i zale�no�ci definicyjnych sprz��enia magnetycznego otrzymuje si� 

 

 68,2145,4610 2 jIU R +==  

 13,6877,24111 jIZIZU ML +=+=  

 68,2145,46122 jIZIZU ML +=+=  

10,1952,0 jIZU CC −−==  

 

5.3 Transformator  

 
5.3.1 Podstawy fizyczne działania transformatora 

Transformator jest układem przetwarzaj�cym napi�cie wej�ciowe w napi�cie wyj�ciowe za 

po�rednictwem strumienia magnetycznego przy braku bezpo�redniego poł�czenia 

galwanicznego mi�dzy obu zaciskami (wej�ciowymi i wyj�ciowymi). Transformatory mog� 

by� stosowane do ró�nych celów, ale podstawowym ich zadaniem jest zmiana warto�ci 

napi�cia wej�ciowego na inn� warto�� napi�cia wyj�ciowego. Mo�e to by� zarówno 

podwy�szenie jak i obni�enie warto�ci. Przy zmianie napi�cia ulegaj� odpowiedniej zmianie 

równie� pr�dy w uzwojeniach transformatora.  

W analizie teoretycznej przyjmowa� b�dziemy transformator idealizowany, czyli taki w 

którym nie ma strat energii, nie istnieje zjawisko rozpraszania strumienia magnetycznego 

(współczynnik sprz��enia magnetycznego k=1), nie wyst�puj� efekty paso�ytnicze (np. 
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pojemno�ci mi�dzyzwojowe), nie uwzgl�dniona jest rezystancja uzwoje�, zjawiska pr�dów 

wirowych itp.. 

Przekazywanie energii elektrycznej z jednego obwodu do drugiego nast�puje za 

po�rednictwem pola elektromagnetycznego (strumienia magnetycznego). Na rys. 5.10 

przedstawiono pogl�dowy schemat transformatora zasilanego napi�ciem U1 i obci��onego po 

stronie wtórnej impedancj� Zo.  

 

 
Rys. 5.10. Pogl�dowy schemat transformatora 

 

Uzwojenie, do którego jest zazwyczaj doprowadzone �ródło energii elektrycznej, nazywamy 

uzwojeniem pierwotnym, natomiast uzwojenie, do którego jest doł�czony odbiornik, 

nazywamy uzwojeniem wtórnym. Zaciski uzwojenia pierwotnego stanowi� wej�cie układu, 

a zaciski uzwojenia wtórnego - wyj�cie. Odpowiednie napi�cia i pr�dy w transformatorze 

nazywamy pierwotnymi lub wtórnymi. Wszystkie wielko�ci i parametry zwi�zane z 

uzwojeniem pierwotnym opatrzymy wska�nikiem 1, a wielko�ci i parametry zwi�zane z 

uzwojeniem wtórnym – wska�nikiem 2.  

Do uzwojenia pierwotnego przyło�one jest napi�cie sinusoidalnie zmienne o warto�ci 

chwilowej u1(t). Warto�� chwilow� pr�du w uzwojeniu pierwotnym oznaczymy przez )(1 ti . 

Pod wpływem zmiennego w czasie pr�du i1(t) w przestrzeni otaczaj�cej uzwojenie powstaje 

zmienny strumie� magnetyczny φ , b�d�cy superpozycj� strumieni 1φ  i 2φ . Przy zało�eniu 

jego równomiernego rozkładu na przekroju S, strumie� jest iloczynem indukcji magnetycznej 
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B i przekroju S, BS=φ . Strumie� ten kojarzy si� zarówno z uzwojeniem pierwotnym 

wytwarzaj�c strumie� skojarzony φ11 z=Ψ , jak i uzwojeniem wtórnym wytwarzaj�c w nim 

strumie� skojarzony φ22 z=Ψ . Zgodne z prawem indukcji elektromagnetycznej pod 

wpływem zmiennego w czasie strumienia magnetycznego indukuje si� napi�cie u(t) 

 
dt
d

tu
Ψ=)(  (5.15) 

 

Je�li do uzwojenia wtórnego doł�czymy odbiornik, to pod wpływem napi�cia 

zaindukowanego w tym uzwojeniu popłynie pr�d i2(t). 

W zale�no�ci od �rodowiska w jakim zamyka si� wytworzony wokół uzwoje� strumie� 

magnetyczny rozró�niamy transformatory powietrzne (korpus transformatora wykonany z 

dielektryka o przenikalno�ci magnetycznej wzgl�dnej bliskiej jedno�ci) i transformatory z 

rdzeniem ferromagnetycznym (korpus wykonany z rdzenia ferromagnetycznego). Zanim 

przejdziemy do omówienia obu rodzajów transformatorów, przedstawimy zale�no�ci 

obowi�zuj�ce dla transformatora idealnego. 

 

5.3.2 Transformator idealny 

Wyidealizowanym typem transformatora jest tak zwany transformator idealny, w którym 

zakłada si� pełne sprz��enie magnetyczne, brak strat (wszystkie rezystancje równe zeru) i 

pomini�cie zjawisk paso�ytniczych. Symbol graficzny transformatora idealnego 

przedstawiono na rys. 5.11.  

 

 
Rys. 5.11. Symbol graficzny transformatora idealnego 

 

W schemacie tym pomija si� zwykle symbol sprz��enia magnetycznego pozostawiaj�c 

jedynie oznaczenie pocz�tków uzwoje� transformatora. Transformator idealny jest w pełni 

opisany poprzez tak zwan� przekładni� zwojow�, okre�laj�c� stosunek napi�cia pierwotnego 
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do wtórnego (przekładni� napi�ciow�) na podstawie liczby zwojów pierwotnych i wtórnych. 

Przekładnia napi�ciowa transformatora idealnego niezale�nie od sposobu wykonania i od 

obci��enia, powinna by� równa przekładni zwojowej okre�lonej wzorem  

 
2

1

z
z

n =  (5.16) 

Oznacza to, �e relacja mi�dzy napi�ciem pierwotnym i wtórnym jest nast�puj�ca 

 

 2
2

1
1

2

1 U
z
z

Un
U
U =→=  (5.17) 

 

Wobec zało�enia o braku strat w samym transformatorze idealnym moc dostarczona na 

zaciski pierwotne równa si� mocy na zaciskach wtórnych, to jest 21 SS =  (podobnie jest z 

moc� czynn� i biern�). Przy oznaczeniu przekładni transformatora idealnego przez n, z 

warunku równo�ci mocy wej�ciowej i wyj�ciowej  

 
*
22

*
11 IUIU =  

 

wynika relacja mi�dzy pr�dem pierwotnym i wtórnym transformatora. Mianowicie 

 

 21

1
I

n
I =  (5.18) 

Obie zale�no�ci (5.17) i (5.18) mo�na zapisa� w nast�puj�cej postaci macierzowej 
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I

U
 (5.19) 

Powy�sze równanie macierzowe nazywane jest równaniem ła�cuchowym transformatora 

idealnego. Wykonanie transformatora idealnego w praktyce nie jest mo�liwe, jednak 

współczesne realizacje techniczne transformatorów zwłaszcza transformatory z rdzeniem 

ferromagnetycznym s� bliskie ideału.  
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5.4 Transformator powietrzny 

Działanie transformatora zasadniczo nie zale�y od tego w jakim �rodowisku zamyka si� 

strumie� skojarzony z uzwojeniem transformatora. Sposób analizowania transformatora 

powietrznego i transformatora z rdzeniem ferromagnetycznym jest jednak nieco inny. W tym 

punkcie ograniczymy si� do transformatora powietrznego. Przyjmiemy, �e korpus 

transformatora wykonany jest z materiału nieferromagnetycznego.  

Transformator powietrzny jest układem dwu cewek magnetycznie sprz��onych, 

nawini�tych na korpusie wykonanym z dielektryka o wzgl�dnej przenikalno�ci magnetycznej 

bliskiej jedno�ci. Model idealnego transformatora powietrznego (bez uwzgl�dnienia 

rezystancji uzwoje�) obci��onego impedancj� Zo jest przedstawiony na rys. 5.12.  

 

 
Rys. 5.12. Model idealnego transformatora powietrznego 

 

Indukcyjno�ci własne uzwoje� oznaczone s� przez L1 i L2 a indukcyjno�� wzajemna przez M, 

przy czym 21LLkM = . Sprz��enie magnetyczne tego typu transformatora nie jest zbyt 

dobre i charakteryzuje si� stosunkowo du�ym współczynnikiem rozproszenia, a zatem małym 

współczynnikiem sprz��enia k ( ).1<<k  

Napi�cie zasilaj�ce wywołuje w obwodzie pierwotnym pr�d I1, wytwarzaj�cy strumie� 

magnetyczny. Energia obwodu pierwotnego przenosi si� do obwodu wtórnego poprzez 

sprz��enie magnetyczne, zaznaczone symbolicznie jako indukcyjno�� wzajemna M. Pod 

wpływem zaindukowanego napi�cia przy zamkni�tym obwodzie wtórnym płynie pr�d I2, 

odkładaj�c na impedancji odbiornika napi�cie U2. 

 Rozró�niamy trzy zasadnicze stany pracy transformatora: stan jałowy - gdy zaciski 

wtórne s� rozwarte, stan zwarcia - gdy zaciski wtórne s� poł�czone bezimpedancyjnie oraz 

stan obci��enia - gdy do zacisków wtórnych jest doł�czony odbiornik o sko�czonej 

impedancji.  
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 Analizuj�c transformator w stanie ustalonym przy wymuszeniu sinusoidalnym 

zastosujemy metod� symboliczn�. Z definicji sprz��enia magnetycznego obu cewek przy 

zało�onym zwrocie pr�dów i przyj�ciu pocz�tków uzwoje� jak na rys. 5.12 wynikaj� 

nast�puj�ce równania opisuj�ce obwód 

 

 2111 IjXIjXU ML +=  (5.20) 

 

 [ ]1222 IjXIjXU ML +−=  (5.21) 

 

Znak minus wyst�puj�cy we wzorze na U2 wynika z kierunku U2 zaznaczonego na rysunku 

5.12. Z równania (5.20) i (5.21) wynika nast�puj�cy wzór okre�laj�cy pr�d wej�ciowy układu 

 

 
1

21
1

L

M

jX
IjXU

I
−=  (5.22) 

 

Podstawiaj�c wyra�enie na pr�d do równania drugiej cewki otrzymuje si� 

 

 ( )�
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�
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�
−+−= 21

1
222 IjXU

jX
jX

IjXU M
L

M
L  (5.23) 

Po przekształceniu tego równania otrzyma� mo�na zale�no�� napi�cia wyj�ciowego 

transformatora przy obci��eniu oZ  od napi�cia zasilaj�cego obwód oraz od pr�du obci��enia 
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jjXIU
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U  (5.24) 

 

Zauwa�my, �e nawet dla wyidealizowanego transformatora powietrznego współczynnik 

sprz��enia k<<1, st�d 2121
2

LLLLM XXXkXX <<= . Oznacza to, �e napi�cie wyj�ciowe 

transformatora zale�y bardzo silnie od pr�du obci��enia, co jest cech� niepo��dan�, gdy� 

oznacza du�e wahania napi�cia wyj�ciowego przy zmianie obci��enia. 

 Jedynie w przypadku stanu jałowego transformatora, dla którego 02 =I , przekładnia 

transformatora nie zale�y od obci��enia. W takim przypadku 
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 1
1

2 U
X
X

U
L

M−=  (5.25) 

Je�li uwzgl�dnimy, �e reaktancje cewek s� proporcjonalne do liczby zwojów według relacji 
2
11 KzX L = , 2

22 KzX L = , 21 zKzX M =  gdzie K oznacza pewn� stał� konstrukcyjn�, to z 

zale�no�ci (5.24) wynika  

 

 11
1

2
2

1
U

n
U

z
z

U −=−=  (5.26) 

 

Z powy�szej zale�no�ci wida�, �e jedynie w stanie jałowym transformatora powietrznego 

stosunek napi�cia pierwotnego transformatora do napi�cia wtórnego jest równy stosunkowi 

liczby zwojów pierwotnych do wtórnych (z dokładno�ci� do znaku), a wi�c przekładni 

zwojowej (transformator idealny) 

 

 n
z
z

U
U

−=−=
2

1

2

1  (5.27) 

 

Jest to cecha bardzo po��dana z punktu widzenia praktycznego, gdy� pozwala w bardzo 

prosty sposób zmienia� poziomy napi�� zarówno w gór� (liczba zwojów wtórnych wi�ksza 

od liczby zwojów pierwotny) jak i w dół (liczba zwojów wtórnych mniejsza ni� liczba 

zwojów pierwotnych). 

Zauwa�my, �e po��dana relacja napi�ciowa mi�dzy napi�ciami pierwotnym i wtórnym 

transformatora idealnego jest dokładnie realizowana przez transformator powietrzny jedynie 

w stanie jałowym. Niestety obci��enie transformatora powietrznego powoduje zniekształcenie 

tej relacji przez pr�d obci��enia. W zwi�zku z powy�szym transformator powietrzny w stanie 

obci��enia nie mo�e by� uwa�any za transformator idealny. 

 

5.5 Transformator z rdzeniem ferromagnetycznym 

 

5.5.1 Podstawowe prawa obwodów magnetycznych  

Ogromn� popraw� własno�ci transformatora uzyskuje si� przy zastosowaniu zamiast cewek 

powietrznych cewek z rdzeniem ferromagnetycznym (�elazem). Rdze� ferromagnetyczny 

tworzy zamkni�ty obwód magnetyczny, stanowi�cy drog� o małej oporno�ci dla strumienia 
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magnetycznego φ , powstałego w wyniku działania �ródła pola magnetycznego. �ródłem pola 

magnetycznego mo�e by� albo uzwojenie, przez które przepływa pr�d elektryczny albo 

magnes trwały, b�d�cy ciałem ferromagnetycznym, w którym pole powstało i trwa nadal, 

mimo �e w obszarze na zewn�trz ciała pr�d nie płynie. 

 W wyniku przepływu pr�du przez cewk� transformatora powstaje pole magnetyczne o 

indukcji B i nat��eniu H (B i H s� wielko�ciami wektorowymi). Jednostk� indukcji 

magnetycznej jest tesla ( 211
m
Vs

T = ) a nat��enia magnetycznego amper na metr (
m
A

). W 

materiale ferromagnetycznym kierunki wektorów B i H s� zgodne. Zale�no�� mi�dzy 

indukcj� B i nat��eniem pola H okre�lona jest w ogólno�ci w postaci p�tli histerezy (rys. 

15.3).  

 
Rys. 5.13 Pierwotna krzywa magnesowania �elaza 

 

W przypadku transformatorów ograniczamy si� zwykle do pierwotnej krzywej 

magnesowania (krzywa przechodz�ca przez pocz�tek układu współrz�dnych), nie 

uwzgl�dniaj�c niejednoznaczno�ci procesu magnesowania (p�tli histerezy). Wektory indukcji 

i nat��enia pola magnetycznego w �elazie mo�na wówczas powi�za� jednoznacznym 

równaniem nieliniowym opisuj�cym krzyw� magnesowania pierwotnego 

 

 HH� rµµµ 0==  (5.28) 
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gdzie µ  jest przenikalno�ci� magnetyczn� bezwzgl�dn� �rodowiska, b�d�c� funkcj� 

nat��enia pola H wyra�on� w 
m
H

, 0µ  - stał� magnetyczn� pró�ni (przenikalno�� 

magnetyczna pró�ni) równ� 
m
H7104 −⋅π  a rµ  - przenikalno�ci� magnetyczn� wzgl�dn�, 

wskazuj�c� ile razy przenikalno�� danego �rodowiska jest wi�ksza od przenikalno�ci pró�ni. 

Dla materiałów ferromagnetycznych przenikalno�� magnetyczna w zakresie liniowym 

krzywej magnesowania osi�ga bardzo du�e warto�ci rz�du tysi�cy a nawet setek tysi�cy w 

przypadku specjalnych materiałów ferromagnetycznych. Niestety przy du�ych warto�ciach 

nat��enia pola magnetycznego nast�puje nasycenie warto�ci indukcji (patrz krzywa 

magnesowania na rys. 5.13) i w efekcie znaczne zmniejszenie warto�ci przenikalno�ci 

wzgl�dnej. W zastosowaniach praktycznych punkt pracy transformatora poło�ony jest zwykle 

w cz��ci liniowej i dlatego mo�na z du�ym prawdopodobie�stwem zało�y� bardzo du�� 

warto�� współczynnika przenikalno�ci wzgl�dnej. 

 W rozpatrywanym rdzeniu ferromagnetycznym o polu przekroju poprzecznego S 

zamyka si� strumie� magnetyczny φ , powi�zany z indukcj� magnetyczn� B zale�no�ci� 

 

 
=
S

dSBφ  (5.29) 

 

Przy zało�eniu równomiernego rozkładu strumienia φ  w polu przekroju poprzecznego 

(B = B = const) powy�sze wyra�enie upraszcza si� do postaci BS=φ . Jednostk� strumienia 

magnetycznego w układzie SI jest weber (1Wb=1Vs). 

 W przypadku obwodów magnetycznych rozgał�zionych strumie� φ  spełnia tzw. 

prawo Kirchhoffa dla strumieni w w��le, zgodnie z którym suma algebraiczna strumieni 

magnetycznych (z uwzgl�dnienie ich zwrotu), w ka�dym w��le obwodu magnetycznego jest 

równa zeru, czyli 

 

 0=�
k

kφ  (5.30) 

 

Przykład interpretacji tego prawa dla jednego w�zła obwodu magnetycznego przedstawiony 

jest na rys. 5.14 
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Rys. 5.14. Schemat w�zła obwodu magnetycznego 

 

Równanie Kirchhoffa dotycz�ce strumieni w tym w��le przyjmuje posta� 

 

0321 =−+ φφφ  

 

 Strumie� magnetyczny φ  w transformatorze jest skojarzony z ka�dym zwojem cewki. 

Całkowity strumie� skojarzony ze wszystkimi z zwojami cewki okre�lony jest wi�c wzorem 

 

 φz=Ψ  (5.31) 

 

Drugim podstawowym prawem obwodów magnetycznych jest prawo przepływu Ampera, 

zgodnie z którym całka liniowa wektora nat��enia pola magnetycznego H po krzywej 

zamkni�tej l w polu magnetycznym równa si� pr�dowi przenikaj�cemu przez powierzchni� 

ograniczon� t� krzyw�, czyli 

 

 
 �=
l k

kk IzdlH  (5.32) 

 

W ogólnym wzorze Ampera uwzgl�dniono wiele uzwoje� wzbudzaj�cych o liczbie zwojów 

kz  i pr�dach kI . Przy jednym uzwojeniu cewki zawieraj�cym z zwojów, przez które 

przepływa pr�d I i zało�eniu, �e nat��enie pola na całej drodze l jest jednakowe i równe H, 

prawo Ampera upraszcza si� do postaci skalarnej 

 

 zIHl =  (5.33) 
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Iloczyn nat��enia pola magnetycznego H na odcinku pola o długo�ci l przez długo�� tego 

odcinka nazywany jest napi�ciem magnetycznym, a iloczyn pr�du I przez liczb� z zwojów 

cewki – sił� magnetomotoryczn�, oznaczan� zwykle w postaci zI=Θ . 

Zale�no�� (5.33) wi��e bezpo�rednio wektor nat��enia pola magnetycznego z pr�dem 

elektrycznym obwodu wzbudzaj�cym to pole. Przy znanym wymuszeniu pr�dowym i 

wymiarach cewki pozwala ona okre�li� warto�� nat��enia pola magnetycznego 

 

 
l
zI

H =  (5.34) 

Prawo przepływu Ampera wyra�one zale�no�ci� (5.32) mo�e by� napisane dla dowolnego 

oczka obwodu magnetycznego, przyjmuj�c posta� tzw. drugiego prawa Kirchhoffa dla 

obwodu magnetycznego. Zgodnie z tym prawem dla ka�dego oczka obwodu magnetycznego 

suma algebraiczna napi�� magnetycznych wszystkich elementów oczka jest równa sumie 

algebraicznej sił magnetomotorycznych zawartych w tym oczku. Zapiszemy to w postaci 

 

 � �=
k k

kkkk IzlH  (5.35) 

 

We wzorze tym zostało zało�one, �e obwód magnetyczny tworzy wiele gał�zi o długo�ci lk 

ka�da, przy czym w ka�dej gał�zi nat��enie magnetyczne przyjmuje warto�� Hk. Przykładowo 

równania Kirchhoffa dla obwodu magnetycznego przedstawionego na rys. 5.15 zawieraj�cego  

 

 
Rys. 5.15. Przykład obwodu magnetycznego o dwu oczkach  
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 dwa niezale�ne oczka, przy zało�onych oznaczeniach jak pokazano na rysunku mo�na 

zapisa� w postaci: 

• równania napi�� magnetycznych 

 

113311 IzlHlH =+  

222233 IzlHlH =−  

 

• równanie strumieni 

 

0321 =−− φφφ  

 

Strumienie i nat��enia pola magnetycznego powi�zane s� za po�rednictwem krzywej 

magnesowania �elaza )( kkkkk HfSBS ==φ  dla k=1, 2, 3. Ze wzgl�du na nieliniowy 

charakter krzywej magnesowania równania powy�sze tworz� wi�c układ równa� 

nieliniowych. 

 Istotnym poj�ciem w teorii obwodów magnetycznych jest poj�cie reluktancji, czyli 

oporu jaki jest stawiany strumieniowi magnetycznemu na drodze przepływu. Je�li we�miemy 

pod uwag� fragment obwodu magnetycznego o przekroju S i długo�ci l którym przepływa 

stały strumie� φ  , to z definicji napi�cia magnetycznego µU  wynika 

 

 φ
µµ

φ
µ S

l
l

S
HlU ===  (5.36) 

 

Wielko��  

 

 
S
l

R
µµ =  (5.37) 
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nazywana jest reluktancj� (oporem magnetycznym). W przypadku rdzenia 

ferromagnetycznego warto�� przenikalno�ci magnetycznej µ  jest bardzo du�a, co oznacza, �e 

opór magnetyczny na tej drodze jest mały. Z kolei w przypadku powietrza 0µµ =  przyjmuje 

warto�� bardzo mał�, co powoduje, �e opór magnetyczny na takiej drodze jest bardzo du�y.  

 Oznacza to, �e dla cewki zbudowanej na rdzeniu ferromagnetycznym strumie� 

rozproszenia (cz��� strumienia zamykaj�ca si� przez powietrze) jest pomijalnie mały, a 

prawie cały strumie� zamyka si� przez �elazo. Przy dwu cewkach umieszczonych na takim 

rdzeniu strumie� jednej cewki przenika wi�c prawie całkowicie drug� cewk� co powoduje, �e 

sprz��enie magnetyczne jest idealne, a współczynnik sprz��enia magnetycznego k bliski 

jedno�ci. 

 

5.5.2 Analiza transformatora z rdzeniem ferromagnetycznym 

Rdze� ferromagnetyczny ma zdolno�� skupiania pola magnetycznego i zmniejszania w ten 

sposób strumienia rozproszenia zamykaj�cego si� przez powietrze otaczaj�ce cewk�. Wynika 

st�d, �e współczynnik sprz��enia magnetycznego k dla dwu cewek umieszczonych na 

wspólnym rdzeniu jest bliski maksymalnej warto�ci równej jeden ( 1≈k ). Oznacza to, �e dla 

cewek z rdzeniem ferromagnetycznym indukcyjno�� wzajemna jest w przybli�eniu �redni� 

geometryczn� indukcyjno�ci własnych obu cewek ( 21LLM ≈ ). Ta cecha zdecydowała o 

zastosowaniu cewek z rdzeniem ferromagnetycznym do budowy transformatorów, które 

zbli�aj� si� swoim zachowaniem do transformatorów idealnych. 

 Je�li zało�ymy punkt pracy transformatora z rdzeniem ferromagnetycznym w cz��ci 

liniowej charakterystyki magnesowania to układ taki mo�e by� traktowany jako transformator 

liniowy, analogicznie do transformatora powietrznego, ale o warto�ci współczynnika 

sprz��enia k bliskim jedno�ci. Schemat zast�pczy takiego transformatora przy pomini�ciu 

rezystancji uzwoje� jest identyczny jak w przypadku transformatora powietrznego (rys. 5.12). 

Oznacza to, �e ma tu zastosowanie wzór (5.24) okre�laj�cy relacj� mi�dzy napi�ciem 

pierwotnym i wtórnym transformatora, który wobec zale�no�ci 21LLM ≈  mo�na przepisa� 

tutaj w postaci 
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−+−≈  (5.38) 
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Jak wida� z powy�szej zale�no�ci dla transformatora z rdzeniem ferromagnetycznym 

przekładnia napi�ciowa nie zale�y od pr�du obci��enia (pod warunkiem �e punkt pracy 

poło�ony jest w liniowej cz��ci charakterystyki magnesowania a współczynnik sprz��enia 

magnetycznego jest równy jedno�ci). Oznacza to, �e niezale�nie od obci��enia relacja mi�dzy 

napi�ciem pierwotnym i wtórnym dana jest w postaci 

 

 1
1

2
1

1
2 U

z
z

U
X
X

U
L

M =≈  (5.39) 

 

Napi�cie wtórne transformatora jest zale�ne wył�cznie od przekładni zwojowej i napi�cia 

wej�ciowego układu. Jest to zatem realizacja podstawowej zale�no�ci charakterystycznej dla 

transformatora idealnego. Przy pomini�ciu strat w transformatorze relacja mi�dzy pr�dem 

pierwotnym i wtórnym spełnia równie� drug� zale�no�� transformatora idealnego (wzór 

5.17). Wynika st�d wniosek, �e transformator z rdzeniem ferromagnetycznym jest dobrym 

przybli�eniem transformatora idealnego. 

 

4.1 Zadania do samodzielnego rozwi�zania 

 

Zadanie 5.1  

Narysowa� obwody zast�pcze bez sprz��e� magnetycznych odpowiadaj�ce obwodom ze 

sprz��eniami przedstawionym na rys. 5.16a,b. 

 

  
Rys. 5.16. Schematy obwodów ze sprz��eniami magnetycznymi do zadania 5.1 
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Rozwi�zanie 

Na rys. 5.17a,b przedstawiono obwody zast�pcze nie zawieraj�ce sprz��e� magnetycznych. 

Odpowiadaj� one obwodom oryginalnym z rys. 5.16 pod wzgl�dem pr�dowym. 

 

  
Rys. 5.17 Obwody bez sprz��e� magnetycznych odpowiadaj�ce rys. 5.16 

 

 

Zadanie 5.2  

Wyznaczy� rozpływy pr�dów w obwodzie przedstawionym na rys. 5.18. 

 

 
Rys. 5.18 Schemat obwodu elektrycznego ze sprz��eniem magnetycznym do zadania 5.2 
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 Przyj�� nast�puj�ce warto�ci parametrów elementów obwodu: R=5	, L1=2H, L2=2H, M=1H 

oraz )45sin(5)( �+= tti A. 

 

Rozwi�zanie 

Posta� obwodu po eliminacji sprz��enia magnetycznego przedstawiono na rys. 5.19 

 
Rys. 5.19 Obwód bez sprz��e� magnetycznych odpowiadaj�cy schematowi z rys. 5.18. 

 

Wielko�ci symboliczne charakteryzuj�ce elementy obwodu: 

ojeI 45

2
5=  

( ) 111 jMLjZ =−= ω  

( ) 022 =−= MLjZ ω  

1jMjZM == ω  

 

Impedancja zast�pcza obwodu wobec 02 =Z  

 

oj

M

M e
ZR

RZ
Z 45

2
1=

+
=  

 

Napi�cie UAB 

  

5jZIU AB ==  

 

Pr�dy: 
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5j
R

U
I AB

R ==  

01 =I  

532 ===
M

AB

Z
U

II  

 

Napi�cia na elementach równoległych w obwodzie oryginalnym i zast�pczym s� sobie równe 

i wynosz� 5jU AB = . Mo�na to łatwo sprawdzi� w obwodzie oryginalnym obliczaj�c napi�cia 

na cewkach sprz��onych. Mianowicie 

 

52111
jMIjILjU L =+= ωω  

51222
jMIjILjU L =+= ωω  

 

 

Zadanie 5.3  

Wyznaczy� rozwi�zanie obwodu z rys. 5.20 zawieraj�cego transformator idealny o przekładni 

zwojowej równej n=2. Przyj�� nast�puj�ce warto�ci parametrów obwodu: 

)sin(210)( tte ω= V, 1=ω rad/s, Ω= 5R , C=0,2F. 

 

 
Rys. 5.20. Schemat obwodu do zadania 5.3 

 

Rozwi�zanie 

Wielko�ci symboliczne charakteryzuj�ce elementy obwodu: 

 

10=E  
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5/1 jCjZC −=−= ω  

5,25,2 j
ZR

RZ
Z

C

C
RC −=

+
=  

 

Układ równa� opisuj�cych obwód: 

 

RCZIU

I
n

I

nUU

URIE

22

21

21

11

1

=

=

=
+=

 

 

Po wstawieniu warto�ci liczbowych otrzymuje si� 

 

)5,25,2(
2
1

2

510

22

21

21

11

jIU

II

UU

UI

−=

=

=
+=

 

 

Po uproszczeniu tego układu równa� otrzymuje si� 

 

( ) 1
45210510 Ie

oj−+=  

 

St�d 

 

30,045,01 jI +=  

60,090,02 12 jII +==  

76,079,322 jIZU RC −==  

5,158,72 21 jUU −==  

15,075,02
3 j

R
U

I −==  

76,015,02
4 j

Z
U

I
C

+==  
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Łatwo sprawdzi�, �e stosunek pr�du I1 do pr�du I2, 
2
1

2

1 =
I
I

, podczas gdy 2
2

1 =
U
U

. 
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Lekcja 6. Rezonans w obwodach elektrycznych 

 

Wst�p 
Lekcja szósta po�wi�cona b�dzie analizie zjawisk rezonansowych w obwodzie RLC. 

Zjawiskiem rezonansu nazywamy taki stan obwodu RLC, w którym pr�d i napi�cie s� ze sob� 

w fazie. W stanie rezonansu przesuni�cie fazowe pr�du i napi�cia jest zerowe, co oznacza, �e 

argument impedancji lub admitancji zespolonej obwodu jest tak�e równy zeru. Obwód nie 

pobiera �adnej mocy biernej a �ci�le mówi�c nast�puje zjawisko kompensacji tej mocy. Moc 

bierna indukcyjna obwodu jest równa mocy pojemno�ciowej. Poniewa� znaki mocy biernej 

indukcyjnej i pojemno�ciowej s� przeciwne, w warunkach rezonansu całkowita moc bierna 

jest zerowa. 

 W obwodzie RLC zjawisko rezonansu wymaga, aby reaktancja wypadkowa obwodu (lub 

jej odwrotno�� zwana susceptancj�) była równa zeru. Cz�stotliwo��, przy której reaktancja 

lub susceptancja obwodu znika jest nazywana cz�stotliwo�ci� rezonansow�. Podane zostan� 

odpowiednie wzory pozwalaj�ce na wyznaczenie warto�ci tej cz�stotliwo�ci, jak równie� 

wprowadzone zostan� inne poj�cia wa�ne dla zjawiska rezonansu, takie jak dobro�, 

rozstrojenie bezwzgl�dne i wzgl�dne, pasmo przepustowe, rezystancja charakterystyczna. 

Analizie zostan� poddane charakterystyki cz�stotliwo�ciowe obwodów rezonansowych. 

Rezonans wyst�pi� mo�e w dowolnej konfiguracji elementów RLC, tym nie mniej bada 

si� szczególne poł�czenia elementów prowadz�ce do tego zjawiska. Rezonans wyst�puj�cy w 

obwodzie, w którym elementy R, L, C s� poł�czone szeregowo nazywamy rezonansem 

napi�� lub rezonansem szeregowym. W przypadku, gdy rezonans dotyczy obwodu 

równoległego R, L, C taki rezonans nazywamy rezonansem pr�dów lub rezonansem 

równoległym. 
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6.1. Rezonans szeregowy  

Przyjmijmy, �e do poł�czenia szeregowego elementów R, L, C przedstawionego na rys. 6.1. 

 

 
Rys. 6.1. Obwód rezonansowy szeregowy RLC 

 

 

jest przyło�one napi�cie sinusoidalnie zmienne o warto�ci skutecznej zespolonej U i pulsacji 

fπω 2= . Przy zastosowaniu metody symbolicznej w analizie tego obwodu mo�na napisa� 

nast�puj�ce równanie napi�ciowe Kirchhoffa 

 

 [ ])( CLCLCLR XXjRIIjXIjXRIUUUU −+=−+=++=  (6.1) 

 

Zjawiskiem rezonansu nazywamy taki stan obwodu RLC, w którym pr�d i napi�cie s� ze sob� 

w fazie. Zgodnie z t� definicj� warunek rezonansu obwodu wymaga, aby pr�d I oraz napi�cie 

U były ze sob� w fazie. Osi�gnie si� to, je�li cz��� urojona powy�szej zale�no�ci b�dzie 

równa zeru, czyli  

 

CL XX = . 

 

Uwzgl�dniaj�c, �e LX L ω=  oraz CXC ω/1=  z powy�szego warunku otrzymuje si� wzór 

okre�laj�cy pulsacj� rezonansow� rω  w postaci 

 

 
LCr

1=ω  (6.2a) 

 

Cz�stotliwo�� rezonansowa obwodu wynosi zatem 
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LC

fr π2
1=  (6.2b) 

 

Równo�� reaktancji indukcyjnej i pojemno�ciowej oznacza, �e w stanie rezonansu napi�cia na 

cewce i kondensatorze s� równe co do modułu ale przeciwnie skierowane, czyli  

 

CL UU −=  

 

Zmiana cz�stotliwo�ci zmienia oczywi�cie relacj� mi�dzy napi�ciami na tych elementach 

reaktancyjnych (przeskalowanie warto�ci). Dla cz�stotliwo�ci mniejszych ni� rezonansowa 

napi�cie na kondensatorze jest wi�ksze ni� na cewce (przy mniejszej cz�stotliwo�ci 

impedancja kondensatora jest wi�ksza), a przy cz�stotliwo�ciach wi�kszych ni� rezonansowa 

napi�cie na cewce wi�ksze ni� na kondensatorze (impedancja cewki ro�nie wraz ze wzrostem 

cz�stotliwo�ci a impedancja kondensatora maleje). Na rys. 6.2 przedstawiono wykresy 

wektorowe pr�du i napi�� w obwodzie szeregowym RLC dla cz�stotliwo�ci mniejszych ni� 

rezonansowa (rys. 6.2a), dla cz�stotliwo�ci rezonansowej (rys. 6.2b) oraz dla cz�stotliwo�ci 

wi�kszych ni� rezonansowa (rys. 6.2c). 

a) b) c) 

Rys. 6.2 Wykresy wektorowe obwodu rezonansowego RLC: a) stan przed rezonansem,  
b) stan rezonansu, c) stan po rezonansie 
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Z przesuni�� k�towych mi�dzy wektorami widoczne jest, �e przed rezonansem obwód 

szeregowy RLC ma charakter pojemno�ciowy, w czasie rezonansu – rezystancyjny, a dla 

cz�stotliwo�ci wi�kszych ni� rezonansowa – indukcyjny. 

 

6.1.1 Parametry rezonansu szeregowego 

 

Rezonans mo�e by� scharakteryzowany wieloma parametrami, z których najwa�niejsze to 

cz�stotliwo�� rezonansowa, dobro� obwodu rezonansowego, rezystancja charakterystyczna, 

rozstrojenie obwodu oraz pasmo przenoszenia cz�stotliwo�ci. 

Cz�stotliwo�� rezonansowa obwodu szeregowego RLC została zdefiniowana powy�ej 

jako 
LC

fr π2
1= . Jest ona jednoznacznie okre�lona jako funkcja indukcyjno�ci L oraz 

pojemno�ci C. Rezystancja R nie ma �adnego wpływu na warto�� cz�stotliwo�ci obwodu 

szeregowego RLC. 

 Drugim wa�nym parametrem obwodu rezonansowego jest dobro� Q okre�lana zwykle 

w punkcie rezonansowym (dla cz�stotliwo�ci rezonansowej). W obwodzie szeregowym RLC 

dobroci� nazywamy stosunek napi�cia na elemencie reaktancyjnym (kondensatorze lub 

cewce) do napi�cia na elemencie rezystancyjnym w czasie rezonansu. St�d warto�� dobroci 

mo�e by� wyznaczona ze wzoru 

 

 
RCR

L
U

U

U

U
Q

r

r

R

C

R

L

ω
ω 1====  (6.3) 

 

Po uwzgl�dnieniu wzoru na pulsacj� rezonansow�, dobro� Q mo�na wyrazi� w jednoznacznej 

postaci uzale�nionej wył�cznie od parametrów obwodu RLC  

 

 
R
C
L

Q =  (6.3) 

 

Wielko�� wyst�puj�ca w liczniku nazywana jest rezystancj� charakterystyczn� ρ 
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C
L=ρ  (6.5) 

 

Rezystancja charakterystyczna obwodu rezonansowego szeregowego RLC jest uzale�niona 

wył�cznie od warto�ci indukcyjno�ci i pojemno�ci. 

 

 

6.1.2 Charakterystyki cz�stotliwo�ciowe rezonansu 

 

Charakterystykami cz�stotliwo�ciowymi obwodu rezonansowego nazywa� b�dziemy 

zale�no�� pr�du i napi�� od cz�stotliwo�ci (pulsacji). Dla otrzymania charakterystyk 

cz�stotliwo�ciowych z równania (6.1) wyznaczmy pr�d I jako funkcj� pulsacji  

 

 ( )
CjLjR

U
I

ωω
ω

/1−+
=  (6.6) 

 

Przepisuj�c powy�sz� zale�no�� zespolon� w postaci wykładniczej otrzymujemy wzór 

 

 ( ) )()( ωϕωω jeII =  (6.7) 

 

w którym )(ωI  oznacza moduł pr�du a )(ωϕ  - faz� uzale�nion� od cz�stotliwo�ci napi�cia 

zasilaj�cego. Wielko�ci te opisane s� nast�puj�co 

 

 
( )22 /1

)(
CLR

U
I

ωω
ω

−+
=  (6.8) 

 

 
R

CL ωωωϕ /1
arctg)(

−−=  (6.9) 

 

Zale�no�� modułu od cz�stotliwo�ci (pulsacji) nazywamy charakterystyk� amplitudow� 

rezonansu a zale�no�� fazy od cz�stotliwo�ci (pulsacji) – charakterystyk� fazow�. Na rys. 

6.3a przedstawiono charakterystyk� modułu pr�du a rys. 6.3b – fazy pr�du w funkcji pulsacji 

ω . 
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Rys. 6.3 Charakterystyki cz�stotliwo�ciowe pr�du w obwodzie rezonansowym:  

a) charakterystyka amplitudowa, b) charakterystyka fazowa 

 
 

Warto�ci elementów symulowanego obwodu były równe: L=1H, C=1F, R=1,8 Ω . Dla 

punktu rezonansowego 1=rω  charakterystyka przyjmuje warto�� maksymaln� a faza warto�� 

zerow�.  

 Wraz ze zmian� pr�du zmieniaj� si� równie� napi�cia na pozostałych elementach 

obwodu RLC. Dla wyznaczenia tych zale�no�ci mo�na wykorzysta� prawo Ohma, zgodnie, z 

którym przy zastosowaniu podej�cia symbolicznego otrzymuje si�  

• dla indukcyjno�ci 

 )()( ωωω LIjUL =  (6.10) 

 

• dla pojemno�ci  

 
C

I
jU C ω

ωω )(
)( −=  (6.11) 
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Podstawiaj�c do powy�szych zale�no�ci wzór okre�laj�cy pr�d mo�na otrzyma� wyra�enia na 

moduły i fazy napi�cia na cewce i kondensatorze. Charakterystyki amplitudowe tych napi�� 

s� wyra�one w postaci  

 

 
( )22 /1

)(
CLR

LU
U L

ωω

ω
ω

−+
=  (6.12) 

 

 
( )22 /1

)(
CLRC

U
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ωωω
ω

−+
=  (6.13) 

 

Na rys. 6.4 przedstawiono przykładowe charakterystyki cz�stotliwo�ciowe amplitudowe 

napi�cia na cewce i kondensatorze w obwodzie RLC o podanych wcze�niej parametrach przy 

pulsacji rezonansowej równej jeden i dobroci obwodu 55,0=Q .  

 

 
Rys. 6.4 Charakterystyki amplitudowe napi�cia na cewce i kondensatorze 

 
 

Jak wida� dla cz�stotliwo�ci rezonansowej obwodu napi�cia na reaktancjach s� sobie równe. 

Charakterystyki fazowe napi�� na cewce i kondensatorze, jak wynika ze wzorów 

(6.10) i (6.11) ró�ni� si� od charakterystyki fazowej pr�du tylko o warto�� 2/π  i s� 

przesuni�te na osi pionowej b�d� w dół b�d� w gór�. Łatwo pokaza�, �e s� one okre�lone 

nast�puj�co 
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• Charakterystyka fazowa napi�cia cewki 

 
R

CL
L

ωωπωϕ /1
arctg

2
)(

−−=   (6.14) 

 

• Charakterystyka fazowa napi�cia kondensatora 

 
R

CL
C

ωωπωϕ /1
arctg

2
)(

−−−=   (6.15) 

 

Kształt charakterystyk fazowych napi�cia na cewce i kondensatorze jest identyczny z 

charakterystyk� fazow� pr�du. Jedynym wyj�tkiem jest przesuni�cie tych charakterystyk w 

osi pionowej o warto�� k�ta równ� o90± . 

 Ogromny wpływ na charakterystyki cz�stotliwo�ciowe zarówno amplitudow� jak i 

fazow� wywiera dobro� obwodu. Im wy�sza jest dobro� tym charakterystyka pr�du w funkcji 

cz�stotliwo�ci jest bardziej stroma. Zmniejszenie dobroci powoduje spłaszczenie 

charakterystyki pr�du (gorsza selektywno�� obwodu rezonansowego).  

 

 
Rys. 6.5 Ilustracja wpływu dobroci na charakterystyk� amplitudow� pr�du 

 
 

Rys. 6.5 przedstawia wpływ dobroci na charakterystyk� amplitudow� pr�du przy stałej 

warto�ci amplitudy napi�cia zasilaj�cego. Im wi�ksza dobro� tym charakterystyka 

amplitudowa jest bardzie stroma i w��sza. 
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 Na rys. 6.6 zilustrowano wpływ dobroci na charakterystyki amplitudowe napi�cia 

cewki i kondensatora dla tych samych warto�ci cz�stotliwo�ci rezonansowej i dobroci jak na 

rys. 6.6. 

 
Rys. 6.6 Charakterystyki amplitudowe napi�cia na cewce i kondensatorze 

 
 

Zaobserwowa� mo�na pojawienie si� maksimum w charakterystyce zarówno napi�cia 

cewki jak i kondensatora. Łatwo mo�na udowodni�, �e punkt maksymalny obu charakterystyk 

pojawia si� jedynie przy dobrociach obwodu wi�kszych ni� 
2

1
. Dobro� 

2
1=Q  odpowiada 

najbardziej płaskiemu przebiegowi charakterystyk amplitudowych. 

Dla wprowadzenia nast�pnego parametru obwodu rezonansowego, jakim jest 

rozstrojenie bezwzgl�dne, napiszmy wyra�enie na napi�cie rezystora R w postaci 
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=   (6.16) 

 

któr� przekształcimy nast�puj�co 
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R

CL
R
X

x
ωω /1−==   (6.18) 

 

nosi nazw� rozstrojenia bezwzgl�dnego obwodu rezonansowego RLC. Rozstrojenie 

bezwzgl�dne jest proporcjonalne do warto�ci całkowitej reaktancji obwodu przy okre�lonej 

cz�stotliwo�ci. Rozstrojenie jest równe zeru tylko dla punktu rezonansowego. Rozstrojenie 

bezwzgl�dne jest pewnego rodzaju wska�nikiem odstrojenia obwodu od rezonansu. 

Przyjmuje warto�ci z przedziału (-∞, ∞). 

 Stopie� odstrojenia pulsacji od warto�ci rezonansowej okre�la poza rozstrojeniem 

bezwzgl�dnym, równie� rozstrojenie wzgl�dne, definiowane za pomoc� wzoru 

 

 
ω
ω

ω
ωδ r

r

−=   (6.19) 

 

Mo�na łatwo pokaza�, �e rozstrojenie bezwzgl�dne x obwodu RLC jest powi�zane z 

rozstrojeniem wzgl�dnym δ  relacj� 

 

 
R

Qx
δρδ ==   (6.20) 

 

 Zale�no�� ta wskazuje, �e przy tym samym rozstrojeniu bezwzgl�dnym x w obwodzie 

o wi�kszej dobroci Q wyst�puje mniejsze rozstrojenie wzgl�dne. W wi�kszo�ci zastosowa� 

charakterystyki rezonansowe obwodu wykorzystywane s� w bliskim otoczeniu pulsacji 

rezonansowej. W takich warunkach mo�na zastosowa� nast�puj�ce przybli�one wzory na 

rozstrojenie wzgl�dne i bezwzgl�dne 
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  (6.21) 

 

 QQx 2≅= δ
r

r

ω
ωω −

  (6.22) 

 

Istotnym parametrem obwodu rezonansowego jest pasmo przepustowe. Pasmem 

przepustowym (przepuszczania) szeregowego obwodu rezonansowego RLC nazywamy 
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przedział cz�stotliwo�ci (f1, f2) w otoczeniu cz�stotliwo�ci rezonansowej fr, na kra�cach 

którego warto�� skuteczna sygnału napi�cia na rezystorze R w obwodzie jest równa 
2

U
U R =  

(spadek warto�ci charakterystyki logarytmicznej 
U
UR

10log20  o 3dB w stosunku do warto�ci 

maksymalnej). Jest to tak zwane pasmo 3 decybelowe. Oznacza to, �e w pa�mie 

przepustowym zachodzi zale�no��  

 

 
2

1≥
U

U R   (6.23) 

 

Mo�na udowodni�, �e 3 decybelowe pasmo przepustowe (f2-f1) obwodu rezonansowego 

okre�lone jest zale�no�ci� 

 
Q
f

ff r=− 12   (6.24) 

Im wy�sza dobro� Q obwodu tym jest ono w��sze, natomiast zmniejszenie dobroci obwodu 

rozszerza to pasmo. 

Zjawiska w obwodzie rezonansowym odgrywaj� wa�n� rol� w technice przetwarzania 

sygnałów. Układy rezonansowe wchodz� w skład zarówno generatorów harmonicznych jak i 

filtrów elektrycznych i elektronicznych. Dzi�ki wła�ciwo�ci przenoszenia lub tłumienia 

sygnałów w okre�lonym pa�mie cz�stotliwo�ci wykorzystuje si� je jako układy dostrajaj�ce w 

radioodbiornikach i telewizorach. W liniach teletransmisyjnych układy rezonansowe 

umo�liwiaj� przekazywanie wielu sygnałów za pomoc� jednej linii przesyłowej przy 

zastosowaniu ró�nych cz�stotliwo�ci. 

 

6.2 Rezonans równoległy 

 

Rezonans pr�dów zwany równie� rezonansem równoległym mo�e wyst�pi� w obwodzie 

zawieraj�cym poł�czenie równoległe elementów RLC. Istnieje wiele struktur obwodów, w 

których mo�e powsta� rezonans pr�dów. Warunkiem jest pojawienie si� równoległego 

poł�czenia cewki i kondensatora, przy czym zarówno cewka jak i kondensator mo�e by� w 

układzie poł�cze� z innymi elementami rezystancyjnymi.  
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6.2.1 Zale�no�ci podstawowe rezonansu pr�dów 

 

Na rys. 6.7 przedstawiono przykładowy najprostszy obwód rezonansu równoległego RLC. 

 

 
Rys. 6.7 Obwód rezonansowy równoległy RLC 

 

Podobnie jak w przypadku obwodu szeregowego przyjmiemy wymuszenie sinusoidalne o 

zmiennej cz�stotliwo�ci, ale tym razem zało�ymy je w postaci �ródła pr�dowego 

)sin()( tIti m ω= . Wykorzystuj�c w opisie obwodu metod� symboliczn� równanie pr�dowe 

Kirchhoffa dla tego obwodu przyjmie posta� 

 

 ( )[ ]LCjGULjUCUjGUIIII CLR ωωωω /1/ −+=−+=++=   (6.25) 

 

Warunkiem rezonansu równoległego jest przyj�cie przez k�t fazowy mi�dzy pr�dem I oraz 

napi�ciem U warto�ci równej zeru. Nast�pi to wtedy, gdy cz��� urojona zale�no�ci (6.25) 

przyjmie warto�� zerow�, czyli gdy  

 

 
LCL

C
11 =→= ω

ω
ω   (6.26) 

 

Warunek powy�szy b�dzie spełniony, gdy cz�stotliwo�� zasilania przyjmie warto�� 

cz�stotliwo�ci rezonansowej okre�lonej zale�no�ci� 

 

 
LC

fr π2
1=   (6.27) 
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Jak wida� cz�stotliwo�� rezonansowa w obwodzie równoległym z rys. 6. 7 jest okre�lona 

identycznym wzorem jak w obwodzie szeregowym RLC. W odró�nieniu od obwodu 

szeregowego w obwodzie równoległym dobroci� nazywamy stosunek pr�du LI  lub CI  (s� 

sobie równe w chwili rezonansu) do pr�du RI  w elemencie rezystancyjnym RI  

 

 
GLG

C
I

I

I

I
Q

r

r

R

C

R

L

ω
ω 1====   (6.28) 

Po uwzgl�dnieniu RG /1=  i wzoru (6.27) na cz�stotliwo�� rezonansow� otrzymuje si� 

relacj� okre�laj�c� dobro� równoległego obwodu rezonansowego RLC o strukturze 

przedstawionej na rys. 6.7 w postaci 

 

 

C
L

R
Q =   (6.29) 

 

Tym razem dobro� obwodu jest wprost proporcjonalna do warto�ci rezystancji a odwrotnie 

proporcjonalna do rezystancji charakterystycznej. Dobro� obwodu wzrasta wi�c ze wzrostem 

warto�ci rezystancji, odwrotnie ni� to miało miejsce w obwodzie rezonansu szeregowego 

(przy wi�kszej rezystancji równoległej płynie przez ni� mniejszy pr�d upływno�ciowy). 

 

6.2.2 Charakterystyki cz�stotliwo�ciowe obwodu rezonansowego równoległego 

 

Dobro� Q, podobnie jak w obwodzie rezonansu szeregowego, ma ogromny wpływ na 

charakterystyki cz�stotliwo�ciowe obwodu RLC. Zauwa�my, �e z równania (6.25) mo�na 

wyznaczy� napi�cie na elementach R, L, C w postaci 

 

 ( ) )()(
/1

ωϕω
ωω

ω jeU
LjCjG

I
U =

−+
=   (6.30) 

 

w którym )(ωU  oznacza moduł napi�cia a )(ωϕ  - faz� uzale�nion� od cz�stotliwo�ci pr�du 

zasilaj�cego. Wielko�ci te opisane s� nast�puj�c� funkcj� 
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( )22 /1

)(
LCG

I
U

ωω
ω

−+
=   (6.31) 

 
G

LC ωωωϕ /1
arctg)(

−−=   (6.32) 

 

Na rys. 6.8a przedstawiono charakterystyk� modułu napi�cia (charakterystyk� amplitudow�) a 

rys. 6.8b wykres fazy napi�cia (charakterystyk� fazow�) w funkcji pulsacji ω  dla obwodu 

rezonansowego o 1=rω  i dobroci Q=0,6. 

 

 
Rys. 6.8 Charakterystyka amplitudowa (a)  

i fazowa (b) napi�cia w obwodzie równoległym RLC 

 
 

W punkcie rezonansowym (cz�stotliwo�� zasilania równa cz�stotliwo�ci rezonansowej) 

charakterystyka amplitudowa przyjmuje warto�� maksymaln� a faza warto�� zerow�. 

Charakterystyki te s� analogiczne do charakterystyk dla obwodu szeregowego przy 

uwzgl�dnieniu formalnych zmian wyst�puj�cych we wzorach (pr�d w obwodzie szeregowym 

odpowiada napi�ciu na poł�czeniu równoległym elementów). Zmiana kształtu charakterystyk 

cz�stotliwo�ciowych obwodu równoległego na skutek zmian dobroci jest równie� identyczna 
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jak miało to miejsce w obwodzie szeregowym RLC. Odpowiednikiem napi�cia na elementach 

L i C w obwodzie szeregowym jest pr�d tych elementów w obwodzie równoległym. 

Zachowanie si� tych charakterystyk w funkcji pulsacji wynika z prawa Ohma dla cewki i 

kondensatora, to jest 

)()( ωωω CUjIC =  

oraz  

LjUIL ωωω /)()( −=  

Ograniczaj�c si� jedynie do charakterystyk amplitudowych mo�na łatwo wykaza�, �e 

charakterystyki te opisuj� si� nast�puj�cymi wzorami 
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Na rys. 6.9 przedstawiono charakterystyki amplitudowe pr�du cewki i kondensatora w funkcji 

pulsacji dla dobroci 
2

1<Q  wynikaj�ce z relacji (6.33) i (6.34). 

 
Rys. 6.9 Charakterystyki amplitudowe pr�du cewki i kondensatora 
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Zmiana dobroci obwodu wpływa w zasadniczy sposób na przebieg tych charakterystyk. 

Mo�na łatwo udowodni�, �e dla dobroci 
2

1>Q  pojawiaj� si� punkty ekstremalne 

(maksima) w obu charakterystykach, podobnie jak przy rezonansie szeregowym, przy czym 

wyst�puje przesuni�cie tych maksimów wzgl�dem punktu rezonansowego. Przesuni�cie to 

maleje wraz ze zwi�kszaniem si� dobroci. Przy dobroci 
2

1≤Q  punkty ekstremalne w obu 

charakterystykach nie wyst�puj� a przebieg charakterystyk amplitudowych staje si� 

monotoniczny. 

 Rezonans równoległy podobnie jak szeregowy ma głównie zastosowanie w układach 

filtrów i generatorów, gdzie pełni rol� układu wzmacniaj�cego sygnały w okre�lonym 

zakresie cz�stotliwo�ci i tłumi�cego w pozostałym. 

 

Zadania sprawdzaj�ce 

Zadanie 6.1 

Okre�li� warunek rezonansu w obwodzie przedstawionym na rys. 6.10 przy zało�eniu 

wymuszenia sinusoidalnego. Wyznaczy� cz�stotliwo��, przy której w obwodzie nast�pi 

rezonans. Przyj�� nast�puj�ce znormalizowane warto�ci parametrów obwodu: R=10Ω, L=1H 

oraz C=1F. 

 
Rys. 6.10 Schemat obwodu do zadania 6.10 

 

Rozwi�zanie 

Impedancja zast�pcza obwodu okre�lona jest wzorem 
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Warunek rezonansu: 

0100990)Im( 2 =−→= ωZ  

 

St�d cz�stotliwo��, przy której wyst�pi rezonans jest okre�lona wzorem 

99
100=rω  

6Hz1,0
99

100
2
1 ==
πrf  

 

Zadanie 6.2  

Wyznaczy� pojemno�� C, przy której w obwodzie z rys. 6.11 zachodzi rezonans szeregowy. 

 

 
Rys. 6.11 Schemat obwodu do zadania 6.2 

 

Wymuszenie w obwodzie dane jest w postaci )4000sin(250)( tte = . W warunkach 

rezonansu wyznaczy� pr�dy i napi�cia w obu obwodach. Przyj�� nast�puj�ce warto�ci 

parametrów obwodu: R=1000Ω, L=0,25H, L1=0,5H. 

 

Rozwi�zanie 

Impedancja zast�pcza obwodu okre�lona jest wzorem 
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Po wstawieniu warto�ci parametrów otrzymuje si�  

 

1104
14001016

1104
8001032

1104
1000

400800 6

8

6

8

6 −⋅
−⋅+

−⋅
−⋅=

−⋅
−+=

C
C

j
C

C
C

j
jZ  

 

Jak z powy�szego wzoru wynika, w obwodzie mo�liwy jest zarówno rezonans szeregowy jak 

i równoległy. W przypadku rezonansu szeregowego wymaganego w tre�ci zadania warunek 

jest nast�puj�cy 

 

0140010160)Im( 8 =−⋅→= CZ  
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W warunkach rezonansu poszczególne impedancje obwodu wynosz� 
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Pr�dy i napi�cia w obwodzie: 
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Lekcja 7. Analiza obwodów RLC przy wymuszeniu niesinusoidalnym 

 

Wst�p 

W tej lekcji zajmiemy si� analiz� obwodów liniowych RLC w stanie ustalonym przy 

wymuszeniach okresowych niesinusoidalnych. Odpowiedzi takich obwodów s� w ogólno�ci 

równie� funkcjami okresowymi niesinusoidalnymi. Wiele urz�dze� elektrycznych generuje 

sygnały okresowe o kształcie ró�ni�cym si� od sinusoidy. Mog� to by� prostowniki diodowe 

lub tyrystorowe, transformatory przeci��one pracuj�ce w zakresie nieliniowo�ci krzywej 

magnesowania, generatory uniwersalne napi�� prostok�tnych, piłokształtnych itp. Okresowe 

przebiegi niesinusoidalne nazywa� b�dziemy równie� odkształconymi, uznaj�c przebiegi 

sinusoidalne za najbardziej elementarne przebiegi okresowe. 

Istnieje konieczno�� opracowania metodyki analizy obwodów zawieraj�cych sygnały 

niesinusoidalne. Podstawowym problemem w analizie tych obwodów jest wyra�enie 

przebiegów niesinusoidalnych poprzez funkcje sinusoidalne, dla których analiza jest bardzo 

prosta. Metod� powszechnie stosowan� jest rozwini�cie funkcji czasowych opisuj�cych 

przebieg niesinusoidalny w szereg Fouriera. 

Zostanie pokazane, �e dowolne okresowe wymuszenie ró�ne od sinusoidalnego mo�e by� 

przedstawione jako suma wielu wymusze� harmonicznych (sinusoidalnych) o 

cz�stotliwo�ciach b�d�cych wielokrotno�ci� cz�stotliwo�ci podstawowej. Rozwini�cie 

szeregu Fouriera zostanie zaprezentowane tutaj w postaci trygonometrycznej oraz 

wykładniczej. Wprowadzone zostanie twierdzenie Parsevala, pozwalaj�ce wyrazi� warto�� 

�redni� za okres iloczynu dwu funkcji okresowych poprzez współczynniki rozwini�cia 

wykładniczego Fouriera obu funkcji. Podane zostan� wzory na warto�� skuteczn� przebiegów 

niesinusoidalnych oraz na moce wyst�puj�ce w obwodzie o przebiegach niesinusoidalnych. 

Wprowadzone zostanie nowe poj�cie mocy – moc odkształcenia (deformacji). Poznamy 

metod� analizy obwodów ze �ródłami niesinusoidalnymi w stanie ustalonym przy 

zastosowaniu zasady superpozycji. 
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7.1. Szereg Fouriera 

7.1.1. Wprowadzenie 

Zgodnie z twierdzeniem Fouriera funkcj� okresow� f(t) o okresie T (cz�stotliwo�� f=1/T) 

mo�na przedstawi� w postaci szeregu utworzonego ze składowej stałej oraz funkcji 

sinusoidalnych o cz�stotliwo�ciach kf  je�li funkcja ta spełnia tak zwane warunki Dirichleta.  

Niech dana b�dzie funkcja okresowa f(t) okre�lona w przedziale 0-T, gdzie T oznacza 

okres tej funkcji. Załó�my, �e funkcja ta spełnia warunki Dirichleta, to znaczy, �e w 

przedziale 0-T jest bezwzgl�dnie całkowalna, czyli  

 

 ∞<� dttf
T

)(   (7.1) 

 

ma sko�czon� liczb� maksimów i minimów a w przedziale 0-T co najwy�ej sko�czon� liczb� 

punktów nieci�gło�ci tk, przy czym w ka�dym punkcie nieci�gło�ci istniej� sko�czone granice 

prawostronna i lewostronna a warto�� funkcji w tym punkcie przyjmuje si� jako �redni� 

arytmetyczn� granicy lewo- i prawostronnej, to jest  
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)( +− += kkk tftftf   (7.2) 

 

7.1.2. Posta� trygonometryczna szeregu Fouriera 

Ka�da funkcja okresowa spełniaj�ca wymienione warunki Dirichleta mo�e by� wyra�ona za 

pomoc� niesko�czonego, zbie�nego szeregu Fouriera. Suma tego szeregu dla dowolnego 

punktu czasu t jest równa warto�ci funkcji  f(t), co znaczy  
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Szereg po prawej stronie równa� (7.3) i (7.4) nazywa� b�dziemy szeregiem 

trygonometrycznym Fouriera. W szeregu tym wyró�ni� nale�y nast�puj�ce parametry 

 

 k   - rz�d harmonicznej (k = 1, 2, 3,...) 

 kF    - amplituda k-tej harmonicznej 

 00 AF =   - składowa stała przebiegu 

 kψ    - faza pocz�tkowa k-tej harmonicznej 

 
T

f
ππω 2

2 ==  - pulsacja harmonicznej podstawowej 

 )sin( 11 ψω +tF  - podstawowa harmoniczna przebiegu 

 )sin( kk tkF ψω +  - k-ta harmoniczna przebiegu (k = 1, 2, 3, ...) 

 

Nale�y podkre�li�, �e cz�stotliwo�� harmonicznej podstawowej jest identyczna z 

cz�stotliwo�ci� przebiegu niesinusoidalnego f(t). Cz�stotliwo�ci kolejnych harmonicznych s� 

wielokrotno�ci� cz�stotliwo�ci harmonicznej podstawowej, czyli ωω kk = . Współczynniki 

rozwini�cia trygonometrycznego Fouriera wyznacza si� z nast�puj�cych wzorów 
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2 ω   (7.7) 

 

Chwila czasowa t0 mo�e by� wybrana dowolnie a jej wybór nie ma wpływu na wynik 

transformacji. Obie postacie szeregu Fouriera (7.3) i (7.4) s� sobie równowa�ne, je�li 

spełnione s� nast�puj�ce warunki 
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W ogólno�ci szereg Fouriera zawiera niesko�czenie wiele harmonicznych. W praktyce 

wi�kszo�� harmonicznych maleje do zera przy zwi�kszaj�cym si� rz�dzie tych 

harmonicznych. St�d w obliczeniach uwzgl�dnia si� jedynie niewielk� liczb� tych 

harmonicznych uzyskuj�c zadowalaj�ce przybli�enie. Metod� rozkładu przebiegu 

niesinusoidalnego na szereg Fouriera zilustrujemy na przykładzie przebiegu prostok�tnego. 

 

Przykład 7.1 

Wyznaczy� rozwini�cie Fouriera dla przebiegu prostok�tnego okresowego o okresie T 

przedstawionego na rys. 7.1 

 

 
Rys. 7.1. Przebieg prostok�tny okresowy 

 

Rozwi�zanie 

Dla przebiegu podanego na rys. 7.1 pulsacja T/2πω = . Poszczególne współczynniki 

rozwini�cia trygonometrycznego Fouriera opisane s� wzorami 
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Z uzyskanych wzorów na współczynniki Fouriera wynika, �e zadany przebieg czasowy 

prostok�tny opisa� mo�na w postaci niesko�czonej sumy harmonicznych o postaci 
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Wyra�enie o postaci sinusoidalnej stoj�ce przy cos(k�t) oznacza amplitud� k-tej 

harmonicznej. Jak wida� warto�� tej amplitudy maleje wraz ze wzrostem k. W ogólnym 

przypadku przy dowolnej warto�ci T1  rozwini�cie w szereg Fouriera zawiera� mo�e 

wszystkie harmoniczne, przy czym amplitudy tych harmonicznych s� modulowane funkcj� 

sinusoidaln�. 

Szczególnie prost� form� przyjmuje rozwini�cie w szereg Fouriera przy wypełnieniu 

impulsów prostok�tnych w stosunku 1:1. Wtedy 4/1 TT =  a rozwini�cie f(t) upraszcza si� do 

postaci 
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W tym przypadku szereg Fouriera zawiera jedynie harmoniczne nieparzyste a amplituda k-tej 

harmonicznej jest k-krotnie mniejsza ni� harmonicznej podstawowej. Kolejne składniki 

rozwini�cia ró�ni� si� znakiem (znak minus odpowiada wprowadzeniu przesuni�cia fazowego 

o k�t 180o). Rys. 7.2 przedstawia wykres amplitudy i fazy poszczególnych składowych 

rozkładu Fouriera (w przypadku fazy przyj�to 	
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Rys. 7.2. Wykres amplitudy (a) i fazy (b) składowych rozkładu Fouriera 

 

Rozkład przebiegu niesinusidalnego na składowe harmoniczne oznacza jego 

aproksymacj� poprzez niesko�czon� sum� składników. Ka�de ograniczenie tej sumy do 

liczby sko�czonej wprowadza pewien bł�d aproksymacji, a wi�c przybli�enie przebiegu 

rzeczywistego przez funkcje aproksymuj�ce. Na rys. 7.3 przedstawiono efekty przybli�ania 

przebiegu prostok�tnego przez ograniczon� sum� harmonicznych przy coraz wi�kszej ich 

liczbie uwzgl�dnianej w aproksymacji (N=2, N=3, N=4 uwzgl�dniaj�c składow� zerow�). 

 

 
Rys. 7.3. Przybli�enie impulsu prostok�tnego przez sko�czon� sum� harmonicznych 

 
 

Jak wida� pomimo uwzgl�dnienia w rozwini�ciu jedynie 4 harmonicznych przybli�enie jest 

do�� dokładne i odzwierciedla podstawowy kształt impulsu. Zwi�kszenie liczby 

harmonicznych uwzgl�dnione w sumie zwi�ksza dokładno�� odwzorowania impulsu. 
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7.1.3. Posta� wykładnicza szeregu Fouriera 

W pewnych zastosowaniach posta� trygonometryczna (7.3) szeregu Fouriera nie jest 

wystarczaj�ca i dlatego wprowadza si� komplementarn� posta� wykładnicz�, b�d�c� 

rozwini�ciem funkcji trygonometrycznych w funkcje wykładnicze. Korzysta si� przy tym z 

definicji funkcji sinusoidalnej i cosinusoidalnej, zgodnie z którymi 
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Po zastosowaniu elementarnych przekształce� wzoru (7.4) otrzymuje si� 
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Wprowad�my oznaczenia 
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Ze wzgl�du na parzysto�� funkcji cosinusoidalnej i nieparzysto�� funkcji sinusoidalnej 

słuszne s� nast�puj�ce równo�ci 
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Oznacza to,�e  
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gdzie znak * oznacza sprz��enie liczby zespolonej. Uwzgl�dnienie tej zale�no�ci we wzorze 

(7.12) prowadzi do wyniku 
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który mo�e zosta� zapisany w skrócie jako 
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Jest to tak zwana posta� wykładnicza szeregu Fouriera, w której warto�ci współczynników 

rozwini�cia Xk s� zespolone w odró�nieniu od rzeczywistych warto�ci współczynników 

szeregu trygonometrycznego. Współczynniki te mog� by� otrzymane z rozwini�cia 

trygonometrycznego b�d� bezpo�rednio z relacji 
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Wykres kX  okre�lony dla dyskretnych warto�ci k reprezentuj�cych sob� dyskretne 

cz�stotliwo�ci nazywany jest widmem amplitudowym funkcji f(t). Ze wzgl�du na to, �e 

współczynniki rozwini�cia wykładniczego spełniaj� warunek kk XX −= , widmo 

amplitudowe jest symetryczne wzgl�dem osi rz�dnych (warto�ci widma amplitudowego dla 

dodatnich i ujemnych cz�stotliwo�ci s� identyczne). Z kolei wykres kk XX argarg −=− , czyli 

widmo fazowe jest symetryczne wzgl�dem pocz�tku układu współrz�dnych (warto�ci k�ta 

fazowego dla cz�stotliwo�ci ujemnych s� przeciwne wzgl�dem tych samych warto�ci dla 

cz�stotliwo�ci dodatnich). 
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Rozwini�cie funkcji f(t) w posta� wykładnicz� oznacza rozkład energii sygnału w zakresie 

cz�stotliwo�ci dodatniej i ujemnej. Je�li rzeczywista warto�� amplitudy k-tej harmonicznej 

wynosi Ak, to k-ty pr��ek widma amplitudowego szeregu wykładniczego Fouriera przyjmie 

warto�� 
2

kA
 dla cz�stotliwo�ci dodatniej i identyczn� warto�� dla cz�stotliwo�ci ujemnej. 

 

Przykład 7.2 

Wyznaczy� posta� wykładnicz� szeregu Fouriera, je�li 
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Rozwi�zanie 

Dla uzyskania postaci wykładniczej szeregu Fouriera skorzystamy z zale�no�ci definicyjnych 

funkcji sinusoidalnej i kosinusoidalnej: 
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wstawieniu tych zale�no�ci do szeregu Fouriera otrzymujemy 

 

j
eeee

j
eeee

tf
tjtjtjtjtjtjtjtj

2
12

2
7

2
5

2
105)(

5533 ωωωωωωωω −−−− −+++−+++=  

 

Uwzgl�dniaj�c, �e 2/πjej =  i grupuj�c odpowiednie składniki otrzymujemy 
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Po sprowadzeniu liczb zespolonych do postaci wykładniczej otrzymuje si� nast�puj�c� posta� 

wykładnicz� szeregu Fouriera 
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Charakterystyka amplitudowa szeregu wykładniczego Fouriera opisuj�cego funkcj� f(t) 

przedstawiona jest na rys. 7.4a, natomiast charakterystyka fazowa na rys. 7.4b.  
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Rys. 7.4 Charakterystyka amplitudowa (a) i fazowa (b) szeregu wykładniczego Fouriera 

opisuj�cego funkcj� f(t) z przykładu 

 

Cz�stotliwo�� zmienia si� w zakresie od ∞−  do ∞ . Pr��ki amplitudowe i fazowe zostały 

rozło�one w sposób symetryczny w obu zakresach, przy czym charakterystyka amplitudowa 

jest funkcj� parzyst� a charakterystyka fazowa - nieparzyst�. Energia sygnału uto�samiona z 

amplitud� została zatem rozdzielona na dwie równe cz��ci. Amplituda k-tej harmonicznej jest 

równa podwojonej warto�ci amplitudy k-tego pr��ka z zakresu dodatniego lub ujemnego. 

 

7.1.4 Twierdzenie Parsevala 

Rozpatrzmy dwie funkcje f(t) i g(t) o tym samym okresie T spełniaj�ce warunki Dirichleta. 

Przedstawmy je w postaci wykładniczej Fouriera 
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w której pulsacja podstawowa ω jest okre�lona poprzez okres funkcji 
T
πω 2= . Przy takich 

zało�eniach twierdzenie Parsevala mo�na sformułowa� nast�puj�co. 

 

Twierdzenie Parsevala 

Je�li funkcje f(t) i g(t) s� okresowe o tym samym okresie T i obie spełniaj� warunki 

Dirichleta, to warto�� �rednia z iloczynu tych funkcji za okres okre�lona jest zale�no�ci� 
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w której kf  i kg  oznaczaj� rozwini�cie wykładnicze funkcji zadanych f(t) i g(t) a znak * 

oznacza operacj� sprz��enia liczby zespolonej. 

Twierdzenie Parsevala okre�la warto�� �redni� za okres iloczynu dwu funkcji 

okresowych f(t) i g(t) o tym samym okresie. Z twierdzenia wynika, �e warto�� �redni� tworz� 

jedynie iloczyny składników rozkładu wykładniczego o tym samym rz�dzie. Składniki sumy 

pochodz�ce od iloczynów składowych ró�nego rz�du s� równe zeru. W szczególnym 

przypadku gdy f(t)=g(t) wzór Parsevala upraszcza si� do postaci 
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gdy� mno�enie liczby zespolonej przez sprz��on� oznacza kwadrat modułu liczby zespolonej, 
2*

kkk fff = . Ostatni wzór wi��e si� bezpo�rednio z obliczeniem warto�ci skutecznej 

przebiegu niesinusidalnego, rozwini�tego w szereg Fouriera. 

 

7.2 Warto�� skuteczna napi�cia i pr�du niesinusoidalnego 

W przypadku analizy obwodów o przebiegach niesinusoidalnych okresowych sygnał pr�du i 

napi�cia w obwodzie przedstawiany jest zwykle w postaci szeregu trygonometrycznego 

Fouriera 
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  )sin()( 0 kk
k

km tkIIti ϕψω −++= �   (7.26) 

 

w których kmU  oraz kmI  s� amplitudami k-tej harmonicznej odpowiednio napi�cia u(t) i pr�du 

i(t). kΨ  jest faz� pocz�tkow� k-tej harmonicznej a kϕ  jest k�tem przesuni�cia fazowego k-tej 

harmonicznej pr�du wzgl�dem k-tej harmonicznej napi�cia.  

 Korzystaj�c z twierdzenia Parsevala mo�na udowodni�, �e warto�� skuteczna 

przebiegu składaj�cego si� z sumy wielu harmonicznych mo�e by� obliczona na podstawie 

warto�ci skutecznych ka�dej harmonicznej z osobna. Bior�c pod uwag� zale�no�� (7.24) i 

uwzgl�dniaj�c relacj� mi�dzy warto�ci� maksymaln� i skuteczn� mo�na pokaza�, �e warto�� 

skuteczna przebiegu niesinusoidalnego jest pierwiastkiem z sumy kwadratów warto�ci 

skutecznych poszczególnych harmonicznych. W przypadku napi�cia i pr�du opisanych 

zale�no�ciami (7.25) i (7.26) wzory na moduł warto�ci skutecznej przyjmuj� posta� 
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w której kU  oraz kI  oznaczaj� warto�ci skuteczne odpowiednio napi�cia i pr�du k-tej 

harmonicznej. Warto�� skuteczna (moduł) napi�cia i pr�du niesinusoidalnego jest równa 

pierwiastkowi kwadratowemu z sumy kwadratów modułów warto�ci skutecznych wszystkich 

harmonicznych oraz składowej stałej. 

 W przypadku wyst�pienia w przebiegu wielu harmonicznych wa�nym wska�nikiem 

odkształcenia tego przebiegu od sinusoidy jest współczynnik zawarto�ci harmonicznych h. 

Współczynnik ten definiuje si� jako stosunek warto�ci skutecznej przebiegu f(t) po usuni�ciu 

z niego składowej stałej i pierwszej harmonicznej do warto�ci skutecznej przebiegu po 

usuni�ciu z niego jedynie składowej stałej. Przy oznaczeniu warto�ci skutecznych 

odpowiednich harmonicznych przez Fk wzór na współczynnik zawarto�ci harmonicznych 

mo�na zapisa� w postaci 
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Je�li badany przebieg zawiera jedynie składow� podstawow� (pierwsz�) to jak łatwo 

zauwa�y� współczynnik zawarto�ci harmonicznych jest równy zeru, co oznacza brak 

odkształcenia krzywej od postaci sinusoidalnej. 

 

7.3. Moc przy przebiegach niesinusoidalnych 

Niezale�nie od charakteru zmienno�ci w czasie przebiegów pr�du i napi�cia moc 

chwilowa w obwodzie jest wyra�ona tym samym wzorem p(t)=u(t)i(t). Korzystaj�c z tej 

zale�no�ci oraz uwzgl�dniaj�c twierdzenie Parsevala wyra�aj�cego iloczyn dwu sum 

harmonicznych mo�na udowodni�, �e moc czynna P jako warto�� �rednia z iloczynu pr�du i 

napi�cia w obwodzie  
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przy wyst�pieniu wielu harmonicznych jest równa sumie mocy czynnych poszczególnych 

harmonicznych, wł�czaj�c w to składow� stał� 
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Analogicznie jak dla przebiegów sinusoidalnych równie� przy przebiegach odkształconych 

istnieje poj�cie mocy biernej, jako sumy mocy biernych pochodz�cych od poszczególnych 

harmonicznych, czyli  
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Analogicznie do obwodów z przebiegami sinusoidalnymi równie� dla przebiegów 

niesinusoidalnych wprowadza si� poj�cie modułu mocy pozornej jako iloczynu warto�ci 

skutecznej napi�cia odkształconego przez warto�� skuteczn� pr�du odkształconego, czyli 
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Nale�y zaznaczy�, �e tak zdefiniowana wielko�� oznacza moduł mocy pozornej a nie moc 

pozorn� zespolon�. Z porównania wzorów (7.31), (7.32) i (7.33) wynika, �e w odró�nieniu od 

przebiegów sinusoidalnych suma kwadratów mocy czynnej i mocy biernej nie jest równa 

kwadratowi mocy pozornej. Dla zachowania bilansu mocy wprowadza si� w zwi�zku z tym 

nowy rodzaj mocy, zwanej moc� odkształcenia lub deformacji. Moc t� oznacza� b�dziemy 

liter� D. Jej warto�� musi by� tak dobrana aby wszystkie rodzaje mocy bilansowały si�. W 

zwi�zku z powy�szym przyj�to nast�puj�cy zwi�zek mi�dzy poszczególnymi rodzajami mocy  
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Oznacza to, �e moc deformacji definiuje równanie 
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Stosunek mocy czynnej do mocy pozornej nazywamy, przez analogi� do przebiegów 

sinusoidalnych, współczynnikiem mocy i okre�lamy wzorem 

 

  
S
P=υcos   (7.36) 

 

Współczynnik mocy obwodu przy wymuszeniu niesinusoidalnym tylko z definicji 

przypomina współczynnik mocy obwodu przy wymuszeniu harmonicznym. W rzeczywisto�ci 

jego interpretacja jest pozbawiona sensu fizycznego jak� posiada ϕcos . 
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7.4. Metodyka rozwi�zania obwodów przy wymuszeniu niesinusoidalnym 

W przypadku wyst�pienia w obwodzie RLC wymuszenia niesinusoidalnego obliczenie 

odpowiedzi w stanie ustalonym musi uwzgl�dni� fakt istnienia wielu harmonicznych 

(teoretycznie niesko�czenie wielkiej liczby) ró�ni�cych si� cz�stotliwo�ci�. Załó�my, �e do 

obwodu RLC przyło�ono okresowe napi�cie niesinusoidalne u(t) jak to przedstawiono na rys. 

rys. 7.5.  

 

 
a)   b) 

 

Rys. 7.5. Ilustracja zastosowania zasady superpozycji przy rozwi�zywaniu obwodów o 

wymuszeniu napi�ciowym niesinusoidalnym: a) obwód o wymuszeniu niesinusoidalnym,  

b) superpozycja obwodów o wymuszeniu sinusoidalnym  

 

Napi�cie to mo�na przedstawi� w sposób przybli�ony za pomoc� sko�czonej sumy n 

harmonicznych  
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w której n jest najwi�ksz� warto�ci� harmonicznej uwzgl�dnionej w rozwini�ciu Fouriera. 

Wobec liniowo�ci obwodu mo�na zastosowa� zasad� superpozycji i obliczy� pr�dy od 

poszczególnych �ródeł oddzielnie (rys. 7.5b). Przy wymuszeniu typu napi�ciowego �ródła 

eliminowane z obwodu zwiera si�.  

W przypadku wyst�pienia w obwodzie �ródeł wymuszaj�cych pr�dowych  
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post�puje si� podobnie, analizuj�c obwód dla ka�dej harmonicznej oddzielnie (rys. 7.6). 

Poniewa� �ródła harmoniczne typu pr�dowego s� poł�czone równolegle eliminacja danego 

�ródła polega na rozwarciu jego zacisków.  

 

 
a)   b) 

 

Rys. 7.6 Ilustracja zastosowania zasady superpozycji przy rozwi�zywaniu obwodów o 

wymuszeniu pr�dowym niesinusoidalnym: a) obwód o wymuszeniu niesinusoidalnym,  

b) superpozycja obwodów o wymuszeniu sinusoidalnym  

 

Nale�y przy tym pami�ta�, �e ka�de �ródło ma inn� cz�stotliwo��, b�d�c� 

wielokrotno�ci� cz�stotliwo�ci podstawowej i wynosz�c� ωω kk = . Poniewa� zarówno 

reaktancja pojemno�ciowa )(k
CX  jak i indukcyjna )(k

LX  jest funkcj� cz�stotliwo�ci, zatem 

reaktancje te dla harmonicznej rz�du k wynosz� odpowiednio 

 

  L
k

L kXLkX == ω)(   (7.39) 

 

  kXCkX C
k

C //1)( == ω   (7.40) 

 

gdzie LX L ω=  jest reaktancj� indukcyjn� dla składowej harmonicznej podstawowej a 

CX C ω/1=  - reaktancj� pojemno�ciow� dla harmonicznej podstawowej. Dla ka�dej 

harmonicznej wymuszenia nale�y przeprowadzi� oddzieln� analiz� odpowiedniego obwodu 

przy zastosowaniu jednej z poznanych wcze�niej metod (metoda praw Kirchhoffa, oczkowa, 

w�złowa, Thevenina itp.). Wynikiem analizy s� warto�ci pr�dów i napi�� poszczególnych 

gał�zi obwodu oraz odpowiednie moce: czynna i bierna dla ka�dej harmonicznej. Po 

wyznaczeniu odpowiedzi dla ka�dej harmonicznej oddzielnie nale�y wyznaczy� wypadkowe 

warto�ci skuteczne odpowiednich pr�dów i napi�� oraz mocy według wzorów podanych 
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wcze�niej w tej lekcji. Sposób post�powania przy analizie obwodów z przebiegami 

niesinusoidalnymi zostanie zilustrowany na przykładzie. 

 

Przykład 7.3 

 Rozwa�my schemat obwodu poddanego analizie przedstawiony na rys. 7.7. Przyjmijmy 

nast�puj�ce warto�ci liczbowe parametrów obwodu: Ω= 11R , Ω= 22R , HL 11 = , HL 22 = , 

FC 4/11 = , FC 2/12 = . Wymuszenie napi�ciowe e(t) opisane jest sum� harmonicznych 

)2sin(210)sin(22010)( ttte ωω ++= V, przy czym 1=ω rad/s. 

 

 
Rys. 7.7. Schemat obwodu do przykładu 7.3 

 

Rozwi�zanie 

Ze wzgl�du na istnienie w wymuszeniu trzech harmonicznych nale�y dokona� trzech analiz 

obwodu, za ka�dym razem zakładaj�c jedno wymuszenie i eliminuj�c pozostałe (wobec 

wymuszenia napi�ciowego �ródła eliminowane ulegaj� zwarciu). 

 

• Harmoniczna zerowa (składowa stała)  

Harmoniczna zerowa przedstawia sob� wymuszenie stałe (cz�stotliwo�� wymuszenia 

zerowa). Oznacza to, �e w tym przypadku impedancje cewek s� równe zeru (Zl=jωL=0) a 

impedancje kondensatorów równe niesko�czono�ci (ZC=1/(jωC)=∞). Obwód dla 

harmonicznej zerowej przedstawiony jest na rys. 7.8 (wszystkie cewki zwarte, kondensatory 

rozwarte). 
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Rys. 7.8 Posta� obwodu dla harmonicznej zerowej (składowej stałej) 

 

Wobec przerwy w obwodzie pr�d składowej stałej nie mo�e płyn��, st�d 0)0( =i  oraz 

0)0( =S , 100
)0(

1 == EuC . Pozostałe pr�dy i napi�cia w obwodzie s� zerowe. Wszystkie moce 

obwodu wobec zerowych warto�ci pr�dów s� tak�e równe zeru. 

 

• Harmoniczna podstawowa 

Schemat obwodu dla harmonicznej podstawowej jest identyczny ze schematem ogólnym 

przedstawionym na rys. 7.7, z tym, �e zamiast napi�cia e(t) uwzgl�dniona jest składowa 

podstawowa )sin(220)(1 tte ω= . Przy jednostkowej pulsacji wymuszenia ω=1 reaktancje 

indukcyjna i pojemno�ciowa obwodu dla harmonicznej podstawowej s� odpowiednio równe:  

 

 11
)1(

1 == LX L ω  

 22
)1(
2 == LX L ω  

 4/1 1
)1(
1 == CX C ω  

 2/1 2
)1(
2 == CX C ω  

 

Impedancja poł�czenia równoległego elementów jest równa 22 == RZ r  (rezonans 

równoległy elementów). Kolejne obliczenia mo�na przedstawi� w nast�puj�cej formie: 

 

)1(
2

45)1( 7,4
2411

20
R

j Ie
jj

I ==
+−+

=
�

 

 
�45)1()1( 4,9 j

rAB eIZU ==  
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�45

2

)1(
)1(
2 7,4 j

L

AB
L e

jX
U

I −==  

 

�45

2

)1(
)1(
2 7,4 j

C

AB
C e

jX
U

I −−=
−

=  

 

7,667,667,420 45)1(
1

)1( jeIES j −=⋅== −∗ �

 

 

• Harmoniczna druga 

Harmoniczna druga reprezentuje sob� równie� wymuszenie sinusoidalne o cz�stotliwo�ci 

dwukrotnie wi�kszej ni� cz�stotliwo�� podstawowa. Schemat obwodu dla tej harmonicznej 

jest identyczny ze schematem ogólnym obwodu przedstawionym na rys. 7.7, z tym, �e 

zamiast napi�cia e(t) przyło�ona jest jego druga składowa )2sin(210)(2 tte ω= . Przy 

pulsacji wymuszenia harmonicznej drugiej 222 == ωω , reaktancje indukcyjna i 

pojemno�ciowa dla harmonicznej drugiej s� równe:  

 

 212
)2(

1 == LX L ω  

 422
)2(

2 == LX L ω  

 2/1 12
)2(

1 == CXC ω  

 1/1 22
)2(

2 == CXC ω  

Impedancja poł�czenia równoległego elementów jest teraz równa 
r

r Y
Z

1= , gdzie 

75,05,0
111

)2(
2

)2(
22

j
jXjXR

Y
CL

r +=++= .  

St�d  

 
5611,1 j

r eZ −= . 

 

Kolejno�� dalszych oblicze� w obwodzie jest nast�puj�ca: 

�6,29
56

)2( 37,5
11,1221

10 j
j e

ejj
I =

+−+
= −  
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�26)2()2( 97,5 j
rAB eIZU −==  
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)2(
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2 49,1 j
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L e

jX
U

I −==  

 

�64
)2(

2

)2(
)2(

2 97.5 j
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C e

jX
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I ==  

 

�26

2

)2(
)2(

2 98,2 jAB
R e
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U

I −==  

 

5,267,4637,510 6,29)2(
2

)2( jeIES j −=⋅== −∗ �

 

 

Warto�ci skuteczne pr�dów w obwodzie s� równe:  

 

AI 13,737,57,4 22 =+= ,  

 

AI R 57,598,27,4 22
2 =+=  

 

AI L 93,449,17,4 22
2 =+=  

 

AI C 62,797,57,4 22
2 =+=  

 

Warto�� skuteczna napi�cia �ródła jest równa 

 

VE 5,24102010 222 =++=  

 

Moc pozorna (moduł) wydawana przez �ródło jest równa 

 

 VAIES 65,174==  
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Całkowita moc czynna i bierna wydana przez �ródło s� równe odpowiednio 

 

113,4W46,766,7)2()1()0( =+=++= PPPP  

 

oraz  

 

 -93,2var26,5--66,7)2()1( ==+= QQQ  

 

Moc odkształcenia  

 

VAQPSD 64,942,934,11365,174 222222 =−−=−−=  

 

W obwodzie powstała bardzo du�a moc odkształcenia. Wytłumaczeniem tego faktu jest 

wyst�powanie zjawiska rezonansu zarówno dla harmonicznej podstawowej (cewka druga i 

kondensator drugi) jak i dla harmonicznej drugiej (cewka pierwsza i kondensator pierwszy). 

Moc bierna wypadkowa w elementach reaktancyjnych w stanie rezonansu jest zerowa co 

pomniejsza moc biern� całego obwodu dla tych harmonicznych. Z drugiej strony wszystkie 

harmoniczne tworz� warto�ci skuteczne zarówno pr�du jak i napi�cia, st�d ich iloczyn 

tworz�cy moduł mocy pozornej przyjmuje du�� warto��. W bilansie mocy wpływa to na 

znaczne zwi�kszenie mocy deformacji. 

Zadania sprawdzaj�ce 

 

Zadanie 7.1  

Przedstawi� funkcj�  

 

)7cos(8)5cos(16)sin(2010)( ttttf ωωω +++=  

 

w postaci wykładniczej szeregu Fouriera. 

 

Rozwi�zanie 

Z definicji funkcji sinus i cosinus wynika nast�puj�ca zale�no�� 
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2
8

2
16

2
2010)(

7755 tjtjtjtjtjtj eeee
j
ee

tf
ωωωωωω −−− ++++−+=  

 

St�d posta� wykładnicza szeregu Fouriera dana jest zale�no�ci� 

 

tjtjtjjtjjtjtj eeeeeeeetf
oo ωωωωωω 75909057 4810101084)( ++++++= −−−−  

 

 

Zadanie 7.2  

Zapisa� twierdzenie Parsevala dla dwu przebiegów czasowych danych w nast�puj�cej postaci 

 

)3cos(12)2cos(16)sin(105)( ttttf ωωω +++=  

)5cos(12)2cos(10)sin(82)( ttttg ωωω +++=  

 

Rozwi�zanie 

Z definicji funkcji sinus i cosinus otrzymuje si� nast�puj�ce postaci wykładnicze szeregu 

Fouriera dla obu funkcji 

 

2
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tjtjtjjtjjtjtj eeeeeeeetf
oo ωωωωωω 32909023 6855586)( ++++++= −−−−  

 

2
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2
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2
82)(

5522 tjtjtjtjtjtj eeee
j
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ωωωωωω −−− ++++−+=  

 

tjtjtjjtjjtjtj eeeeeeeetg
oo ωωωωωω 52909025 6542456)( ++++++= −−−−  

 

Działania okre�lone twierdzeniem Parsevala przyjm� wi�c posta� 

 

130600658456006584525)()( 90909090 =⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅= −− oooo jjjj eeeetgtf
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Zadanie 7.3 

Wyznaczy� wskazania przyrz�dów pomiarowych w obwodzie z rys. 7.9.  

 

 
Rys. 7.9 Schemat obwodu do zadania 7.3 

 

Przyj�� nast�puj�c� posta� wymuszenia )2sin(215)sin(22010)( ttte ++= . Warto�ci 

parametrów obwodu s� nast�puj�ce: R=2Ω, L=0,5H, C=0,5F. 

 

Uwaga: Woltomierze i amperomierze wł�czone w obwodzie mierz� moduły warto�ci 

skutecznych odpowiednio napi�cia i pr�du. 

 

Rozwi�zanie 

Poniewa� wymuszenie zawiera trzy harmoniczne, nale�y rozwi�za� obwód trzy razy dla 

ka�dego wymuszenia oddzielnie. 

 

• Harmoniczna zerowa (składowa stała) 

Obwód dla składowej stałej 10)0( =E  przedstawiony jest na rys. 7.10 (cewka zwarta, 

kondensator przerw�) 
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Rys. 7.10. Obwód dla harmonicznej zerowej 

 

5
)0(

)0( ==
R

E
I  

0)0( =VU  

 

• Harmoniczna podstawowa ( 1=ω ) 

Kolejno�� oblicze� jest nast�puj�ca: 

 

20)1( =E  

5,0)1( jLjZL == ω  

2/)1( jCjZC −=−= ω  

667,0
5,1

)2(5,0)1( j
j

jj
ZLC =

−
−=  

39)1(

)1(
)1( j

RZ
E

I
LC

−=
+

=  

62)1()1()1( jIZU LCV +==  

 

• Harmoniczna druga ( 2=ω ) 

Kolejno�� oblicze� jest nast�puj�ca: 

 

15)2( =E  

1)2( jLjZL == ω  

1/)2( jCjZC −=−= ω  

∞=)2(
LCZ  

0)2( =I  

15)2( =VU  

 

Wskazania amperomierza i woltomierza (moduły odpowiednich wielko�ci) sa równe: 

 

72.10
2)2(2)1(2)0( =++= IIII A 
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28,16
2)2(2)1(2)0( =++= VVVV UUUU V 

 

 

Zadanie 7.4  

Wyznaczy� moce: czynn�, biern�, pozorn� i odkształcenia w obwodzie przedstawionym na 

rys. 7.11.  

 

 
Rys. 7.11 Schemat obwodu do zadania 7.4 

 

W obwodzie wyst�puje wymuszenie pr�dowe i(t) dane w nast�pujacej postaci 

)3sin(2)sin(225)( ttti ++= . Przyj�� warto�ci parametrów: R=5Ω, L=1H, C=1/9F. 

 

 

Rozwi�zanie 

Ze wzgl�du na wyst�powanie w wymuszeniu trzech harmonicznych nale�y zastosowa� 

superpozycj� �ródeł. Zgodnie z t� metod� obliczamy kolejno. 

 

• Harmoniczna zerowa (składowa stała) 

Obwód dla harmonicznej zerowej przedstawiony jest na rysunku 7.12 (cewka zwarta, 

kondensator przerw�). 

 

 
Rys. 7.12 Schemat obwodu dla harmonicznej zerowej 
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5)0( =I  

5)0()0( == IIL  

0)0()0( == CR II  

0)0( =ABU  

0)0()0()0( == IUS AB  

 

• Harmoniczna podstawowa ( 1=ω ) 

Kolejno�� oblicze� jest nast�puj�ca: 

 

2)1( =I  

1)1( jLjZL == ω  
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89,02,0
9

1
1

1
5
1)1( j

jj
YRLC −=

−
++=  

14,248,0)1(

)1(
)1( j

Y
I

U
RLC

AB +==  

48,014,2)1(
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AB
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053,024,0)1(
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)1( j
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I
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AB
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43,0096,0
)1(

)1( j
R

U
I AB

R +==  

28,496,0)*1()1()1( jIUS AB +==  

 

• Harmoniczna trzecia ( 3=ω ) 

Kolejno�� oblicze� jest nast�puj�ca: 

 

1)3( =I  

3)3( jLjZL == ω  

3/)3( jCjZC −=−= ω  

5)3( == RZRLC  (rezonans pr�dów) 
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5)3()3( == RIU AB  
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Warto�ci skuteczne pr�dów i napi�� s� nast�puj�ce: 

 

48,5
2)3(2)1(2)0( =++= IIII A 

09,1
2)3(2)1(2)0( =++= RRRR IIII A 

70,5
2)3(2)1(2)0( =++= LLLL IIII A 

68,1
2)3(2)1(2)0( =++= CCCC IIII A 

46,5
2)3(2)1(2)0( =++= ABABABAB UUUU V 

 

Moce w wydzielone przez �ródło w obwodzie: 

 

90,29== IUS AB VA 

96,15)3()1()0( =++= PPPP W 

28,4)3()1()0( =++= QQQQ var 

92,24222 =−−= QPSD VA 
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Lekcja 8. Układy trójfazowe 

 

Wst�p 

Do najwa�niejszych, z punktu widzenia praktycznego, nale�� układy trójfazowe, zawieraj�ce 

generator zło�ony z trzech �ródeł sinusoidalnych o tej samej cz�stotliwo�ci i przesuni�tych w 

fazie oraz odbiornik trójfazowy składaj�cy si� z trzech impedancji poł�czonych b�d� w 

trójk�t b�d� w gwiazd�. Układy takie s� powszechnie stosowane w technice i z tego powodu 

analiza zjawisk w takich układach jest szczególnie wa�na.  

 Lekcja ósma po�wi�cona jest teorii obwodów trójfazowych. Wprowadzone zostan� 

podstawowe poj�cia, takie jak generator trójfazowy, odbiornik trójfazowy, wykresy 

wektorowe pr�dów i napi�� trójfazowych a tak�e relacje mi�dzy pr�dami i mocami przy 

poł�czeniu odbiornika w gwiazd� i trójk�t. Rozwa�one zostan� układy pomiarowe mocy w 

obwodach trójfazowych trójprzewodowych i czteroprzewodowych. Poka�emy, �e w 

trójfazowym układzie cewek rozmieszczonych przestrzennie mo�liwe jest uzyskanie wektora 

nat��enia pola magnetycznego o niezmiennej amplitudzie, wiruj�cego ze stał� pr�dko�ci� 

k�tow�, zdolnego do wykonania pracy. Zjawisko to jest podstaw� budowanych współcze�nie 

maszyn elektrycznych trójfazowych. 

8.1. Poj�cia wst�pne 

8.1.1. Definicja układu trójfazowego 

Układem trójfazowym nazywamy układ trzech obwodów elektrycznych, w których istniej� 

trzy �ródła napi�� sinusoidalnych o jednakowej cz�stotliwo�ci, przesuni�te wzgl�dem siebie o 

okre�lony k�t fazowy i wytworzone w jednym generatorze zwanym generatorem 

trójfazowym. Poszczególne obwody generatora trójfazowego nazywa� b�dziemy fazami i 

oznacza� literami A, B, C lub kolejnymi cyframi 1, 2, 3. Przykład poł�czenia 3 faz generatora 

w jeden układ gwiazdowy przedstawiony jest na rys. 8.1.  
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Rys. 8.1. Układ faz generatora trójfazowego poł�czonego w gwiazd� 

 

Punkt wspólny wszystkich trzech faz generatora oznaczony jest cyfr� 0. Poszczególnym 

napi�ciom fazowym przypisuje si� wska�niki A, B, C lub w przypadku oznaczenia 

liczbowego cyfry 1, 2, 3. Układ napi�� �ródłowych generatora trójfazowego nazywa� 

b�dziemy symetrycznym, je�li napi�cia kolejnych faz s� przesuni�te wzgl�dem siebie o k�t 

o120  �
�

�
�
�

� π
3
2

 a amplitudy ich s� sobie równe. Warto�ci chwilowe poszczególnych napi�� 

fazowych układu symetrycznego mo�na zapisa� w postaci 

 

 )sin()( Ψ+= tEte mA ω  (8.1) 

 )120sin()( o
mB tEte −Ψ+= ω  (8.2) 

 )120sin()( o
mC tEte +Ψ+= ω  (8.3) 

 

w której Em oznacza amplitud�, ω  pulsacj� wspóln� dla wszystkich faz (przy generacji napi�� 

trójfazowych w jednym generatorze jest to zapewnione automatycznie) a k�t Ψ jest 

pocz�tkowym k�tem fazowym napi�cia w fazie A. W normalnym systemie trójfazowym 

przyjmuje si� tzw. kolejno�� wirowania zgodn�, w której faza B opó�nia si� wzgl�dem fazy 

A o k�t o120  a faza C (opó�niona wzgl�dem fazy B o kolejny k�t o120 ) wyprzedza faz� A o 

k�t równy o120 .  
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Rys. 8.2. Przebiegi czasowe napi�� trójfazowych 

 
 

Na rys. 8.2 przedstawiono przebiegi czasowe napi�� trójfazowych przy k�cie pocz�tkowym Ψ 

równym zeru. Napi�cia s� zmienne sinusoidalnie przy czym wyst�puj� regularne przesuni�cia 

o k�t o120  mi�dzy poszczególnymi sinusoidami. 

 

8.1.2. Układ napi�� fazowych 

Wobec sinusoidalnej postaci wymusze� w analizie układów trójfazowych zastosujemy 

metod� symboliczn�. Zgodnie z t� metod� napi�cia sinusoidalne zast�puje si� ich postaci� 

zespolon�, która dla przyj�tych funkcji sinusoidalnych mo�e by� zapisana nast�puj�co 

 

 Ψ= jm
A e

E
E

2
  (8.4) 

 
oo j

A
jm

B eEe
E

E 120)120(

2
−−Ψ ==  (8.5) 

 
oo j

A
jm

C eEe
E

E 120)120(

2
== +Ψ  (8.6) 

 

W praktyce wobec nieustannej zmiany warto�ci napi�� w czasie faza pocz�tkowa Ψ mo�e by� 

przyj�ta dowolnie. Najcz��ciej dla wygody zakłada� b�dziemy, �e jest równa zeru. Wykres 
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wektorowy napi�� trójfazowych opisanych zale�no�ciami (8.4) - (8.6) dla k�ta fazowego Ψ�0 

przedstawiony jest na rys. 8.3.  

 

 
Rys. 8.3. Wykres wektorowy napi�� trójfazowych generatora 

 

Punkt wspólny napi��, odpowiadaj�cy wspólnemu punktowi poł�czenia faz generatora 

oznaczony jest cyfr� 0. Na ko�cach napi�� fazowych zaznaczone s� oznaczenia faz (A, B, C). 

Napi�cie fazowe generatora to napi�cie mi�dzy punktem ko�cowym wektora a punktem 

zerowym. Wirowanie faz (zmiana pozycji wektora w czasie) w generatorze trójfazowym 

odbywa si� w przyj�tym układzie współrz�dnych przeciwnie do ruchu wskazówek zegara.  

 

 
Rys. 8.4. Wektory napi�� trójfazowych wiruj�ce w czasie 
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Rys. 8.4 pokazuje wektory napi�� generatora trójfazowego wiruj�ce w czasie. Wektory fazy B 

i C nad��aj� za wektorem A, przy czym przesuni�cia fazowe mi�dzy nimi s� stałe i równe 

dokładnie o120 . Wa�n� cech� trójfazowego generatora symetrycznego jest zerowanie si� 

sumy napi�� fazowych 

 

 0=++ CBA EEE  (8.7) 

 

Warto�� zerowa sumy wynika bezpo�rednio z symetrii poszczególnych napi��. Mianowicie 
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8.1.3. Układ napi�� mi�dzyfazowych  

Oprócz napi�� fazowych wyró�nia si� układ napi�� mi�dzyfazowych, zwanych równie� 

liniowymi, czyli napi�� panuj�cych mi�dzy punktami zewn�trznymi poszczególnych faz. Przy 

trzech napi�ciach fazowych mo�na wyró�ni� trzy napi�cia mi�dzyfazowe: ABE , BCE  oraz 

CAE , przy czym  

 

 BAAB EEE −=  (8.8) 

 CBBC EEE −=  (8.9) 

 ACCA EEE −=  (8.10) 

 

Z definicji napi�� mi�dzyfazowych wynika, �e niezale�nie od symetrii ich suma jest zawsze 

równa zeru gdy� wszystkie napi�cia tworz� trójk�t zamkni�ty. Rys. 8.5 pokazuje układ napi�� 

mi�dzyfazowych generatora trójfazowego z przyj�tymi oznaczeniami. Symbol EAB oznacza, 

�e strzałka wektora napi�cia na wykresie jest skierowana w stron� pierwszego wska�nika w 

oznaczeniu (u nas litera A). 
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Rys. 8.5. Układ napi�� mi�dzyfazowych na tle napi�� fazowych 

 
 

Z symetrii napi�� fazowych wynika bezpo�rednio symetria napi�� mi�dzyfazowych. Napi�cia 

te s� równe i przesuni�te wzgl�dem siebie o k�t o120 , czyli  

 

BAAB EEE −=  

oj
ABBC eEE 120−=  

oj
ABCA eEE 120=  

 

Układ napi�� mi�dzyfazowych symetrycznych tworzy wi�c trójk�t równoboczny. 

Wykorzystuj�c relacje obowi�zuj�ce dla tego trójk�ta łatwo jest udowodni�, �e napi�cie 

mi�dzyfazowe jest 3  razy wi�ksze ni� napi�cie fazowe, co zapiszemy w ogólno�ci jako 

 

 fmf EE 3=  (8.11) 

 

gdzie fE  oznacza moduł napi�cia fazowego a mfE  moduł napi�cia mi�dzyfazowego. 
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8.2. Analiza układów trójfazowych 

8.2.1. Poł�czenia trójfazowe generatora i odbiornika 

Układ napi�� fazowych generatora mo�e by� poł�czony b�d� w gwiazd� b�d� w trójk�t. 

Schemat obu poł�cze� przedstawiony jest na rys. 8. 6 

 

   
Rys. 8.6. Poł�czenia faz generatora trójfazowego w a) gwiazd�, b) trójk�t 

 

Przy poł�czeniu trójk�tnym generatora odbiornik jest zasilany napi�ciem mi�dzyfazowym 

trójprzewodowym. Przy poł�czeniu generatora w gwiazd� napi�cie zasilaj�ce jest napi�ciem 

fazowym a liczba przewodów mo�e by� równa trzy b�d� cztery (przy czterech przewodach 

zasilaj�cych jednym z nich jest przewód zerowy, zwany równie� przewodem neutralnym).  

 W układzie trójfazowym odbiornik zawiera równie� trzy fazy, przy czym mo�e by� on 

poł�czony w gwiazd� lub w trójk�t. Oba sposoby poł�czenia odbiornika przedstawione s� na 

rys. 8.7. 

 

   
Rys. 8.7. Odbiornik trójfazowy poł�czony w a) gwiazd�, b) trójk�t 
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W zale�no�ci od sposobu poł�czenia generatora i odbiornika mo�na w układach trójfazowych 

wyró�ni� cztery rodzaje poł�cze�. S� to: 

• generator i odbiornik poł�czone w gwiazd� (układ gwiazdowy) 

• generator i odbiornik poł�czone w trójk�t (układ trójk�tny) 

• generator poł�czony w gwiazd� a odbiornik w trójk�t 

• generator poł�czony w trójk�t a odbiornik w gwiazd�. 

 

Z punktu widzenia metodyki analizy obwodów istotne s� tylko dwa pierwsze rodzaje 

poł�cze�. Dwa pozostałe s� wtórne wzgl�dem pierwszych i nie wnosz� nowych elementów do 

metody analizy. 

 

8.2.2. Układ gwiazdowy faz generatora i odbiornika 

Rozpatrzmy układ poł�cze� gwiazdowych odbiornika i generatora (gwiazda-gwiazda) z 

oznaczeniami pr�dów i napi�� przedstawionymi na rys. 8.8.  

 

 
Rys. 8.8. Układ trójfazowy gwiazdowy 

 

Punkt 0 oznacza punkt wspólny faz generatora. Punkt N jest punktem wspólnym impedancji 

fazowych odbiornika. Zakładamy symetri� napi�� fazowych generatora i dowolne warto�ci 

impedancji odbiornika. Przyjmijmy do analizy układ czteroprzewodowy z impedancj� 

przewodu zerowego równa NZ . Warto�� impedancji NZ  mo�e by� dowolna, w szczególno�ci 

zerowa (bezpo�rednie zwarcie punktów wspólnych generatora i odbiornika) lub niesko�czona 
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(układ trójprzewodowy bez przewodu zerowego). Napi�cie mi�dzy punktem zerowym 

odbiornika i generatora oznaczymy przez UN i nazywa� b�dziemy napi�ciem 

niezrównowa�enia.  

Układ napi�� trójfazowych odbiornika tworz� napi�cia na poszczególnych jego 

fazach, czyli CBA UUU ,, . W efekcie w obwodzie trójfazowym o poł�czeniu gwiazda-gwiazda 

wyró�nia si� dwa układy napi�� trójfazowych gwiazdowych: generatora CBA EEE ,,  i 

odbiornika CBA UUU ,, .  

Dla obliczenia pr�dów w obwodzie nale�y wyznaczy� układ napi�� odbiornikowych. 

Najlepiej dokona� tego wyznaczaj�c napi�cie UN. Zastosujemy metod� potencjałów 

w�złowych przy zało�eniu, �e punkt 0 jest w�złem odniesienia a poszukiwany potencjał 

w�złowy jest równy UN. Zgodnie z metod� potencjałów w�złowych otrzymuje si� 

 

 ( )NCBANCCBBAA YYYYUYEYEYE +++=++  (8.12) 

 

St�d 

 

 ( )NCBA

CCBBAA
N YYYY

YEYEYE
U

+++
++=  (8.13) 

 

gdzie wielko�ci oznaczone symbolem Y s� admitancjami: 
A

A Z
Y

1= , 
B

B Z
Y

1= , 
C

C Z
Y

1=  oraz 

N
N Z

Y
1= . Wyznaczenie warto�ci napi�cia UN pozwala obliczy� warto�ci napi�� 

odbiornikowych. Z prawa napi�ciowego Kirchhoffa napisanego dla trzech oczek w obwodzie 

wynika  

 

 NAA UEU −=  (8.14) 

 NBB UEU −=  (8.15) 

 NCC UEU −=  (8.16) 

 

Przy znanych warto�ciach admitancji odbiornika obliczenie pr�du polega na zastosowaniu 

prawa Ohma. Mianowicie 
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 AAA UYI =  (8.17) 

 BBB UYI =  (8.18) 

 CCC UYI =  (8.19) 

 NNN UYI =  (8.20) 

 

Suma pr�dów w w��le N jest równa zeru, zatem NCBA IIII =++ . Moce wydzielone w 

odbiorniku trójfazowym oblicza si� jako sum� mocy wydzielonych w poszczególnych fazach 

odbiornika, czyli 

 

 *
AAAAA IUjQPS =+=  (8.21) 

 *
BBBBB IUjQPS =+=  (8.22) 

 *
CCCCC IUjQPS =+=  (8.23) 

 

Moc wydzielona na impedancji przewodu zerowego oznacza moc strat. Jest ona równa  

 

 *
NNNNN IUjQPS =+=  (8.24) 

 

Otrzymane wyniki mo�na zinterpretowa� na wykresie wektorowym pr�dów i napi�� w 

obwodzie. Rys. 8.9 przedstawia przypadek obci��enia niesymetrycznego. 
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Rys. 8.9. Wykres wektorowy pr�dów i napi�� obwodu trójfazowego przy obci��eniu 

niesymetrycznym 

 
 

Widoczne s� dwie gwiazdy napi�� fazowych: generatora o �rodku w punkcie 0 i odbiornika o 

�rodku w punkcie N. Dla obu gwiazd obowi�zuje jeden trójk�t napi�� mi�dzyfazowych. 

Przesuni�cie potencjału punktu N wzgl�dem 0 (napi�cie UN  ró�ne od zera) jest spowodowane 

niesymetri� odbiornika. Napi�cie UN  jest nazywane równie� napi�ciem niezrównowa�enia. 

 W pracy układu trójfazowego gwiazdowego mo�na wyró�ni� kilka szczególnych 

przypadków: 

• odbiornik symetryczny z dowoln� warto�ci� impedancji przewodu zerowego 

• odbiornik niesymetryczny przy zwartym przewodzie zerowym 

• zwarcie fazy odbiornika przy przerwie w przewodzie zerowym. 

 

Odbiornik symetryczny 

W przypadku symetrii obci��enia impedancje wszystkich faz odbiornika s� równe sobie  
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 ZZZZ CBA ===   (8.25) 

 

Podstawiaj�c te warto�ci do wzoru na napi�cie UN otrzymuje si� 

 

 
( )

0
3

=
+

++=
N

CBA
N YY

EEEY
U  (8.26) 

 

gdzie admitancja Y=1/Z. Ze wzgl�du na symetri� napi�� generatora suma jego napi�� 

fazowych jest równa zeru (wzór (8.7)), st�d napi�cie niezrównowa�enia UN w przypadku 

symetrii jest zerowe. Oznacza to, �e gwiazdy napi�� odbiornikowych i generatorowych 

pokrywaj� si� ze sob�. Pr�dy fazowe w tym przypadku wyznacza si� wi�c szczególnie prosto 

na podstawie układu napi�� generatora, bez potrzeby obliczania napi�cia niezrównowa�enia 

UN. 

 

 AA YEI =  (8.27) 

 BB YEI =  (8.28) 

 CC YEI =  (8.29) 

 

Wobec równych warto�ci admitancji poszczególnych faz, suma pr�dów fazowych 

 

  ( ) 0=++= CBAN EEEYI  (8.30) 

 

jest zerowa, ze wzgl�du na zerowanie si� sumy napi�� fazowych generatora. Pr�d w 

przewodzie zerowym nie płynie, niezale�nie od warto�ci impedancji ZN tego przewodu. Na 

rys. 8.10 przedstawiono wykres wektorowy pr�dów i napi�� w układzie trójfazowym 

symetrycznym. Wszystkie pr�dy i napi�cia tworz� układ symetryczny o jednakowych 

amplitudach i jednakowych przesuni�ciach poszczególnych wektorów wzgl�dem siebie. 
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Rys. 8.10. Wykres wektorowy pr�dów i napi�� w układzie trójfazowym symetrycznym 

 
 

Odbiornik symetryczny jest jednym z cz��ciej wyst�puj�cych przypadków w praktyce. 

Przykładami takich odbiorników s�: silniki elektryczne trójfazowe czy piece grzejne 

trójfazowe (zwykle o du�ej mocy). 

 

• Odbiornik niesymetryczny przy zwartym przewodzie zerowym 

Znaczne uproszczenia wyst�puj� w analizie je�li punkt 0 i N układu trójfazowego s� 

poł�czone bezimpedancyjnie (ZN=0). W takim przypadku napi�cie niezrównowa�enia UN = 0 

niezale�nie od symetrii impedancji odbiornika. Pr�dy fazowe s� wówczas okre�lane 

bezpo�rednio na podstawie układu napi�� generatorowych 

 

 AAA EYI =  (8.31) 

 BBB EYI =  (8.32) 

 CCC EYI =  (8.33) 
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Suma tych pr�dów w ogólnym przypadku odbiornika niesymetrycznego jest ró�na od zera 

 

 CBAN IIII ++=  (8.34) 

 

Wykres wektorowy pr�dów i napi�� w układzie trójfazowym niesymetrycznym przy zwarciu 

bezimpedancyjnym punktów wspólnych odbiornika i generatora przedstawiony jest na rys. 

8.11. 

 

 
Rys. 8.11. Wykres wektorowy pr�dów i napi�� w układzie trójfazowym przy ZN=0 

 
 

• Zwarcie fazy odbiornika przy przerwie w przewodzie zerowym 

Interesuj�cy przypadek poł�czenia trójprzewodowego mi�dzy odbiornikiem i generatorem 

układu trójfazowego powstaje w stanie awaryjnym odbiornika przy zwarciu jednej z faz. 

Rys. 8.12 przedstawia posta� obwodu trójfazowego w rozwa�anym przypadku przy zwarciu 

fazy A odbiornika (ZA=0). 
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Rys. 8.12. Przypadek zwarcia jednej fazy odbiornika trójfazowego 

 

Jak wida� z rysunku napi�cie UN równa si� napi�ciu fazowemu generatora w fazie zwartej. 

Dla schematu z rysunku mamy 

 

 AN EU =  (8.35) 

 

Ten sam wynik mo�na otrzyma� równie� ze wzoru ogólnego (8.13) po podstawieniu 

∞==
A

A Z
Y

1
. Odpowiednie pr�dy fazowe odbiornika w rozwa�anym przypadku s� okre�lone 

wzorami 

 

 ( )ABBB EEYI −=  (8.36) 

 ( )ACCC EEYI −=  (8.37) 

 

Pr�d fazy A nie mo�e by� okre�lony z prawa Ohma, gdy� zarówno napi�cie na fazie 

odbiornika jak i jego impedancja s� równe zeru. Pr�d ten mo�e by� okre�lony jedynie z prawa 

pr�dowego Kirchhoffa, zgodnie z którym 

 

 CBA III −−=  (8.38) 

 

Wykres wektorowy pr�dów i napi�� w układzie trójfazowym dla tego przypadku 

przedstawiony jest na rys. 8.13. 
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Rys. 8.13. Wykres wektorowy pr�dów i napi�� w układzie trójfazowym  

przy zwarciu fazy A odbiornika 

 
 

Przykład 8.1 

Obliczy� pr�dy i napi�cia poszczególnych faz odbiornika w układzie przedstawionym na rys. 

8.14. Przyj�� zasilanie trójfazowe symetryczne o napi�ciu fazowym równym 400V. Warto�ci 

parametrów obwodu s� nast�puj�ce: R=40Ω, XC=30Ω, XL=60Ω, X12=10Ω, X23=20Ω, 

X31=20Ω. 



 206

 
Rys. 8.14. Schemat układu trójfazowego do przykładu 8.1 

 

Rozwi�zanie 

Ze wzgl�du na wyst�powanie sprz��enia magnetycznego pierwszym etapem rozwi�zania jest 

eliminacja tych sprz��e�. Układ odbiornika po likwidacji sprz��e� magnetycznych jest 

przedstawiony na rys. 8. 15 

 

 
Rys. 8.15. Schemat odbiornika trójfazowego po likwidacji sprz��e� magnetycznych 

 

Przyjmijmy układ napi�� fazowych generatora w nast�puj�cej postaci 

 
0400 j

A eE =  



 207

oj
B eE 120400 −=  

oj
C eE 120400=  

 

Impedancje poszczególnych faz odbiornika z rys. 8.15 s� równe 

 

0

6060

2404040
90

45

=
==

=+=

C

j
B

j
A

Z

ejZ

ejZ
o

o

 

 

Wobec zwarcia w fazie C odbiornika (ZC = 0) nie zachodzi potrzeba stosowania wzoru (8.13) 

do wyznaczenia napi�cia niezrównowa�enia, gdy� UN = EC. W tej sytuacji poszczególne 

pr�dy fazowe s� równe 
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8,68,9 jIII BAC +=−−=  

 

Po obliczeniu pr�dów na podstawie schematu zast�pczego bez sprz��e� magnetycznych dla 

wyznaczenia napi�� w układzie nale�y powróci� do obwodu ze sprz��eniami. Rzeczywiste 

napi�cia na fazach odbiornika wynosz� 

 

2633223112 jIjXIjXIjXRIU CBALAA +=+++=  

335182312 jIjXIjXIjXU CABLB −−=++=  

182331 −=−++= CCBACLC IjXIjXIjXIjXU  

 

Zauwa�my, �e istnieje ogromna ró�nica mi�dzy rzeczywistym napi�ciem UC w fazie C, 

18−=CU , a napi�ciem w tej samej fazie w obwodzie po likwidacji sprz��e�, 0=CU . 

Obwód po likwidacji sprz��e� jest równowa�ny obwodowi oryginalnemu jedynie pod 

wzgl�dem pr�dowym. Napi�cia na gał�ziach zawieraj�cych cewki sprz��one nie odpowiadaj� 
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ich odpowiednikom w obwodzie bez sprz��e�. Na rys. 8.16 przedstawiono wykres 

wektorowy pr�dów i napi�� w obwodzie po likwidacji sprz��e�. 

 

 
Rys. 8.16. Wykres wektorowy układu trójfazowego po likwidacji sprz��e� magnetycznych w 

przykładzie 8.1 

 
 

8.2.3 Układ trójk�tny faz odbiornika i generatora 

 

Schemat elektryczny poł�cze� elementów obwodu trójfazowego o odbiorniku i generatorze 

poł�czonych w trójk�t (układ trójk�t-trójk�t) przedstawia rys. 8.17. 
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Rys. 8.17. Układ trójfazowy trójk�tny 

 

Przyjmijmy dla uproszczenia, �e impedancje przewodów zasilaj�cych poszczególne fazy s� 

zerowe. Oznacza to, �e napi�cia na fazach odbiornika (wł�czonych mi�dzyfazowo) s� 

napi�ciami mi�dzyfazowymi generatora, to jest  

 

 ABAB EU =  (8.39) 

 BCBC EU =  (8.40) 

 CACA EU =  (8.41) 

 

St�d przy zadanych warto�ciach impedancji odbiornika pr�dy fazowe tego odbiornika s� 

okre�lone wzorami 

 

 ABABAB EYI =  (8.42) 

 BCBCBC EYI =  (8.43) 

 CACACA EYI =  (8.44) 

 

Pr�dy przewodowe zasilaj�ce obwód trójk�tny odbiornika mog� by� wyznaczone z zale�no�ci 

 

 CAABA III −=  (8.45a) 

 ABBCB III −=  (8.45b) 

 BCCAC III −=  (8.45c) 

 

Zauwa�my, �e wobec powy�szych wzorów suma pr�dów przewodowych w układzie, 

niezale�nie od warto�ci impedancji odbiornika jest równa zeru 
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 0=++ CBA III  (8.46) 

 

Rys. 8.18 przedstawia wykres wektorowy pr�dów i napi�� w układzie trójfazowym o 

poł�czeniu trójk�tnym.  

 

 
Rys. 8.18. Wykres wektorowy pr�dów i napi�� w układzie trójfazowym o poł�czeniu 

trójk�tnym 

 
 

W przypadku pełnej symetrii generatora i odbiornika wszystkie układy napi�� i pr�dów w 

układzie b�d� równie� symetryczne a przesuni�cia mi�dzy pr�dami oraz napi�ciami 

poszczególnych faz w odpowiednich układach b�d� równe o120 . Interesuj�ca jest wówczas 

relacja mi�dzy pr�dami fazowymi oraz liniowymi układu. Z wykresu wektorowego 



 211

przedstawionego na rys. 8.18 wida�, �e w przypadku symetrycznym moduły wszystkich 

pr�dów liniowych s� sobie równe, podobnie jak moduły wszystkich pr�dów fazowych przy 

równych przesuni�ciach fazowych mi�dzy wektorami o k�t o120 . Z analizy przesuni�� 

k�towych wynika, �e k�t mi�dzy wektorem pr�du fazowego If oraz liniowego Il jest równy 
o30 . Z zale�no�ci trygonometrycznych wynika, �e  

 

 o

f

l

I

I
30cos

5,0
=  (8.47) 

 

sk�d po prostych przekształceniach matematycznych otrzymuje si� 

 

 f
o

fl III 330cos2 ==  (8.48) 

 

W układzie symetrycznym pr�d liniowy jest 3  razy wi�kszy ni� pr�d fazowy. Jest to 

identyczna relacja jaka istnieje mi�dzy napi�ciami fazowymi i mi�dzyfazowymi (liniowymi). 

 

Przykład 8.2 

Obliczy� pr�dy w �yłach kabla zasilaj�cego silnik trójfazowy o mocy P = 47,5kW, cosϕ = 0,9 

i napi�ciu liniowym (miedzyprzewodowym) równym 380V. Zało�y� poł�czenie faz silnika w 

trójk�t. Przyj�� 80% sprawno�� silnika (η = 0,8). Moc silnika z uwzgl�dnieniem sprawno�ci 

wyra�a si� wzorem ϕη cos3 ff IUP = . Jak zmieni� si� pr�dy po rozwarciu jednej z faz 

silnika, np. fazy A. 

 

Rozwi�zanie 

Schemat zast�pczy silnika w postaci trzech identycznych impedancji Z poł�czonych w trójk�t 

przedstawiony jest na rys. 8.19. 
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Rys. 8.19. Schemat poł�cze� faz silnika trójfazowego 

 

Przy symetrycznym poł�czeniu faz silnika, przez poszczególne fazy o równej impedancji Z 

przepływaj� pr�dy o tej samej warto�ci, przesuni�te wzgl�dem siebie o k�t o120  opó�nione 

wzgl�dem odpowiednich napi�� fazowych (silnik ma charakter indukcyjny) o ten sam k�t ϕ . 

Napi�cie fazowe odbiornika jest równe napi�ciu mi�dzyfazowemu generatora, st�d 

VUU mff 380== . Uwzgl�dniaj�c wzór na moc silnika otrzymuje si� 

 

A
U

P
I

f
f 7,57

cos3
==

ϕη
 

 

Przy pełnej symetrii poł�cze� faz silnika wszystkie pr�dy liniowe zasilaj�ce ten silnik s� 

równie� symetryczne, czyli równe co do modułu i przesuni�te w fazie o k�t o120 . Oznacza to, 

�e  

 

AIIII fCBA 1003 ====  

 

Na rys. 8. 20 przedstawiono wykres wektorowy pr�dów i napi�� w silniku trójfazowym przy 

pełnej symetrii poł�cze�. 
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Rys. 8.20. Wykres wektorowy pr�dów i napi�� silnika trójfazowego w warunkach pełnej 

symetrii 

 
 

W przypadku przerwy jednej z faz odbiornika, np. fazy A, pr�d tej fazy jest równy zeru, 

natomiast pozostałych faz jest niezmieniony. Uwzgl�dniaj�c przerw� w fazie A obwodu z 

rys. 8.18, pr�d liniowy w fazie A i B jest teraz równy pr�dowi fazowemu silnika, natomiast 

pr�d liniowy fazy C pozostał nie zmieniony w stosunku do przypadku symetrii, to znaczy 

 

AII fA 7,57==  

AII fB 7,57==  

AII fC 1003 ==  

 

Najbardziej obci��onym przewodem zasilaj�cym jest teraz przewód fazy C. Pozostałe 

przewody zasilaj�ce przenosz� pr�d zmniejszony w stosunku do normalnej pracy silnika. 
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 Oddzielnym problemem przy analizie układu trójfazowego poł�czonego w trójk�t jest 

uwzgl�dnienie impedancji przewodów zasilaj�cych. Przypadek taki pokazany jest na rys. 

8.21. 

 

 
Rys. 8.21. Zasilanie odbiornika trójfazowego trójk�tnego z uwzgl�dnieniem impedancji 

przewodów zasilaj�cych 

 

Przy nieznanych pr�dach liniowych nie mo�na obliczy� napi�� panuj�cych na odbiorniku, 

gdy� nieznane s� spadki napi�� na impedancjach przewodów zasilaj�cych. To z kolei 

uniemo�liwia wyznaczenie pr�dów fazowych tego odbiornika. Aby uzyska� rozwi�zanie 

nale�y w pierwszej kolejno�ci zamieni� trójk�t impedancji na równowa�ny mu układ 

gwiazdowy (rys. 8.22). 

 

 
Rys. 8.22. Układ trójfazowy gwiazdowy równowa�ny układowi trójk�tnemu z rys. 8.20 

 

W wyniku zamiany otrzymuje si� znany ju� układ gwiazda-gwiazda, w którym impedancje 

fazowe oraz impedancje przewodów doprowadzaj�cych s� poł�czone szeregowo stanowi�c 
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rozszerzon� impedancj� poszczególnych faz. Stosuj�c znan� metodyk� rozwi�zania takiego 

układu oblicza si� wszystkie pr�dy liniowe IA, IB oraz IC. 

 Po obliczeniu pr�dów liniowych mo�na obliczy� napi�cia mi�dzyfazowe w 

rzeczywistym odbiorniku z rys. 8.21 jako  

 

 BBAAAB IZIZU −=  (8.49) 

 CCBBBC IZIZU −=  (8.50) 

 AACCCA IZIZU −=  (8.51) 

 

Po obliczeniu napi�� fazowych odbiornika wyznaczenie pr�dów odbywa si� na podstawie 

prawa Ohma 

 

 
BA

AB
AB Z

U
I =  (8.52) 

 
C

BC
BC Z

U
I

B

=  (8.53) 

 
CA

CA
CA Z

U
I =  (8.54) 

 

 Omówione tu poł�czenia układu trójfazowego w gwiazd� i trójk�t s� podstawowymi 

układami pracy w systemach trójfazowych. Je�li w analizie wyst�pi poł�czenie mieszane, np. 

gwiazda-trójk�t lub trójk�t-gwiazda nale�y w pierwszej kolejno�ci drog� odpowiedniej 

zamiany trójk�ta na gwiazd� lub gwiazdy na trójk�t doprowadzi� do jednego z wcze�niej 

omówionych układów a nast�pnie wykona� odpowiednie obliczenia stosuj�c jedn� z 

poznanych metod. 

 

8.3. Pomiar mocy w układach trójfazowych 

8.3.1. Pomiar mocy czynnej w układzie czteroprzewodowym 

Z bilansu mocy w układzie trójfazowym wynika, �e moc wytworzona w generatorze 

trójfazowym równa sumie mocy poszczególnych jego faz odnajduje si� w postaci mocy 

wydzielonej w fazach odbiornika. W przypadku mocy chwilowej wydzielonej w odbiorniku 

mamy  
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 CCBBAA iuiuiutp ++=)(  (8.55) 

 

Moc czynna P odbiornika jest całk� po okresie T z mocy chwilowej. St�d 

 

 ���� ++==
T

CC

T

BB

T

AA

T

dtiu
T

dtiu
T

dtiu
T

dttp
T

P
0000

111
)(

1
 (8.56) 

 

Poszczególne składniki sumy odpowiadaj� mocy poszczególnych faz. Adaptuj�c wzory na 

moc w układzie jednofazowym otrzymuje si� 

 

 CCCBBBAAA IUIUIUP ϕϕϕ coscoscos ++=  (8.57) 

 

gdzie  

AU , BU , CU   - moduły warto�ci skutecznych napi�� fazowych odbiornika,  

AI , BI , CI    - moduły warto�ci skutecznych pr�dów fazowych odbiornika 

Aϕ , Aϕ , Aϕ   - k�ty przesuni�� fazowych miedzy napi�ciami i pr�dami faz 

 

Wzór okre�laj�cy całkowit� moc czynn� w układzie trójfazowym mo�na wi�c przedstawi� 

jako 

 

 CBA PPPP ++=  (8.58) 

 

Moc czynna pobierana przez odbiornik trójfazowy jest równa sumie mocy czynnych 

poszczególnych faz. W przypadku ogólnym obwodu trójfazowego niesymetrycznego, w 

którym nie ma korelacji mi�dzy poszczególnymi fazami pomiar mocy czynnej wymaga 

u�ycia trzech watomierzy, z których ka�dy mierzy moc jednej fazy. Schemat poł�cze� trzech 

watomierzy w tym przypadku przedstawiono na rys. 8.23. Cewka pr�dowa ka�dego 

watomierza zasilana jest odpowiednim pr�dem fazowym a cewka napi�ciowa mierzy napi�cie 

odpowiedniej fazy. 
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Rys. 8.23. Pomiar mocy czynnej za pomoc� trzech watomierzy w układzie niesymetrycznym 

czteroprzewodowym 

 

W przypadku układu symetrycznego ze wzgl�du na równo�� pr�dów i przesuni�� 

k�towych w poszczególnych fazach odbiornika moc wskazywana przez ka�dy watomierz 

byłaby taka sama. St�d do pomiaru mocy w tym układzie wystarczy u�ycie jednego 

watomierza (rys. 8. 24) 

 

 
Rys. 8.24. Pomiar mocy czynnej w układzie trójfazowym symetrycznym czteroprzewodowym 

za pomoc� jednego watomierza 

 

Moc całkowita P układu trójfazowego jest potrojon� warto�ci� wskazania watomierza 

 

 APP 3=  (8.59) 

 

Wobec pełnej symetrii odbiornika watomierz mo�e by� wł�czony w dowolnej fazie, 

niekoniecznie w fazie A. W ka�dym przypadku watomierz wł�czony w danej fazie mierzy 

pr�d fazy i napi�cie fazowe wzgl�dem punktu neutralnego. 
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8.3.2. Pomiar mocy czynnej w układzie trójprzewodowym 

Je�li układ symetryczny odbiornika jest zasilany trzema przewodami (brak dost�pu do punktu 

zerowego) wówczas pomiar mocy jednym watomierzem wymaga utworzenia sztucznego 

punktu o potencjale równym potencjałowi punktu zerowego. Bior�c pod uwag�, �e przy 

symetrycznym odbiorniku potencjał UN=0 punkt o potencjale zerowym mo�na wytworzy� 

stosuj�c dodatkowy układ trzech rezystorów i wł�czaj�c ko�cówk� watomierza do tego 

układu, jak to pokazano na rysunku 8.25. 

 

 
Rys. 8.25. Pomiar mocy czynnej w układzie symetrycznym trójprzewodowym za pomoc� 

jednego watomierza 

 
 

W przypadku odbiornika niesymetrycznego o trzech przewodach zasilaj�cych pomiar 

całkowitej mocy układu mo�e by� dokonany przy pomocy dwu watomierzy. Dla pokazania 

takiej mo�liwo�ci przepiszemy wzór na moc chwilow� układu  

 

 CCBBAA iuiuiutp ++=)(  (8.60) 

 

W układzie trójprzewodowym suma pr�dów przewodowych jest równa zeru, co znaczy, �e 
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 0=++ CBA iii  (8.61) 

 

Eliminuj�c pr�d iC z zale�no�ci na moc chwilow�, uzyskuje si� 

 

 BCBACA iuuiuutp )()()( −+−=  (8.62) 

 

Moc czynna jako warto�� �rednia za okres z mocy chwilowej dla przebiegów sinusoidalnych 

mo�e wi�c by� wyra�ona w postaci 

 

 21 coscos ϕϕ BCBACA IUUIUUP −+−=  (8.63) 

 

W wyra�eniu tym pr�dy i napi�cia dotycz� modułów warto�ci skutecznych odpowiednich faz 

natomiast k�ty 1ϕ  i 2ϕ  oznaczaj� przesuni�cia fazowe mi�dzy odpowiednio napi�ciem UAC i 

pr�dem IA oraz mi�dzy napi�ciem UBC i pr�dem IB. Powy�sza zale�no�� umo�liwia podanie 

schematu elektrycznego poł�cze� elementów pomiarowych obwodu. Schemat pomiaru mocy 

przy pomocy dwu watomierzy nosi nazw� układu Arona i podany jest na rys. 8.26. 

 

 
Rys. 8.26. Układ Arona do pomiaru mocy za pomoc� dwu watomierzy 

 

Cewki pr�dowe watomierzy wł�czone s� w dwie linie odbiornika trójfazowego, natomiast 

cewki napi�ciowe wł�czone s� mi�dzy dan� faz� i faz� trzeci�, w której nie ma wł�czonego 

watomierza. 

 Powy�szy schemat pomiarowy jest słuszny zarówno dla układu niesymetrycznego jak 

i symetrycznego. W przypadku układu symetrycznego zastosowanie go do pomiaru mocy 
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czynnej umo�liwia uzyskanie tak�e innych informacji o obwodzie trójfazowym, w 

szczególno�ci mocy biernej oraz k�ta przesuni�cia fazowego. 

 Zauwa�my, �e w przypadku pełnej symetrii moduły i k�ty przesuni�cia fazowego 

pr�dów wzgl�dem odpowiednich napi�� fazowych w poszczególnych fazach s� równe 

 

 IIII CBA ===  (8.64) 

 ϕϕϕϕ === CBA  (8.65) 

 

Przy zało�eniu odbiornika gwiazdowego wykres wektorowy pr�dów i napi�� obwodu 

przedstawiony jest na rys. 8.27.  

 

 
Rys. 8.27. Wykres wektorowy pr�dów i napi�� symetrycznego układu trójfazowego 
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Z analizy zale�no�ci k�towych na tym rysunku wynika, �e  

 

 o301 −= ϕϕ  (8.66) 

 o302 += ϕϕ  (8.67) 

 

St�d wzór na moc wskazywan� przez oba watomierze upraszcza si� do postaci 

 

 ( )oo
f

o
f

o
CA

IU

IUIUUP

30sinsin30coscos3

)30cos(3)30cos(1

ϕϕ

ϕϕ

+

=−=−−=
 (8.68) 

 

 ( )oo
f

o
f

o
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IU

IUIUUP

30sinsin30coscos3

)30cos(3)30cos(2

ϕϕ

ϕϕ

−

=+=+−=
 (8.69) 

 

Suma obu wskaza� watomierzy jest wi�c równa  

 

 ϕϕ cos330coscos3221 IUIUPPP f
o

f ==+=  (8.70) 

 

Jak wida� suma wskaza� obu watomierzy jest potrojon� warto�ci� mocy jednej fazy, co 

wobec symetrii odbiornika jest potwierdzeniem poprawno�ci działania układu Arona.  

 

8.3.3. Pomiar mocy biernej w układzie trójfazowym symetrycznym 

 Odejmuj�c od siebie wskazania obu przyrz�dów udowodnimy, �e ró�nica wskaza� jest 

proporcjonalna do mocy biernej układu. Mianowicie 

 

 ϕϕ sin330sinsin3221 IUIUPP f
o

f ==−  (8.71) 

 

Bior�c pod uwag�, �e moc bierna jednej fazy jest równa ϕsinIUQ ff =  z ostatniej 

zale�no�ci wynika nast�puj�cy wzór 
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3

21 PP
Q f

−=  (8.72) 

 

a moc bierna całkowita układu trójfazowego symetrycznego jest równa 

 

 )(3 1 PPQ −=  (8.73) 

 

Tak wi�c zastosowanie dwu watomierzy zamiast jednego, w przypadku symetrii odbiornika, 

ma t� zalet�, �e dostarcza informacji jednocze�nie o mocy czynnej i mocy biernej układu. 

Dodatkowo, je�li uwzgl�dnimy, �e k�t przesuni�cia fazowego jest w pełni okre�lony przez 

moc czynn� i biern� według wzoru  

 
P
Q=ϕtg  (8.74) 

na podstawie wskaza� watomierzy mo�na bezpo�rednio okre�li� k�t przesuni�cia fazowego 

mi�dzy pr�dami i napi�ciami fazowymi w układzie 

 

 
21

213arctg
PP
PP

+
−=ϕ  (8.75) 

 

St�d na podstawie pomiaru mocy dwoma watomierzami jest mo�liwe okre�lenie trzech 

wielko�ci jednocze�nie: mocy czynnej, mocy biernej oraz k�ta przesuni�cia fazowego mi�dzy 

pr�dami i napi�ciami w obwodzie. 

Je�li interesuje nas jedynie moc bierna mo�na j� zmierzy� stosuj�c tylko jeden 

watomierz. Układ pomiarowy w tym przypadku pokazany jest na rys. 8.28 

 

 
Rys. 8.28. Pomiar mocy biernej przy pomocy jednego watomierza 
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Cewka pr�dowa watomierza mierzy pr�d jednej fazy a cewka napi�ciowa wł�czona jest 

mi�dzy dwie pozostałe fazy. Watomierz mierzy moc wynikaj�c� z iloczynu pr�du IA, napi�cia 

UBC oraz kosinusa k�ta zawartego mi�dzy wektorem pr�du IA i napi�cia UBC. Wykres 

wektorowy pr�dów i napi�� w obwodzie z zaznaczeniem poszukiwanego k�ta fazowego 1ϕ  

mi�dzy pr�dem IA a napi�ciem UBC przedstawiony jest na rys. 8.29. 

 

 
Rys. 8.29. Wykres wektorowy pr�dów i napi�� w obwodzie symetrycznym z rys. 8.28 

 
 

Jest oczywiste, �e k�t ten jest równy ϕϕ −= o901 . Oznacza to, �e wskazanie watomierza jest 

równe 

 

 ϕϕϕ sin3)90cos(3cos 1 f
o

fBCA UIUIUIP =−==  (8.76) 

 

Całkowita moc bierna Q symetrycznego układu trójfazowego jest równa potrójnej mocy 

jednej fazy PQ 3= . 
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8.3.4. Porównanie mocy w układzie trójfazowym trójk�tnym i gwiazdowym 

Przeł�czenie impedancji odbiornika z poł�czenia trójk�tnego w gwiazdowe powoduje 

zmian� mocy wydzielonej w odbiorniku. Załó�my dla uproszczenia, �e obwód trójfazowy jest 

symetryczny o impedancji fazy równej Z. Schemat poł�czenia trójk�tny i gwiazdowy 

impedancji przedstawiony jest na rys. 8.30.  

 

  
Rys. 8.30. Układy poł�cze� impedancji Z odbiornika symetrycznego w a) trójk�t, b) gwiazd� 

 

Jak łatwo pokaza� dla układu trójk�tnego moc czynna P układu jest równa 
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ϕϕ cos9cos
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ff ==  (8.77) 

 

natomiast w układzie gwiazdowym wobec UN = 0 mamy 

 

 ϕcos3

2

Z

U
P

f=  (8.78) 

Jak wynika z powy�szych wzorów przy przeł�czeniu odbiornika symetrycznego z gwiazdy na 

trójk�t pobór mocy czynnej wzrasta 3-krotnie. Przy tej samej warto�ci impedancji w obu 

poł�czeniach oznacza to 3 -krotny wzrost pr�du płyn�cego przez impedancj�. 

 

8.4. Wirtualne laboratorium obwodów elektrycznych 

Do oblicze� pr�dów, napi�� i mocy w obwodach trójfazowych został opracowany program 

„Obwody trójfazowe” pozwalaj�cy na symulacj� pracy takiego układu.  
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Rys. 8.31. Główne okno programu „Obwody trójfazowe” 

 
 

Rysunek 8.31 przedstawia okno główne programu. Centralne pole zajmuje schemat badanego 

obwodu (dost�pne konfiguracje: gwiazda-gwiazda Y-Y, gwiazda-trójk�t Y-∆, trójk�t-trójk�t 

∆-∆ i trójk�t-gwiazda ∆-Y), z symbolicznie zaznaczonym odbiornikiem i zasilaniem 

trójfazowym. Uruchomienie programu odbywa si� poprzez klikni�cie w obr�bie jego ikony. 

U�ytkownik mo�e wówczas definiowa� własn� struktur� obwodu (∆,Υ, przewód zerowy), 

rodzaj i warto�ci parametrów odbiornika (R, L, C), warto�ci �ródeł wymuszaj�cych, 

impedancj� przewodu zerowego, format liczb zespolonych.  

W wyniku oblicze� otrzymuje si� warto�ci pr�dów, napi�� i mocy w obwodzie, jak równie� 

wykres wektorowy pr�dów i napi�� oraz ich przebiegi czasowe. Program stanowi efektywne 

wirtualne laboratorium obwodów trójfazowych, umo�liwiaj�ce studentowi samodzielne 

badanie zjawisk zachodz�cych w obwodach trójfazowych. 

 

8.5. Pole magnetyczne wiruj�ce w układach trójfazowych 

Wa�nym zastosowaniem układów trójfazowych s� maszyny elektryczne, silniki b�d� 

generatory trójfazowe. W silnikach energia elektryczna jest zamieniana na energi� 
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mechaniczn�, podczas gdy w generatorach odwrotnie – energia mechaniczna jest 

przetwarzana na energi� elektryczn�. Poka�emy, �e zamiana energii elektrycznej na energi� 

mechaniczn� w postaci ruchu obrotowego jest mo�liwa w układach trójfazowych za 

po�rednictwem pola magnetycznego wytwarzanego przez uzwojenia trójfazowe silnika. Jak 

pokazano w lekcji pi�tej przepływ pr�du I przez uzwojenie o z zwojach jest zwi�zane z 

wytworzeniem pola magnetycznego o nat��eniu H. Przy oznaczeniu długo�ci drogi 

magnetycznej przez l nat��enie pola magnetycznego H okre�la prawo przepływu Ampera, 

zgodnie z którym 

 

 
l
zI

H =  (8.79) 

 

Przy sinusoidalnym pr�dzie nat��enie pola zmienia si� równie� sinusoidalnie. Energia 

elektryczna w pojedynczym uzwojeniu nie przetworzy si� zatem bezpo�rednio na energi� 

ruchu, gdy� zwoje przez które przepływa pr�d sinusoidalny poddawane s� działaniu pola 

oscylacyjnego o zmiennym co pół okresu kierunku. Dla wytworzenia ruchu uzwojenia musi 

by� ono poddane działaniu wektora o stałej amplitudzie wiruj�cego w czasie. Pole takie mo�e 

zosta� wytworzone mi�dzy innymi w układzie trójfazowym pod warunkiem rozmieszczenia 

uzwoje� przesuni�tych wzgl�dem siebie w przestrzeni. Przyjmijmy, �e zwoje przez które 

przepływa pr�d trójfazowy 

 

 )sin( tIi mA ω=  (8.80) 

 )120sin( o
mB tIi −= ω  (8.81) 

 )120sin( o
mC tIi += ω  (8.82) 

 

rozmieszczone s� symetrycznie w przestrzeni z przesuni�ciem k�towym co o120  jak to 

pokazano na rys. 8.31 
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Rys. 8.32. Układ uzwoje� trójfazowych przesuni�tych symetrycznie w przestrzeni 

wytwarzaj�cych pola magnetyczne  

 
 

Na rysunku zaznaczono kierunki wektorów nat��enia pola powstaj�ce w poszczególnych 

uzwojeniach. Moduły tych wektorów wynikaj� z prawa przepływu Ampera i wobec 

sinusoidalnych pr�dów fazowych zmieniaj� si� równie� sinusoidalnie 

 

 )sin()( tHtH mA ω=  (8.83) 

 )120sin()( o
mB tHtH −= ω  (8.84) 

 )120sin()( o
mC tHtH += ω  (8.85) 

 

Wypadkowe pole magnetyczne wynika z sumy poszczególnych wektorów HA(t), HB(t), HC(t) 

pochodz�cych od wszystkich faz układu trójfazowego. Moduły warto�ci tych wektorów s� 

opisane wzorami jak wy�ej natomiast ich kierunki s� przesuni�te symetrycznie o k�t o120  jak 

to pokazano na rys. 8.31. 

 Umie��my wektory nat��enia pola magnetycznego na płaszczy�nie zespolonej, 

przyjmuj�c o� rzeczywist� zgodnie z kierunkiem składowej fazy A. Wtedy wektor 

wypadkowy H(t) mo�e by� opisany wzorem 
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Oznacza to, �e  

• wektor wypadkowy nat��enia pola magnetycznego H(t) jest wektorem wiruj�cym 

jednostajnie w czasie z pr�dko�ci� k�tow� równ� ω  zgodnie z ruchem wskazówek zegara 

• moduł tego wektora jest stały i równy mHt
2
3

)( =H .  

Wytworzone przez trójfazowy układ uzwoje� pole magnetyczne jest wi�c polem wiruj�cym 

zdolne do nadania ruchu tym uzwojeniom. Pozwala zamieni� energi� elektryczn� w energi� 

mechaniczn�. Kierunek ruchu wynika z przyj�tego kierunku wirowania faz napi�cia 

zasilaj�cego trójfazowego. Przy zało�onym przez nas układzie zgodnym kierunek wirowania 

pola jest zgodny z kierunkiem wskazówek zegara. Przy zamianie kolejno�ci faz w układzie 

trójfazowym (faza B zamieniona z C) mamy do czynienia z kierunkiem przeciwnym 

wirowania faz. W przypadku pola magnetycznego oznacza� to b�dzie zmian� wirowania pola 

na przeciwny do ruchu wskazówek zegara. Na rys. 8.32 zilustrowano wirowanie pola 

magnetycznego powstałego w omówionym układzie trzech cewek 

 

 
Rys. 8.33. Ilustracja wirowania wektora wiruj�cego H 
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Zadania sprawdzaj�ce 

 

Zadanie 8.1 

Wyznaczy� pr�dy w obwodzie trójfazowym podanym na rys. 8.33. Przyj�� nast�puj�ce 

warto�ci parametrów elementów: VE f 200= , ZA = 10�, ZB = (10-j10)�, ZC = (10+j10)�, 

ZN = 50�. 

 

 

Rys. 8.34. Schemat obwodu trójfazowego do zadania 8.1 

 

Rozwi�zanie 

Przyjmujemy nast�puj�ce warto�ci symboliczne elementów: 

o

o

j
C

j
B

A

eE

eE

E

120

120

200

200

200

=

=

=
−  

1,0
1 ==

A
A Z

Y  

05,005,0
1

j
Z

Y
B

B +==  
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05,005,0
1

j
Z

Y
C

C −==  

02,0
1 ==

N
N Z

Y  

Napi�cie niezrównowa�enia UN 

 

18,124=
+++

++=
NCBA

CCBBAA
N YYYY

YEYEYE
U  

 

Pr�dy fazowe: 

( ) 58,7=−= ANAA YUEI  

( ) 87,1955,2 jYUEI ANAA −−=−=  

( ) 87,1955,2 jYUEI ANAA +=−=  

48,2== NNA YUI  

 

Zadanie 8.2 

Wyznaczy� pr�dy w układzie trójfazowym przedstawionym na rys. 8.34. Przyj�� nast�puj�ce 

warto�ci parametrów elementów: VE f 200= , R = 100Ω, XL = 50Ω, XC = 50Ω. 

 

 

Rys. 8.35. Schemat obwodu trójfazowego do zadania 8.2 

 

Rozwi�zanie 
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Przyjmujemy nast�puj�ce warto�ci symboliczne elementów: 

o

o

j
C

j
B

A

eE

eE

E

120

120

200

200

200

=

=

=
−  

0=−= CLB jXjXZ  

01,0
1 ==
R

YA  

∞==
B

B Z
Y

1
 

02,0
1

j
Z

Y
C

C ==  

Wobec zwarcia w fazie B napi�cie niezrównowa�enia UN  = EB. 

 

Pr�dy fazowe: 

( ) 73,13 jYUEI ANAA +=−=  

( ) 93,6−=−= CNCC YUEI  

( ) 73,193,3 jIII CAB −=+−=  

 

 

Zadanie 8.3 

Wyznaczy� pr�dy w układzie trójfazowym o odbiorniku poł�czonym w trójk�t 

przedstawionym na rys. 8.35. Sporz�dzi� wykres wektorowy pr�dów i napi��. Przyj�� 

nast�puj�ce warto�ci parametrów elementów: VE f 200= ,  R = XL = XC = 10Ω. 
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Rys. 8.36. Schemat obwodu trójfazowego do zadania 8.3 

 

Rozwi�zanie 

Napi�cia mi�dzyfazowe: 

fmf EE 3=  

o

o

j
CA

j
BC

AB

eE

eE

E

120

120

3200

3200

3200

=

=

=
−  

 

Pr�dy fazowe odbiornika: 

oj

C

AB
AB e

jX
E

I 90320=
−

=  

oj

L

BC
BC e

jX
E

I 210320 −==  

ojCA
CA e

R
E

I 120320==  

 

Pr�dy liniowe układu: 

 

64,432,17 jIII CAABA +=−=  

32,1730 jIII ABBCB −−=−=  

68,1268,12 jIII BCCAC +=−=  
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Wykres wektorowy pr�dów i napi�� przedstawiony jest na rys. 8.36. 

 

 
Rys. 8.37. Wykres wektorowy pr�dów i napi�� obwodu 
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Lekcja 9. Składowe symetryczne w układach trójfazowych 

Wst�p 

Lekcja dziewi�ta po�wi�cona jest składowym symetrycznym: zgodnej, przeciwnej i zerowej, 

jako opisu obwodów trójfazowych niesymetrycznych. Niesymetria w obwodzie trójfazowym 

jest zjawiskiem niepo��danym. Wyst�pienie składowej innej ni� zgodna �wiadczy o powstałej 

asymetrii. W lekcji podane zostan� wzory okre�laj�ce poszczególne składowe symetryczne 

oraz ich podstawowe własno�ci. Wprowadzone zostan� układy filtrów składowych 

symetrycznych, pozwalaj�ce w prosty sposób kontrolowa� niesymetri� w układzie 

trójfazowym. 

 

 

9.1. Rozkład na składowe symetryczne 

W dotychczasowych rozwa�aniach układów trójfazowych ograniczyli�my si� do analizy 

układów o symetrycznym zasilaniu, czyli takich w których amplitudy wszystkich napi�� 

fazowych s� równe, a przesuni�cia k�towe mi�dzy poszczególnymi fazami o120 . W 

rzeczywistych układach ze wzgl�du na sko�czon� impedancj� przewodów zasilaj�cych przy 

ró�nych pr�dach fazowych powstaj� ró�nice w napi�ciach fazowych generatora 

„wychodz�cych” na lini�. Oznacza to ró�nice zarówno w amplitudach poszczególnych napi�� 

jak i przesuni�ciach fazowych w stosunku do o120 . St�d zało�enie symetrii napi�� generatora 

w układach rzeczywistych jest niedopuszczalne. Drugi aspekt niesymetrii dotyczy samych 

pr�dów i napi�� na elementach odbiornika trójfazowego. Nawet przy symetrycznym zasilaniu 

ale zało�eniu niesymetrii odbiornika powstaje sytuacja, w której zarówno pr�dy jak i napi�cia 

na gał�ziach obwodu s� niesymetryczne. St�d powstaje potrzeba stworzenia metodyki analizy 

układów trójfazowych niesymetrycznych, zwłaszcza pod k�tem stworzenia miar 

odkształcenia od symetrii. Takim narz�dziem s� składowe symetryczne. 

 Metoda składowych symetrycznych polega na tym, �e stosuj�c odpowiednie 

przekształcenia liniowe zast�puje si� układ trzech wektorów trójfazowych niesymetrycznych 

przez równowa�ne mu trzy układy trzech wektorów symetrycznych. Niesymetryczne �ródło 

zasilania trójfazowego zostaje zast�pione przez układ trzech �ródeł trójfazowych, z których 
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jedno jest o kolejno�ci wirowania zgodnej (kolejno�� identyczna jak w układach rozwa�anych 

dot�d), drugie o kolejno�ci przeciwnej i trzecie o kolejno�ci zerowej (brak przesuni�cia 

mi�dzy wektorami fazowymi). Ilustracja takiego rozkładu jest przedstawiona na rys. 9.1 

 

 
Rys. 9.1. Ilustracja metody rozkładu niesymetrycznego układu napi�� trójfazowych na sum� 

trzech układów napi�� trójfazowych symetrycznych 

 

 

Układowi 3 napi�� niesymetrycznych trójfazowych przyporz�dkowa� mo�na równowa�ny 

układ trzech �ródeł trójfazowych, reprezentuj�cych składow� zerow� (brak przesuni�cia 

mi�dzy napi�ciami fazowymi), składow� zgodn� (napi�cie fazy B opó�nia si� wzgl�dem fazy 

A a napi�cie fazy C wyprzedza napi�cie fazy A) oraz składow� przeciwn� (napi�cie fazy B 

wyprzedza napi�cie fazy A natomiast napi�cie fazy C opó�nia si� wzgl�dem napi�cia fazy A). 

Ilustracja takiego przekształcenia pokazana jest na rys. 9.2 
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Rys. 9.2. Przekształcenie równowa�ne generatora napi�� niesymetrycznych na trzy generatory 

napi�� symetrycznych 

Symbolem a oznaczono wektor jednostkowy obrotu o k�t o120  

 

 
2
3

5,0120 jea
oj +−==  (9.1) 

 

Mo�na łatwo pokaza�, �e słuszna jest nast�puj�ca zale�no�� 

 

 01 2 =++ aa  (9.2) 

 

Równowa�no�� obu układów napi�� z rys. 9.2 wymaga, aby spełnione były nast�puj�ce 

równo�ci  

 

 210 EEEEA ++=  (9.3) 

 21
2

0 aEEaEEB ++=  (9.4) 

 2
2

10 EaaEEEC ++=  (9.5) 

 

gdzie 0E , 1E , 2E  oznaczaj� składowe kolejno�ci odpowiednio zerowej, zgodnej i przeciwnej 

(faza A odpowiedniego układu). Zapis macierzowy powy�szej zale�no�ci przyjmuje posta� 
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 (9.6) 

 

Z zale�no�ci tej na podstawie danych warto�ci rzeczywistych napi�� fazowych AE , BE , CE  

otrzyma� mo�na składowe symetryczne 0E , 1E , 2E . Dokonuj�c odwrócenia macierzy w 

powy�szej zale�no�ci otrzymuje si� 
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 (9.7) 

 

Identyczny rozkład na składowe symetryczne przypisa� mo�na niesymetrycznemu układowi 

pr�dów oraz impedancji przez prost� zamian� symbolu E na symbol pr�du I oraz impedancji 

Z. W przypadku pr�dów rozkład na składowe symetryczne dany jest wzorem 

 

 
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

C

B

A

I

I

I

aa

aa

I

I

I

2

2

2

1

0

1
1

111

3
1

 (9.8) 

 

Zale�no�� opisuj�ca rozkład na składowe symetryczne impedancji jest z kolei nast�pujaca 
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 (9.9) 

 

Identyczne zale�no�ci przyporz�dkowa� mo�na wielko�ciom mi�dzyfazowym. W tym 

przypadku wska�niki fazowe A, B, C zast�puje si� wska�nikami mi�dzyfazowymi 

odpowiednio AB, BC oraz CA. Przykładowo, w przypadku rozkładu napi�� mi�dzyfazowych 

na składowe symetryczne mamy 
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 (9.10) 

 

Zale�no�ci opisuj�ce rozkład na składowe symetryczne s� identyczne dla napi��, pr�dów i 

impedancji mi�dzyfazowych. Niezale�nie od tego wynik uzyskany z takiego rozkładu ró�ni 

si� znacznie od siebie, szczególnie w przypadku wyst�powania symetrii. Ró�nice poka�emy 

na przykładzie. 

 

Przykład 9.1 

Dokona� rozkładu na składowe symetryczne układu trójfazowego symetrycznego napi��, 

gdzie EEA = , EaEeE
oj

B
2120 == − , aEEeE

oj
C == 120 . 

 

Rozwi�zanie 

Zgodnie z podanymi wcze�niej wzorami rozkładu na składowe symetryczne otrzymuje si� 

 

( ) ( ) 01
3
1

3
1 2

0 =++=++= aaEEEEE CBA  

 

( ) ( ) EaaEEaaEEE CBA =++=++= 332
1 1

3
1

3
1

 

 

( ) ( ) ( ) 01
3
1

1
3
1

3
1 2242

2 =++=++=++= aaEaaEaEEaEE CBA  

 

Rozkład na składowe symetryczne układu napi�� symetrycznych prowadzi do spodziewanego 

wyniku. Istnieje jedynie składowa zgodna równa napi�ciu zasilaj�cemu, pozostałe składowe 

s� zerowe. Zerowanie si� składowych zerowej i przeciwnej �wiadczy o symetrii układu 

trójfazowego. Taka sytuacja obowi�zuje w przypadku zarówno napi�� jak i pr�dów. Dotyczy 

to wielko�ci fazowych i mi�dzyfazowych. 

 

 

Przykład 9.2 
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Dokona� rozkładu na składowe symetryczne układu trzech impedancji stanowi�cych 

obci��enie układu trójfazowego. Przyjmiemy symetri� obci��enia, to znaczy ZA=Z, ZB=Z, 

ZC=Z. 

 

Rozwi�zanie 

Stosuj�c identyczne wzory opisuj�ce rozkład impedancji na składowe symetryczne otrzymuje 

si� 

 

( ) ( ) ZZZZZZ CBA =++=++= 111
3
1

3
1

0  

 

( ) ( ) 01
3
1

3
1 22

1 =++=++= aaZZaaZZZ CBA  

 

( ) ( ) 01
3
1

3
1 22

2 =++=++= aaZaZZaZZ CBA  

 

Pomimo zastosowania identycznych wzorów wynik rozkładu na składowe symetryczne 

równych impedancji jest całkowicie ró�ny od rozkładu napi��. Tym razem istnieje wył�cznie 

składowa zerowa impedancji. Pozostałe składowe symetryczne (zgodna i przeciwna) s� równe 

zeru. Wynik ten jest zrozumiały bior�c pod uwag�, �e układ identycznych impedancji stanowi 

z definicji składow� zerow� (brak przesuni�� fazowych mi�dzy impedancjami). 

 

9.2. Własno�ci składowych symetrycznych 

Składowe symetryczne napi��, pr�dów i impedancji zdefiniowane wzorami (9.7) – (9.10) 

maj� interesuj�ce własno�ci charakteryzuj�ce niesymetri� wielko�ci trójfazowych. 

Podstawowe własno�ci mo�na sformułowa� nast�puj�co. 

• W układzie symetrycznym zgodnym napi�� (pr�dów) składowa zerowa i przeciwna 

znikaj�, a składowa zgodna jest równa napi�ciu (pr�dowi) fazy podstawowej. Dowód 

powy�szej własno�ci przedstawiony został w przykładzie 9.1. 

• W układzie symetrycznym przeciwnym napi�� (pr�dów) składowa zerowa i zgodna 

znikaj�, a składowa przeciwna jest równa napi�ciu (pr�dowi) fazy podstawowej. Dowód 
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powy�szej własno�ci przy prostej zamianie kolejno�ci zgodnej na przeciwn� w napi�ciach 

oryginalnych wynika z rozwa�a� zawartych w przykładzie 9.1. 

• Wyst�pienie w rozkładzie na składowe symetryczne napi�� lub pr�dów o kierunku 

wirowania zgodnym składowej zerowej i przeciwnej �wiadczy o niesymetrii układu 

badanych napi�� lub pr�dów. 

• W układzie symetrycznym zerowym impedancji (wszystkie trzy impedancje równe sobie) 

składowa zgodna i przeciwna znikaj�, a składowa zerowa jest równa impedancji zadanej. 

Dowód powy�szej własno�ci przedstawiony został w przykładzie 9.2 

• W układzie trójfazowym trójprzewodowym składowa zerowa pr�dów liniowych jest 

równa zeru. Wynika to z faktu, �e suma pr�dów liniowych w obwodzie trójprzewodowym 

jest z definicji równa zeru (pr�d przewodu zerowego wobec jego braku musi by� równy 

zeru), to znaczy 03 0 ==++ IIII CBA . 

• W układzie trójfazowym czteroprzewodowym pr�d w przewodzie zerowym jest równy 

potrójnej warto�ci składowej zerowej, IN=3I0. Własno�� ta wynika bezpo�rednio z prawa 

pr�dowego Kirchhofa, zgodnie z którym 03IIIII CBAN =++= . 

• Składowa symetryczna zerowa układu napi�� mi�dzyfazowych jest równa zeru. Dowód 

powy�szej własno�ci wynika z faktu, �e suma napi�� mi�dzyfazowych niezale�nie od 

symetrii jest z definicji równa zeru (układ napi�� mi�dzyfazowych tworzy trójk�t 

zamkni�ty), to znaczy 03 0 ==++ EEEE CABCAB . 

• Składowa zgodna i przeciwna napi�� mi�dzyfazowych w przypadku zerowania si� 

jednego z napi�� s� sobie równe i równaj� si� napi�ciu fazowemu układu trójfazowego. 

Dowód tej własno�ci wynika bezpo�rednio z definicji rozkładu. Zauwa�my, �e przy braku 

jednego napi�cia mi�dzyfazowego dwa pozostałe s� sobie równe i przeciwnie skierowane. 

Je�li przyjmiemy, �e UBC=0 oraz UAB=Emf, UCA=-Emf, gdzie Emf oznacza napi�cie 

mi�dzyprzewodowe to ze wzorów na składowe symetryczne otrzymuje si� 
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f

j
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Jak z powy�szego wida� obie składowe rozkładu (zgodna i przeciwna) s� równe co do 

modułu warto�ci napi�cia fazowego Ef i symetrycznie przesuni�te wzgl�dem fazy zerowej 

o k�t o30± . Konstrukcj� graficzn� składowych symetrycznych dla tego przypadku 

przedstawiono na rys. 9.3 

 

 
Rys. 9.3. Konstrukcja graficzna składowych zgodnej i przeciwnej układu napi�� 

mi�dzyprzewodowych przy braku jednego z napi�� 

 

 

• W maszynach elektrycznych składowa zgodna pr�dów wywołuje pole wiruj�ce zgodnie z 

kierunkiem pr�dko�ci obrotowej maszyny a układ przeciwny pr�dów - pole wiruj�ce 

przeciwne do tej pr�dko�ci. Du�a niesymetria w układzie trójfazowym objawiaj�ca si� 

przewag� składowej przeciwnej mo�e wi�c spowodowa� zmian� kierunku wirowania 

maszyny. 

• Składowa przeciwna wyst�puj�ca w maszynie elektrycznej wiruj�cej w kierunku 

zgodnym indukuje w maszynie pr�dy o podwójnej cz�stotliwo�ci. St�d wywiera ona 

niekorzystny wpływ na prac� maszyny (zwi�kszony efekt grzania maszyny). 
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9.3. Prawo Kirchhoffa dla składowych symetrycznych 

Rozkład napi�� i impedancji na składowe symetryczne umo�liwia bezpo�rednie wyznaczenie 

składowych symetrycznych pr�dów w obwodzie bez konieczno�ci rozwi�zywania obwodu dla 

wielko�ci rzeczywistych. Zale�no�ci zachodz�ce mi�dzy składowymi symetrycznymi napi��, 

pr�dów i impedancji wynikaj� z tak zwanego prawa Kirchhoffa dla składowych 

symetrycznych. Prawo to odnosi si� do układu gwiazdowego. Przyjmijmy, �e składowe 

symetryczne odpowiednio napi�� fazowych, pr�dów fazowych i impedancji fazowych 

oznaczymy w postaci 0E , 1E , 2E  (napi�cia), 0I , 1I , 2I  pr�dy) oraz 0Z , 1Z , 2Z  (impedancje). 

Wtedy prawo Kirchhoffa zapiszemy w nast�puj�cej formie 
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Przy sko�czonej impedancji przewodu zerowego wyst�pi� wszystkie harmoniczne pr�dów 

fazowych. Je�li przewód zerowy nie istnieje ( ∞=NZ ) wówczas z definicji pr�d składowej 

zerowej jest równy zeru i powy�szy układ równa� redukuje si� do rz�du drugiego (równanie 

pierwsze jako nieokre�lone odrzuca si�) 
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Nale�y podkre�li�, �e równanie Kirchhoffa dla składowych symetrycznych stanowi 

interesuj�cy z punktu widzenia teoretycznego zwi�zek mi�dzy składowymi symetrycznymi 

napi��, pr�dów i impedancji. Jest wygodn� form� bezpo�redniego wyznaczenia składowych 

symetrycznych pr�du. Nie nale�y go jednak traktowa� jako metody wyznaczania 

rzeczywistych pr�dów w obwodzie trójfazowym przy niesymetrycznym zasilaniu, gdy� 

zwykła teoria obwodów trójfazowych (bez rozkładu na składowe symetryczne) znacznie 

szybciej i pro�ciej prowadzi do wyniku. 
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9.4. Filtry składowych symetrycznych 

Filtrami składowych symetrycznych nazywamy układy pomiarowe, których zadaniem jest 

wydzielenie odpowiednich składowych symetrycznych napi�cia lub pr�du wyst�puj�cych w 

układzie trójfazowym. Filtry takie pełni� u�yteczn� rol� w systemie elektroenergetycznym 

informuj�c o wyst�powaniu niesymetrii wielko�ci napi�� lub pr�dów w poszczególnych 

fazach układu trójfazowego. 

 Rozró�niamy filtry składowej zerowej, przeciwnej i zgodnej. Najłatwiejsze w 

budowie s� filtry składowej zerowej pr�du i napi�cia. Wynika to z faktu, �e składowa zerowa 

stanowi jedn� trzeci� sumy mierzonych napi�� lub pr�dów niesymetrycznych. Urz�dzenie 

filtruj�ce musi zatem mierzy� sum� odpowiednich wielko�ci i by� przeskalowane w stosunku 

1:3. Spo�ród wielu istniej�cych rozwi�za� filtrów przedstawimy tu 3 wybrane rozwi�zania 

przezentuj�ce filtr składowej zerowej pr�dów liniowych, filtr składowej zerowej napi�� 

fazowych oraz filtr składowej zgodnej i przeciwnej pr�dów liniowych. 

 

9.4.1. Filtr składowej zerowej pr�dów liniowych 

W obwodzie trójfazowym czteroprzewodowym (tylko w takim układzie składowa zerowa 

mo�e by� ró�na od zera) wł�czenie amperomierza bezpo�rednio do przewodu zerowego 

pozwoliłoby zmierzy� sum� pr�dów liniowych, czyli równie� składow� zerow� tych pr�dów. 

Taki sposób nie jest jednak stosowany ze wzgl�du na to, �e wymagałby ingerencji w 

pracuj�cy system. W zamian stosuje si� metody nieinwazyjne polegaj�ce na zastosowaniu 

przekładników pr�dowych, których wł�czenie do sieci nie wymaga �adnych przeł�cze� w 

obwodzie głównym. Przekładnik pr�dowy transformuje pr�d pierwotny na pr�d wtórny 

proporcjonalny do pr�du pierwotnego ze współczynnikiem proporcjonalno�ci k. Je�li pr�d 

pierwotny przekładnika jest równy I1 to pr�d I2 płyn�cy po stronie wtórnej przekładnika jest 

równy I2=kI1. Schemat układu filtru składowej zerowej pr�dów liniowych przedstawiony jest 

na rys. 9.4.  
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Rys. 9.4. Układ filtru składowej symetrycznej zerowej pr�dów liniowych 

 

Jak łatwo pokaza� uzwojenia wtórne przekładników tworz� poł�czenie równoległe a pr�d 

płyn�cy przez miernik jest równy sumie pr�dów liniowych przeskalowanych przez 

przekładni� k przekładnika. W zwi�zku z powy�szym wskazanie przyrz�du jest równe 

 

 03)( kIIIIkI CBAp =++=  (9.13) 

 
k

I
I p

30 =  (9.14) 

 

Zwykłe przeskalowanie przyrz�du pomiarowego pr�du Ip pozwala na uzyskanie wskazania 

równego składowej zerowej pr�dów liniowych. 

 

9.4.2. Filtr składowej zerowej napi�� fazowych 

Filtr składowej zerowej napi�� fazowych (rys. 9.5) wykorzystuje równie� przekładniki, tym 

razem napi�ciowe, przetwarzaj�ce napi�cie pierwotne na napi�cie wtórne zgodnie z relacj� 

U2=kU1, gdzie k jest przekładni� przekładnika. Dzi�ki zastosowaniu przekładnika mo�liwe 

jest obni�enie napi�� pierwotnych do poziomu niskiego a jednocze�nie galwaniczne 

odizolowanie toru pomiarowego od obwodu głównego.  
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Rys. 9.5 Filtr składowej zerowej napi�� fazowych 

 

Woltomierz pomiarowy wł�czony jest na sum� napi�� wtórnych przekładnika. Suma napi�� 

składowej zgodnej i przeciwnej jest równa zeru ze wzgl�du na ich symetri�. Pozostaje jedynie 

wskazanie od składowej zerowej. Woltomierz mierz�c sum� napi�� 

 

 

 kUUUU CBAp )( ++=  (9.15) 

 

mierzy jednocze�nie składow� zerow�, gdy� składowa zerowa jest równa 1/3 tej sumy. W 

zwi�zku z tym składowa zerowa napi�� fazowych jest proporcjonalna do wskazania 

woltomierza, to jest 

 

  pU
k

U
3
1

0 =  (9.16) 

 

9.4.3. Filtr składowej zgodnej i przeciwnej pr�dów liniowych 

Spo�ród wielu istniej�cych rozwi�za� filtru składowych zgodnych i przeciwnych pr�du 

omówimy układ uniwersalny, który w zale�no�ci od doboru parametrów mo�e pełni� rol� 
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b�d� filtru składowej zgodnej b�d� przeciwnej. Schemat układu filtru przedstawiony jest na 

rys. 9.6. 

 

 
Rys. 9.6 Schemat filtru składowej zgodnej i przeciwnej pr�dów liniowych 

 

W filtrze zastosowane s� równie� przekładniki pr�dowe. Załó�my, �e uwzgl�dniamy 

impedancj� Zp amperomierza pomiarowego. Dodatkowym zało�eniem jest zasilanie 

trójprzewodowe odbiornika trójfazowego, dla którego słuszna jest relacja 0=++ CBA III . Na 

podstawie prawa napi�ciowego Kirchhoffa dla oczka zaznaczonego na rysunku mo�emy 

napisa� 

 

 0=++ ppZCCZAA IZIZIZ  (9.17) 

 

Pr�dy IZA oraz IZC mo�na wyznaczy� z pr�dowego prawa Kirchhoffa jako 

 

 pAZA IkII +=  (9.18) 

 pCZC IkII +=  (9.19) 

 



 247 

Podstawiaj�c powy�sze zale�no�ci do napi�ciowego prawa Kirchhoffa otrzymuje si� 
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Pr�dy przewodowe podlegaj�ce rozkładowi na składowe symetryczne, wobec zerowania si� 

składowej zerowej, mo�na zapisa� w postaci 

 

 21 III A +=  (9.21) 

 2
2

1 IaaIIC +=  (9.22) 

 

Po podstawieniu tych wyra�e� do wzoru na pr�d Ip otrzymuje si� 
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Wzór powy�szy wskazuje na to, �e pr�d pomiarowy przy odpowiednim doborze impedancji 

mo�e by� proporcjonalny zarówno do składowej zgodnej jak i przeciwnej. Je�li chcemy 

mierzy� składow� zgodn� pr�dów, nale�y wyzerowa� czynnik stoj�cy przy pr�dzie składowej 

przeciwnej, to jest 

 

 02 =+ CA ZaZ  (9.24) 

 

Wystarczy w tym celu dobra� impedancje w taki sposób, aby 
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Istnieje wiele rozwi�za� tego równania. Wystarczy przyj�� na przykład 

 

 RZC =  (9.26) 
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Oznacza to, �e przy wyborze impedancji ZA i ZC okre�lonych powy�szymi wzorami 

(impedancja ZC jest rezystancj� a impedancja ZA poł�czeniem szeregowym rezystancji R/2 i 

indukcyjno�ci o reaktancji 
2

3
R

X L = ) amperomierz wska�e pr�d proporcjonalny do 

składowej zgodnej pr�dów liniowych, przy czym  
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Po uproszczeniu wzoru otrzymuje si� 
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 (9.29) 

 

Je�li zaniedbamy impedancj� wewn�trzn� amperomierza pomiarowego otrzymamy 

 

 3/
1

πj
p ekII =  (9.30) 

 

Wskazanie amperomierza wyst�puj�cego w filtrze (moduł mierzonego pr�du) jest wi�c równe 

składowej zgodnej pr�dów liniowych układu, z uwzgl�dnieniem przekładni k przekładnika 

pr�dowego. 

 W analogiczny sposób mo�na otrzyma� filtr składowej przeciwnej pr�dów. W tym 

celu nale�y wyzerowa� czynnik przy składowej zgodnej pr�dów we wzorze (9.23), czyli 

 

 0=+ CA aZZ  (9.31) 

 

Warunek ten mo�e by� spełniony przy wyborze 

 

 RZC =  (9.32) 
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Oznacza to, �e dla uzyskania filtru składowej przeciwnej nale�y wybra� impedancj� ZC  

równ� rezystancji R natomiast ZA b�d�c� poł�czeniem szeregowym rezystancji R/2 oraz 

reaktancji pojemno�ciowej 
2

3
R

XC = . Pr�d mierzony przez amperomierz b�dzie teraz 

równy 
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Po uproszczeniu wzoru otrzymuje si� 
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Je�li zaniedbamy impedancj� wewn�trzn� amperomierza pomiarowego otrzymamy 

 

 3/2
2

πj
p ekII =  (9.36) 

 

Wskazanie amperomierza filtru (moduł warto�ci skutecznej zespolonej) jest wi�c równe 

składowej przeciwnej pr�dów liniowych układu, z uwzgl�dnieniem przekładni k przekładnika 

pr�dowego. 

 

 

Zadania sprawdzaj�ce 

 

Zadanie 9.1 
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W symetrycznym układzie trójfazowego generatora zamieniono ko�cówki fazy A. 

Wyznaczy� rozkład na składowe symetryczne układu napi�� fazowych takiego generatora, 

je�li VE f 1000= . 

 

Rozwi�zanie 

Po uwzgl�dnieniu bł�dnego poł�czenia napi�cia fazy A rozkład napi�� fazowych 

przedstawiony jest na rys. 9.7 

 

 

Rys. 9.7. Wykres wektorowy napi�� generatora trójfazowego z zadania 9.1 

 

Warto�ci skuteczne zespolone napi�� fazowych s� równe: 

o

o

j
C

j
B

A

eE

eE

E

120

120

1000

1000

1000

=

=

−=
−  

 

Składowe symetryczne napi�� równaj� si� 
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Zadanie 9.2 

Zmierzono nast�puj�ce warto�ci napi�� liniowych (mi�dzyfazowych) w układzie 

trójfazowym: V200=ABU , V400=BCU , V400=CAU . Wyznaczy� składowe symetryczne 

tych napi��. 

 

Rozwi�zanie 

Na rys. 9.8 przedstawiono trójk�t napi�� mi�dzyfazowych z napi�ciem ABU  jako podstaw�. 

 

 
Rys. 9.8 Trójk�t napi�� mi�dzyfazowych do zadania 9.2 

 

Dla wyznaczenia warto�ci skutecznych zespolonych tych napi�� nale�y wyznaczy� k�t ϕ  

zaznaczony na rysunku. Z podstawowych zale�no�ci geometrycznych wynika, �e 

 

oarc 5,75
400
100

cos =�
�

	


�

�=ϕ  

 

Warto�ci skuteczne zespolone napi�� liniowych s� wi�c równe 

 

200=ABU  

oj
BC eU 5,104400 −=  
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oj
CA eU 5,104400=  

 

Składowa zerowa napi�� liniowych jest równa zeru, gdy� układ tych napi�� tworzy trójk�t 

zamkni�ty.  

 

( ) 0
3
1

0 =++= CABCAB UUUU  

 

Składowe symetryczne zgodna i przeciwna napi�� liniowych równaj� si� 

 

( )=++= CABCAB UaaUUU 2
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Rys. 9.9 przedstawia konstrukcj� graficzn� składowych zgodnej i przeciwnej napi�� 

liniowych. 

 

 
a) 
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b) 

 

Rys. 9.9. Konstrukcja graficzna składowych symetrycznych: a) zgodnej,  

b) przeciwnej napi�� liniowych 
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Lekcja 10. Metoda równa� ró�niczkowych w analizie stanów nieustalonych 

w obwodach 

 

Wst�p 

W wyniku przeł�cze� lub zmiany warto�ci parametrów obwodu RLC powstaje w nim stan 

nieustalony, charakteryzuj�cy si� tym, �e kształt odpowiedzi obwodu jest inny ni� 

wymuszenia. Na przykład przy stałym wymuszeniu odpowied� jest zmienna wykładniczo, 

b�d� sinusoidalnie. Z upływem czasu odpowiedzi tego typu zanikaj� i ich charakter znów 

odpowiada charakterowi wymuszenia. Z czasem powstaje wi�c nowy stan ustalony w 

obwodzie o zmienionej strukturze na skutek przeł�czenia. W stanie nieustalonym obwodu 

mo�na zaobserwowa� interesuj�ce zjawiska, które odgrywaj� ogromn� rol� w praktyce. 

Analiza tych zjawisk pozwala z jednej strony unikn�� pewnych niebezpiecze�stw zwi�zanych 

z przepi�ciami, które mog� wyst�pi� w obwodzie a z drugiej strony wykorzysta� te zjawiska 

do generacji przebiegów zmiennych w czasie (np. generatory napi�� harmonicznych). 

 W tej lekcji zaprezentowane zostan� podstawowe metody opisu obwodów RLC w 

stanie nieustalonym przy zastosowaniu równa� ró�niczkowych. Wprowadzona zostanie 

metoda równa� stanu oraz tak zwana metoda klasyczna. Równania stanu s� zbiorem wielu 

równa� ró�niczkowych pierwszego rz�du zapisanych w postaci jednego równania 

macierzowego BuAxx +=
dt
d

. Zmiennymi stanu tworz�cymi wektor x s� napi�cia 

kondensatorów i pr�dy cewek, dla których obowi�zuj� tak zwane prawa komutacji, 

pozwalaj�ce na wyznaczenie warunków pocz�tkowych w obwodzie.  

W metodzie klasycznej zbiór równa� ró�niczkowych pierwszego rz�du zostaje 

zast�piony jednym równaniem ró�niczkowym wy�szego rz�du wzgl�dem jednej zmiennej 

stanu. Wprowadzone zostanie poj�cie równania charakterystycznego oraz biegunów układu, 

decyduj�cych o charakterze rozwi�zania obwodu w stanie nieustalonym. 
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10.1 Podstawowe poj�cia stanów nieustalonych 

Analizuj�c przebiegi czasowe procesów zachodz�cych w obwodach elektrycznych nale�y 

wyró�ni� dwa stany: 

• stan ustalony charakteryzuj�cy si� tym, �e posta� odpowiedzi jest identyczna z postaci� 

wymuszenia (na przykład w odpowiedzi na wymuszenie sinusoidalne odpowied� ustalona 

jest równie� sinusoidalna o tej samej cz�stotliwo�ci cho� innej fazie pocz�tkowej i innej 

amplitudzie)  

• stan przej�ciowy, w którym przebiegi czasowe odpowiedzi maj� inny charakter ni� 

wymuszenie (na przykład w odpowiedzi na wymuszenie stałe odpowied� obwodu jest 

wykładniczo malej�ca czy oscylacyjna). 

 

Stan nieustalony w obwodzie RLC powstaje jako nało�enie si� stanu przej�ciowego (zwykle 

zanikaj�cy) i stanu ustalonego przy zmianie stanu obwodu spowodowanego przeł�czeniem. 

Mo�e on wyst�pi� w wyniku przeł�cze� w samym obwodzie pasywnym (zmiana warto�ci 

elementów, zwarcie elementu, wył�czenie elementu) lub w wyniku zmiany sygnałów 

wymuszaj�cych (parametrów �ródeł napi�ciowych i pr�dowych, w tym tak�e zał�czeniem lub 

wył�czeniem �ródła). Dowoln� zmian� w obwodzie nazywa� b�dziemy komutacj�. Zakłada� 

b�dziemy, �e czas trwania komutacji jest równy zeru, co znaczy �e wszystkie przeł�czenia 

odbywaj� si� bezzwłocznie.  

 W obwodach elektrycznych proces komutacji modeluje si� zwykle przy pomocy 

wył�czników i przeł�czników wskazuj�cych na rodzaj przeł�czenia. Chwil� czasow� 

poprzedzaj�c� bezpo�rednio komutacj� oznacza� b�dziemy w ogólno�ci przez −
0t  (w 

szczególno�ci przez −0 ), natomiast chwil� bezpo�rednio nast�puj�c� po komutacji przez +
0t  

(w szczególno�ci przez +0 ), gdzie 0t  jest chwil�  przeł�czenia (komutacji). 

 

10.2 Prawa komutacji 

10.2.1 Własno�ci energetyczne cewki i kondensatora 

Przej�cie z jednego stanu ustalonego do drugiego, powstaj�cego na skutek komutacji, musi 

uwzgl�dni� zasad� zachowania energii. Odnosi si� ona do elementów gromadz�cych energi� 

elektryczn�, w tym do kondensatora i cewki. Powstanie stanów nieustalonych w obwodzie 

jest wi�c �ci�le zwi�zane z wła�ciwo�ciami gromadzenia energii w elementach 
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reaktancyjnych obwodu (cewce i kondensatorze). Warto�� energii nagromadzonej w polu 

magnetycznym cewki o strumieniu Ψ oraz pr�dzie Li  jest opisana wzorem 

 

 LL iW Ψ=
2
1

 (10.1) 

 

Przy zało�eniu, �e warto�� indukcyjno�ci L cewki pozostaje niezmieniona w wyniku 

przeł�czenia, wobec LLi=Ψ  wzór na energi� cewki mo�e by� uproszczony do postaci 

 

 2

2
1

LL LiW =  (10.2) 

 

Podobnie warto�� energii nagromadzonej w polu elektrycznym kondensatora zawieraj�cego 

ładunek q i naładowanego do napi�cia Cu  wynosi 

 

 CC quW
2
1=  (10.3) 

 

Przy zało�eniu, �e warto�� pojemno�ci C kondensatora pozostaje niezmieniona w wyniku 

przeł�czenia i wobec CCuq =  wzór na energi� kondensatora mo�e by� uproszczony do 

postaci 

 

 2

2
1

CC CuW =  (10.4) 

 

Z zasady zachowania energii wynika, �e energia cewki i kondensatora nie mo�e zmieni� 

swojej warto�ci w sposób skokowy. Z zasady ci�gło�ci energii w obwodzie wynikaj� tzw. 

prawa komutacji, które mówi� o ci�gło�ci strumienia i pr�du w cewce oraz o ci�gło�ci 

ładunku i napi�cia na kondensatorze. Prawo dotycz�ce cewki nazywa� b�dziemy pierwszym 

prawem, a dotycz�ce kondensatora – drugim prawem komutacji. 

 

10.2.2 Pierwsze prawo komutacji 

Strumie� skojarzony cewki nie mo�e ulec skokowej zmianie na skutek przeł�czenia w 

obwodzie, co oznacza, �e strumie� ten w chwili tu� przed komutacj� jest równy strumieniowi 
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w chwili tu� po komutacji, co mo�na zapisa� w postaci (w równaniu przyj�to, �e komutacja 

zachodzi w chwili t0=0) 

 )0()0( +− Ψ=Ψ  (10.5) 

 

Uwzgl�dniaj�c, �e strumie� skojarzony z cewk� jest równy LLi=Ψ , przy niezmienionej 

warto�ci indukcyjno�ci pierwsze prawo komutacji mo�na równie� zapisa� w postaci 

 

 )0()0( +− = LL ii  (10.6) 

 

Jest to najcz��ciej w praktyce u�ywana posta� pierwszego prawa komutacji w odniesieniu do 

cewki. 

 

10.2.3 Drugie prawo komutacji 

Ładunek zgromadzony na kondensatorze nie mo�e zmieni� si� w sposób skokowy na skutek 

komutacji, co oznacza, �e ładunek ten w chwili tu� przed komutacj� jest równy ładunkowi w 

chwili tu� po komutacji, co mo�na zapisa� w postaci 

 

 )0()0( +− = qq  (10.7) 

 

Uwzgl�dniaj�c, �e ładunek zgromadzony na kondensatorze jest równy CCuq = , przy 

niezmienionej warto�ci pojemno�ci kondensatora, drugie prawo komutacji mo�na równie� 

zapisa� w postaci 

 

 )0()0( +− = CC uu  (10.8) 

 

Ostatnia posta� prawa komutacji dotycz�ca napi�cia na kondensatorze jest najcz��ciej 

u�ywana w praktyce.  

Nale�y zaznaczy�, �e prawa komutacji dotycz� wył�cznie pr�du (strumienia) cewki i 

napi�cia (ładunku) kondensatora. Inne wielko�ci zwi�zane z tymi elementami (pr�d 

kondensatora, napi�cie cewki) jak równie� pr�d i napi�cie na rezystorze nie s� zwi�zane 

bezpo�rednio zale�no�ciami energetycznymi i mog� zmienia� si� w sposób skokowy podczas 
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komutacji. Warto�ci jakie przybieraj� tu� po komutacji wynikaj� b�d� z praw Kirchhoffa b�d� 

z prawa Ohma. 

 Przy zało�eniu, �e chwil� komutacji uwa�a� b�dziemy za chwil� pocz�tkow� analizy 

obwodu w stanie nieustalonym ( 00 =t ) istotnym problemem w analizie obwodu jest 

wyznaczenie warunków pocz�tkowych procesu, czyli warto�ci napi�� na kondensatorach i 

pr�dów cewek w chwili przeł�czenia (u nas )0( −
Li  oraz )0( −

Cu ). Zwykle przyjmuje si�, �e 

przeł�czenie nast�puje ze stanu ustalonego obwodu. Warunki pocz�tkowe wynikaj� wówczas 

z warto�ci ustalonych tych wielko�ci w chwili tu� przed przeł�czeniem −= 00t . Warunki 

pocz�tkowe mog� by� przy tym zerowe, je�li pr�dy wszystkich cewek i napi�cia wszystkich 

kondensatorów w chwili przeł�czenia miały warto�ci zerowe. Znajomo�� warunków 

pocz�tkowych w obwodzie jest niezb�dna przy wyznaczaniu rozwi�zania obwodu w stanie 

nieustalonym. 

 

Wyznaczenie stanu pocz�tkowego napi�cia kondensatora i pr�du cewki w obwodzie 

sprowadza si� do 

• rozwi�zania stanu ustalonego obwodu przed przeł�czeniem (przy wymuszeniach 

sinusoidalnych metod� symboliczn�),  

• okre�lenia postaci czasowej tego rozwi�zania dla pr�du cewki )(tiL  i napi�cia 

kondensatora )(tuC  oraz  

• wyznaczenia warto�ci tego rozwi�zania odpowiadaj�cego chwili czasowej przeł�czenia (u 

nas )0( −
Li  oraz )0( −

Cu ). 

 

10.3 Opis stanowy obwodu RLC 

Wykorzystuj�c opis ogólny elementów RLC oraz prawa Kirchhoffa łatwo pokaza�, �e liniowe 

obwody elektryczne RLC w stanach nieustalonych mog� by� opisane przez równania 

ró�niczkowe i całkowe. Porz�dkuj�c te równania i eliminuj�c zmienne nie b�d�ce pr�dami 

cewek i napi�ciami kondensatorów mo�na uzyska� tak zwan� posta� kanoniczn� opisu w 

postaci układu równa� ró�niczkowych, który mo�na przedstawi� nast�puj�co 
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 (10.9) 

 

Zmienne 1x , 2x , .., nx  wyst�puj�ce w równaniach oznaczaj� pr�dy cewek lub napi�cia 

kondensatorów (tzw. zmienne stanu). W opisie obwodu operuje si� zwykle minimalnym 

zbiorem zmiennych stanu, które s� niezb�dne dla wyznaczenia pozostałych wielko�ci w 

obwodzie. Liczba zmiennych stanu n zale�y od liczby reaktancji w obwodzie i jest najcz��ciej 

równa (w szczególnych przypadkach mniejsza) sumie liczby kondensatorów i cewek 

wł�czonych w obwodzie. Stałe współczynniki aij wyst�puj�ce w równaniu (10.9) stanowi� 

kombinacje warto�ci parametrów R, L, C, M elementów pasywnych obwodu oraz parametrów 

�ródeł sterowanych. Funkcje czasu f1(t), f2(t), ..., fn(t) zwi�zane s� z wymuszeniami 

napi�ciowymi i pr�dowymi w obwodzie. Przedstawiony powy�ej układ równa� mo�na 

zapisa� w postaci macierzowej 
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 (10.10) 

 

W przypadku obwodów liniowych funkcje fi(t) wyst�puj�ce po prawej stronie wzoru s� 

liniowymi funkcjami wymusze� pr�dowych i napi�ciowych. Oznaczaj�c wymuszenia 

pr�dowe b�d� napi�ciowe w ogólno�ci przez ui mo�na te funkcje zapisa� przy pomocy 

zale�no�ci macierzowej 
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Je�li macierz zawieraj�c� elementy aij oznaczymy jako A, macierz o elementach bij jako 

macierz B, wektory zawieraj�ce zmienne stanu przez x a warto�ci wymusze� przez u, to 

równanie stanu opisuj�ce obwód elektryczny mo�na przedstawi� w postaci  

 

 )()(
)(

tt
dt

td BuAxx +=  (10.12) 

 

Jest to ogólna posta� opisu stanowego obwodu liniowego RLC. Reprezentuje ona układ n 

równa� ró�niczkowych liniowych rz�du pierwszego. Elementy macierzy A i B zale�� 

wył�cznie od warto�ci parametrów obwodu. Elementy wektora u stanowi� �ródła niezale�ne 

pr�du i napi�cia w obwodzie. Zmienne stanu to niezale�ne napi�cia na kondensatorach i pr�dy 

cewek. 

 
 
10.4. Rozwi�zanie stanów nieustalonych w obwodach metod� zmiennych stanu 
 
10.4.1 Rozwi�zanie ogólne 
 
Jak zostało pokazane w punkcie poprzednim układ równa� ró�niczkowych opisuj�cych 

obwód elektryczny mo�e by� przedstawiony w postaci macierzowego równania stanu (10.12).  

Je�li zało�ymy, �e wektor stanu x(t) jest n-wymiarowy a wektor wymusze� u(t) m-

wymiarowy, to macierz stanu A ma wymiar nn × , a macierz B mn× . Równanie (10.12) 

nazywane jest macierzowym równaniem stanu obwodu elektrycznego. Rozwi�zanie tego 

równania pozwala wyznaczy� przebieg czasowy zmiennych stanu tworz�cych wektor x(t). 

Je�li dodatkowo interesuj� nas inne zmienne w obwodzie, na przykład pr�dy i napi�cia 

rezystorów, pr�dy kondensatorów czy napi�cia na cewkach to nale�y sformułowa� drugie 

równanie, tzw. równanie odpowiedzi y(t), które uzale�nia poszukiwane warto�ci od 

zmiennych stanu i wymusze�. Równanie to zapiszemy w postaci 

 

 )()()( ttt DuCxy +=  (10.13) 

 

Równania (10.12) i (10.13) tworz� par� równa� stanu  

 

 
)()()(

)()(
)(

ttt

tt
dt

td

DuCxy

BuAxx

+=

+=  (10.14) 
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która w pełni opisuje stan obwodu przy zało�eniu, �e znane s� warunki pocz�tkowe x0=x(t0), 

gdzie t0 oznacza chwil� przeł�czenia. W przypadku ogólnym rozwi�zanie równania stanu 

przyjmuje posta� 

 

 ττ dtetet
t

t

ttt
�

−− +=
0

0 )()()( )(
0

)( Buxx AA  (10.15) 

 

Zale�no�� powy�sza stanowi rozwi�zanie ogólne, które dla konkretnych warto�ci funkcji 

wymuszaj�cych zadanych wektorem u wyznacza rozwi�zanie czasowe dla zmiennych stanu. 

We współczesnych metodach numerycznych równania stanu stanowi� punkt wyj�cia w 

okre�laniu dokładnego rozwi�zania równa� liniowych lub przybli�onego dla 

zlinearyzowanych równa� stanu. S� one równie� bardzo wygodne w zastosowaniach 

przybli�onych metod całkowania równa� ró�niczkowych ze wzgl�du na to, �e wszystkie 

równania stanu s� rz�du pierwszego, dla których istniej� wyspecjalizowane metody 

całkowania przybli�onego. 

W rozwi�zaniu (10.15) równania stanu wyst�puj� dwa człony, z których pierwszy jest 

zale�ny tylko od warunków pocz�tkowych niezerowych (energii zgromadzonej w cewkach i 

kondensatorach), a drugi stanowi odpowied� obwodu na wymuszenia tworz�ce wektor u(t). 

Pierwsz� cz��� nazywa� b�dziemy składow� przej�ciow�, a drug� – składow� wymuszon� 

(ustalon�). Zale�no�� (10.15) mo�e wi�c by� przedstawiona w postaci 

 

 )()()( ttt up xxx +=  (10.16) 

 

W praktyce obliczenie składowej ustalonej według zale�no�ci (10.15), zwłaszcza przy 

wymuszeniu sinusoidalnym, jest niezwykle uci��liwe, gdy� wymaga całkowania zło�onych 

funkcji macierzowych. W zamian mo�na wykorzysta� fakt, �e stan nieustalony jest 

superpozycj� stanu ustalonego i przej�ciowego, i w rozwi�zaniu stanu ustalonego zastosowa� 

metod� symboliczn� analizy obwodów, która pozwala wyznaczy� rozwi�zanie w stanie 

ustalonym bez operacji całkowania (patrz lekcja 4). W ten sposób stan nieustalony rozbity 

zostaje na dwa niezale�ne od siebie stany: stan ustalony (składowa xu(t)), pochodz�cy od 

niezale�nych wymusze�, wyznaczany metod� symboliczn� oraz stan przej�ciowy (składowa 

xp(t)), w którym te wymuszenia nie wyst�puj� (�ródła napi�ciowe zwarte a pr�dowe 
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rozwarte). Zauwa�my, �e przy braku wymuszenia (u=0) obwód dla składowej przej�ciowej 

opisuje si� prostszym równaniem stanu  

 

 
)(

)(
t

dt
td

p
p Ax

x
=

 
(10.17) 

 

którego rozwi�zanie nie wymaga całkowania funkcji i dane jest w postaci 

 

 )()(
0

)0( +−= tet p
tt

p xx A
 (10.18) 

 

Je�li dodatkowo przyjmiemy, �e chwila przeł�czenia t0 oznacza pocz�tek liczenia czasu (t0=0) 

to w naszym podej�ciu xp(t0
+)=xp(0+). Zauwa�my, �e warto�ci pocz�tkowe w obwodzie 

dotycz� chwili tu� po przeł�czeniu, oznaczanej zwykle symbolem 0+. Przy rozbiciu stanu 

nieustalonego na dwie składowe wymagane jest wi�c wyznaczenie warto�ci xp(0+) dla 

składowej przej�ciowej. Mo�na tego dokona� korzystaj�c z praw komutacji, które tutaj 

przepiszemy w postaci 

 

 )0()0()0()0( +++− +== pu xxxx  (10.19) 

 

Przy znanych warto�ciach )0( −x  oraz )0( +
ux  z zale�no�ci (10.19) mo�na wyznaczy� warto�� 

)0( +
px , jako 

 

 )0()0()0( +−+ −= up xxx  (10.20) 

 

W tej sytuacji rozwi�zanie równania stanu (10.17) mo�na przedstawi� w postaci 

 

 )0()( += p
t

p et xx A

 (10.21) 

 

w której warto�� )0( +
px  jest okre�lona zale�no�ci� (10.20). Do okre�lenia rozwi�zania w 

stanie przej�ciowym nale�y wyznaczy� jeszcze macierz eAt, w której wykładnik jest macierz� 

a nie skalarem. Dla obliczenia eAt nale�y w pierwszej kolejno�ci obliczy� warto�ci własne 

macierzy stanu A. 
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10.4.2 Warto�ci własne i wektory własne macierzy kwadratowej 

Załó�my, �e A jest macierz� kwadratow� stopnia n. Macierz (s1-A) nazywana jest macierz� 

charakterystyczn� A, przy czym 1 oznacza macierz jednostkow� stopnia n, to jest macierz 

diagonaln� 1=diag(1, 1,..., 1). Wyznacznik macierzy charakterystycznej det(s1-A) nazywamy 

wielomianem charakterystycznym macierzy, a równanie  

 

 det(s1-A)=0 (10.22) 

 

nazywamy równaniem charakterystycznym macierzy A. Równanie to po rozwini�ciu 

wyra�enia wyznacznika przyjmuje posta� wielomianu n-tego stopnia 

 

 0... 01
1

1 =++++ −
− asasas n

n
n  (10.23) 

  

Pierwiastki tego równania s1, s2, ..., sn nazywamy warto�ciami własnymi macierzy A. Mog� 

one przyjmowa� warto�ci rzeczywiste lub zespolone, pojedyncze lub wielokrotne. Z ka�d� 

warto�ci� własn� si skojarzony jest wektor własny xi o niezerowej warto�ci i wymiarze n, 

spełniaj�cy równanie 

 

 iii s xAx =  (10.24) 

 

Je�li wszystkie warto�ci własne s� ró�ne to na podstawie równania (10.24) mo�na napisa� n 

równa� liniowych o postaci 

 

 nnn s

s

s

xAx

xAx
xAx

=

=
=

...............
222

111

 (10.25) 

 

z rozwi�zania których mo�na wyznaczy� wszystkie wektory własne xi. 

Przykład 10.1 

Dla macierzy stanu  
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Pierwiastki tego równania b�d�ce warto�ciami własnymi A s� równe s1=-4 oraz s2=-1. 

Wektory własne spełniaj� relacj� (10.25), która w naszym przypadku przyjmie posta� 
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Powy�szym równaniom odpowiadaj� cztery równania skalarne o postaci 
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Bior�c pod uwag�, �e dwa spo�ród nich s� zale�ne, dwie zmienne mo�na przyj�� dowolnie, 

na przykład x11=1 oraz x21=1. Z rozwi�zania pozostałych 2 równa� otrzymuje si� wektory 

własne o postaci  
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Przykład 10.2 

Napisa� układ równa� stanu dla obwodu elektrycznego przedstawionego na rys. 10.1 
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Rys. 10.1. Schemat obwodu do przykładu 10.2 

 

Rozwi�zanie  

Z praw Kirchhoffa napisanych dla obwodu z rys. 10.1 wynikaj� nast�puj�ce równania 
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Bior�c pod uwag�, �e 
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równania Kirchhoffa mo�na przekształci� do równowa�nej postaci równa� ró�niczkowych  
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które przyjmuj� uporz�dkowan� form� odpowiadaj�c� postaci (10.9) 
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Równania powy�sze mo�na zapisa� w postaci zale�no�ci macierzowej równania stanu, w 

której zmiennymi stanu s� pr�d cewki i napi�cie kondensatora. 
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Wektor stanu x jest równy  
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Obwód liniowy zawieraj�cy dwa elementy reaktancyjne (cewka i kondensator) opisuje si� 

wi�c macierzowym  równaniem stanu drugiego rz�du. Macierz stanu A jest macierz� równie� 

drugiego rz�du o współczynnikach uzale�nionych od warto�ci rezystancji, pojemno�ci oraz 

indukcyjno�ci. Macierz B zawiera dwa wiersze (liczba zmiennych stanu) oraz dwie kolumny 

(liczba wymusze� w obwodzie). Przyjmuj�c w analizie warto�ci liczbowe obwodu: R=2Ω, 

L=1H, C=1F otrzymuje si� macierz stanu A o postaci 
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Równanie charakterystyczne tej macierzy jest równe 
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Warto�ci własne (pierwiastki równania charakterystycznego) s� w tym przypadku sobie 

równe i wynosz� 121 −== ss . Dla rozwa�anego obwodu RLC s� one poło�one w lewej 

półpłaszczy�nie zmiennej zespolonej s na ujemnej osi rzeczywistej. 
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10.4.3 Wyznaczanie macierzy eAt   

Kluczem do wyznaczenia rozwi�zania obwodu w stanie przej�ciowym metod� zmiennych 

stanu jest okre�lenie macierzy eAt. Istnieje wiele metod rozwi�zania tego zadania. Tutaj 

przedstawimy trzy z nich: metod� Lagrange’a-Sylvestera, diagonalizacji macierzy oraz 

Cayleya-Hamiltona. W ka�dej z nich wymagane jest wyznaczenie warto�ci własnych si 

macierzy A. 

 

Metoda Lagrange’a-Sylvestera 

W metodzie tej macierz eAt wyznacza si� z prostej zale�no�ci podanej w postaci jawnej 

 

 
( )

( )
�

∏

∏
=

≠

≠

−

−
=

n

r
n

rt
rt

n

rt
t

tst

ss

s
ee r

1

A1
A  (10.26) 

 

Z analizy powy�szego wzoru widoczne jest, �e metoda Lagrange’a-Sylvestera obowi�zuje 

jedynie dla przypadku warto�ci własnych pojedynczych (przy warto�ciach wielokrotnych 

mianownik zale�no�ci staje si� zerowy). 

 

Metoda diagonalizacji macierzy 

W metodzie diagonalizacji macierzy zast�puje si� obliczenie macierzy eAt poprzez 

transformacj� macierzy A do postaci diagonalnej D o tych samych warto�ciach własnych. 

Diagonalna macierz D posiada prost� form� macierzow� eDt, b�d�c� równie� macierz� 

diagonaln� o postaci 
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Mno��c obustronnie równanie stanu dx/dt = Ax przez nieosobliw� macierz U przekształca 

si� je do postaci d(Ux)/dt = UAx. Wprowad�my nowy wektor v = Ux. Wówczas oryginalne 

równanie stanu przekształca si� do postaci okre�lonej wzgl�dem v, przy czym 

 

nadobo
wi�zko
we 
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 Dvv =
dt
d

 (10.28) 

 

gdzie D jest macierz� diagonaln� okre�lon� wzorem D=UAU-1 o warto�ciach diagonalnych 

równych warto�ciom własnym macierzy A. Macierz przekształcenia U nale�y tak dobra�, 

aby spełniona była równo�� UA=DU. Zale�no�� ta reprezentuje sob� układ równa� 

liniowych. Rozwi�zanie równania stanu (19.28) dane jest w prostej formie 

 

 )0()( vv Dtet =  (10.29) 

 

Bior�c pod uwag�, �e v=Ux, po wstawieniu tej zale�no�ci do równania (10.29) otrzymuje 

si�  )0()( UxUx Dtet = , co pozwala napisa� wyra�enie na x(t) w postaci 

 

 )0()( 1 UxUx Dtet −=  (10.30) 

 

Oznacza to, �e macierz eAt została okre�lona wzorem 

 

 UU DA tt ee 1−=  (10.31) 

 

Zauwa�my, �e powy�sza metoda prowadzi do wyniku wył�cznie dla pojedynczych warto�ci 

własnych macierzy A, podobnie jak metoda Lagrange’a-Sylwestera.  

 

Metoda Cayleya-Hamiltona 

Zgodnie z t� metod� macierz eAt rozwija si� w szereg sko�czony o n składnikach (n – stopie� 

macierzy A) 
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t aaae AA1A  (10.32) 

 

Dla pełnego okre�lenia rozwi�zania nale�y wyznaczy� wszystkie współczynniki ai (i = 0, 1,..., 

n-1) rozwini�cia (10.32).  

W przypadku pojedynczych warto�ci własnych nieznane współczynniki wyznacza si� z 

rozwi�zania układu n równa� skalarnych, wynikaj�cych z twierdzenia Cayleya-Hamiltona. 

Zgodnie z tym twierdzeniem ka�da macierz kwadratowa spełnia swoje równanie 
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charakterystyczne. Oznacza to w praktyce, �e równanie (10.32) musi by� spełnione równie� 

przez warto�ci własne macierzy A (macierz A jest zast�piona w tym równaniu przez kolejne 

warto�ci własne skalarne). W przypadku pojedynczych warto�ci własnych prowadzi to do 

układu n równa� z n niewiadomymi o postaci 
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Rozwi�zanie powy�szego układu równa� wzgl�dem współczynników ai pozwala okre�li� 

pełn� posta� macierzy eAt według wzoru (10.32). 

 Wzór Cayleya-Hamiltona obowi�zuje równie� dla wielokrotnych warto�ci własnych, 

przy czym ubytek równa� w zbiorze (10.33) wynikaj�cy z wielokrotno�ci warto�ci 

własnych uzupełnia si� analogicznymi równaniami obowi�zuj�cymi dla pochodnych 

wzgl�dem warto�ci własnej wielokrotnej. Przykładowo, je�li k-ta warto�� własna sk 

wyst�puje podwójnie, wówczas obowi�zuj� dla niej dwie równo�ci Cayleya-Hamiltona o 

postaci 
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W ten sposób brakuj�ce równanie w układzie (10.33) zostaje zast�pione równaniem dla 

pochodnej i układ równa� pozostaje rozwi�zywalny. 

 

Przykład 10.3 

Obliczanie macierzy eAt zilustrujemy na przykładzie macierzy stanu A o podwójnej 

warto�ci własnej. Macierz stanu dana jest w postaci 
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Rozwi�zanie 
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Równanie charakterystyczne macierzy A  

044)det( 2 =++=− sss A1  

 

Warto�ci własne s� pierwiastkami równania charakterystycznego i równaj� si� s1=s2=-2 

(pierwiastek podwójny). Wobec podwójnej warto�ci własnej macierz eAt wyznaczymy 

stosuj�c metod�  Cayleya-Hamiltona. Zgodnie z t� metod� dla macierzy stopnia n=2 mamy 

A1A
10 aae t +=  

 

Warto�ci współczynników ai wyznaczymy rozwi�zuj�c układ równa� 
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Po wstawieniu warto�ci liczbowych otrzymuje si� 
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Rozwi�zanie wzgl�dem współczynników a0 i a1 pozwala uzyska� 
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Po wstawieniu tych warto�ci do wzoru na eAt otrzymuje si� 
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10.4.4 Obliczanie stanu nieustalonego w obwodzie metod� zmiennych stanu 

Jak zostało przedstawione na wst�pie najwygodniejsz� metod� obliczenia przebiegów 

czasowych w stanie nieustalonym metod� zmiennych stanu jest rozdzielenie stanu 

nieustalonego po przeł�czeniu w obwodzie na stan ustalony i przej�ciowy. Stan ustalony 

okre�lany jest metod� symboliczn�, a stan przej�ciowy metod� zmiennych stanu. W ten 

nadobo
wi�zko
we 
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sposób unika si� trudnego problemu całkowania zło�onych zale�no�ci matematycznych. W 

efekcie rozwi�zanie stanu nieustalonego w obwodzie składa si� z nast�puj�cych etapów. 

• Okre�lenie warunków pocz�tkowych w obwodzie przed przeł�czeniem. W praktyce 

oznacza to wyznaczenie pr�dów cewek i napi�� kondensatorów w obwodzie w stanie 

ustalonym (np. metod� symboliczn�), przej�cie na posta� czasow� tych rozwi�za� i 

okre�lenie wszystkich warto�ci pr�dów cewek i napi�� kondensatorów w chwili 

przeł�czenia. Warto�ci pocz�tkowe iL(0-) oraz uC(0-) utworz� wektor stanu x w chwili 

pocz�tkowej 0-. 

• Okre�lenie stanu ustalonego w obwodzie po przeł�czeniu (np. metod� symboliczn�). W 

wyniku otrzymuje si� warto�ci ustalone pr�dów cewek iLu(t) i napi�� kondensatorów 

uCu(t). Warto�ci te tworz� wektor xu(t) w stanie ustalonym. 

• Okre�lenie stanu przej�ciowego w obwodzie po przeł�czeniu. Obwód dla stanu 

przej�ciowego powstaje po odrzuceniu wszystkich �ródeł wymuszaj�cych niezale�nych 

(zwarcie �ródeł napi�cia e(t) oraz rozwarcie �ródeł pr�dowych i(t)), od których 

odpowied� w stanie ustalonym została ju� obliczona. Obwód taki opisuje si� równaniem 

stanu o postaci dxp/dt=Axp którego rozwi�zanie okre�lone jest zale�no�ci� (10.21) przy 

warunkach pocz�tkowych okre�lonych dla składowej przej�ciowej zmiennych stanu. 

Oznacza to  konieczno�� okre�lenia dla ka�dej cewki i kondensatora wielko�ci iLp(0+) 

oraz uCp(0+).  Korzystaj�c z równania (10.20) otrzymuje si� 
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Po okre�leniu warunków pocz�tkowych dla składowej przej�ciowej mo�na z zale�no�ci 

(10.21) wyznaczy� pełne rozwi�zanie obwodu w stanie przej�ciowym. 

• Rozwi�zanie całkowite obwodu składa si� z cz��ci ustalonej i przej�ciowej. Mo�na je 

zapisa� w postaci 
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 co odpowiada zapisowi macierzowemu dla zmiennych stanu x(t)=xu(t)+xp(t). 
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Przykład 10.4 

Rozpatrzmy stan nieustalony w obwodzie RLC przedstawionym na rys. 10.2a po 

przeł�czeniu. Dane elementów: R=5�, L=2H, C=0,5F, e(t)=6V (napi�cie stałe). 

 

 
 

a) b) 

Rys. 10.2 Obwód RLC do przykładu 10.4: a) obwód wyj�ciowy, b) posta� obwodu do 

wyznaczenia stanu przej�ciowego 

 

Rozwi�zanie 

Warunki pocz�tkowe w postaci pr�du cewki i napi�cia na kondensatorze oblicza si� na 

podstawie stanu ustalonego przed przeł�czeniem. Przy stałym wymuszeniu w obwodzie (	=0) 

cewka stanowi zwarcie a kondensator przerw�. Oznacza to, �e pr�d płyn�cy w obwodzie jest 

równy iL(t)=6/10=0,6A. St�d iL(0-)=0,6. Napi�cie na kondensatorze (przed przeł�czeniem 

pozostaje poza obwodem) jest zerowe, st�d uC(0-)=0. 
Po przeł�czeniu powstaje obwód zło�ony z szeregowego poł�czenia elementów R, L i 

C. W stanie ustalonym wobec 	=0 kondensator stanowi przerw� i pr�d ustalony w takim 

obwodzie nie płynie, iLu(t)=0 a napi�cie kondensatora uCu(t)=6. Oznacza to, �e warunki 

pocz�tkowe dla składowej ustalonej dane s� w postaci: iLu(0+)=0 oraz uCu(0+)=6.  

Wyznaczenie stanu przej�ciowego rozpoczniemy od warunków pocz�tkowych dla 

tego stanu. Warunki pocz�tkowe dla stanu przej�ciowego okre�lone s� w postaci (patrz 

równanie (10.35)) 

660)0()0()0(

6,006,0)0()0()0(

−=−=−=

=−=−=
+−+

+−+

CuCCp

LuLLp

uuu

iii
 

 



 273

St�d warunki pocz�tkowe dla stanu przej�ciowego mo�na zapisa� w postaci wektorowej  
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Równania stanu przej�ciowego dotycz� obwodu bez wymusze� zewn�trznych (�ródło 

napi�ciowe zwarte) przedstawionego na rys. 10.2b. Z prawa napi�ciowego Kirchhoffa po 

uwzgl�dnieniu równa� elementów obwodu otrzymuje si� nast�puj�ce równania ró�niczkowe 
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Po uporz�dkowaniu tych równa� otrzymuje si� równanie macierzowe stanu w postaci 
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z którego wynika, �e macierz stanu A jest równa  
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Równanie charakterystyczne dla macierzy A dane jest w postaci 

015,2)det( 2 =++=− sss A1  

 

Warto�ci własne s� pierwiastkami równania charakterystycznego i równaj� si� s1=-2, s2=-0,5. 

Macierz eAt wyznaczymy stosuj�c metod� Sylvestera. Zgodnie z t� metod�  
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Po wykonaniu odpowiednich operacji matematycznych otrzymuje si� 
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Rozwi�zanie okre�laj�ce wektor stanu w stanie przej�ciowym oblicza si� z zale�no�ci 
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Całkowite rozwi�zanie obwodu w stanie nieustalonym mo�na wi�c przedstawi� w postaci 
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10.5 Metoda klasyczna rozwi�zania równa� ró�niczkowych 

W przypadku, gdy interesuje nas tylko jedna wybrana zmienna (jeden pr�d b�d� jedno 

napi�cie w obwodzie) układ równa� stanu pierwszego rz�du mo�na sprowadzi� do jednego 

równania ró�niczkowego n-tego rz�du wzgl�dem tej zmiennej 
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Rozwi�zanie powy�szego równania ró�niczkowego, podobnie jak w metodzie zmiennych 

stanu, mo�na przedstawi� w postaci sumy dwu składowych: ustalonej )(txu  wymuszonej 

przez �ródło oraz składowej przej�ciowej )(tx p , zwanej równie� składow� swobodn�, 

pochodz�c� od niezerowych warunków pocz�tkowych  

 

 )()()( txtxtx pu +=  (10.38) 

 

Składowa wymuszona stanowi rozwi�zanie ustalone obwodu po komutacji i mo�e by� 

wyznaczona metod� symboliczn�. Składowa przej�ciowa charakteryzuje fizycznie procesy 

zachodz�ce w obwodzie elektrycznym na skutek niezerowych warunków pocz�tkowych przy 

braku wymusze� zewn�trznych. Odpowiada ona obwodowi, w którym wyeliminowano 

wszystkie zewn�trzne �ródła wymuszaj�ce (�ródła napi�ciowe zwarte a pr�dowe rozwarte). 

  Składowa przej�ciowa zale�y jedynie od warunków pocz�tkowych (napi�� 

pocz�tkowych kondensatorów i pr�dów pocz�tkowych cewek), struktury obwodu i warto�ci 
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parametrów tego obwodu. Dla obwodów elektrycznych zawieraj�cych elementy rozpraszaj�ce 

energi� (rezystancje) składowa przej�ciowa, jak zostanie pokazane pó�niej, zanika z biegiem 

czasu do zera. Równanie składowej przej�ciowej otrzymuje si� zakładaj�c wymuszenie f(t) 

we wzorze (10.37) równe zeru i zast�puj�c zmienn� )(tx  poprzez jej składow� przej�ciow� 

)(tx p . Otrzymuje si� wówczas równanie ró�niczkowe jednorodne o postaci 
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Rozwi�zanie powy�szego równania jednorodnego uzyskuje si� za po�rednictwem równania 

charakterystycznego 
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Jest to wielomian n-tego rz�du zmiennej zespolonej s o współczynnikach rzeczywistych ia . 

Jest on identyczny z równaniem charakterystycznym otrzymanym dla zmiennych stanu. 

Pierwiastki is  (i=1, 2, ..., n) tego wielomianu stanowi� bieguny układu, identyczne z 

warto�ciami własnymi macierzy stanu A. W tym punkcie  ograniczymy si� jedynie do 

przypadku biegunów pojedynczych. Przy takim zało�eniu rozwi�zanie równania (10.39) dla 

składowej przej�ciowej zapiszemy w postaci 
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W rozwi�zaniu tym współczynniki iA  s� stałymi całkowania, które nale�y wyznaczy� 

wykorzystuj�c znajomo�� warunków pocz�tkowych w obwodzie (napi�� kondensatorów i 

pr�dów cewek w chwili komutacji t=0). W tym celu nale�y wyznaczy� rozwi�zanie  

równania (10.39) dla ka�dej składowej przej�ciowej zmiennej stanu )(tx pk  oddzielnie, a 

nast�pnie rozwi�zanie całkowite )()()( txtxtx pkukk +=  dla k=1, 2, ..., n. Ka�da ze zmiennych 

)(txk  posiada znan� warto��  rozwi�zania )0( −
kx  w chwili t=0 (warunki pocz�tkowe). Z 

ci�gło�ci pr�dów cewek i napi�� kondensatorów wynika nast�puj�ca zale�no�� 
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 )0()0()0( ++− += pkukk xxx  (10.42) 

 

Pisz�c t� równo�� dla wszystkich n zmiennych stanu otrzymuje si� n równa� algebraicznych z 

n nieznanymi współczynnikami iA . Z rozwi�zania tego układu wyznacza si� wszystkie 

współczynniki iA  i podstawia do wzoru ogólnego (10.41). Po wyznaczeniu rozwi�zania 

obwodu dla składowej ustalonej i przej�ciowej rozwi�zanie całkowite równania (10.37) jest 

sum� obu rozwi�za� cz�stkowych, to znaczy 
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Powy�sza procedura rozwi�zania stanu nieustalonego w obwodzie poprzez rozwi�zanie 

układu równa� ró�niczkowych wy�szego rz�du nosi nazw� metody klasycznej. Przy 

wi�kszej liczbie zmiennych jest ona do�� uci��liwa w obliczeniach, gdy� wymaga 

pracochłonnego wyznaczania rozwi�za� dla ka�dej składowej przej�ciowej zmiennych stanu. 

Dlatego w praktyce stosuje si� zwykle tylko do równa� pierwszego rz�du. W tej pracy 

zastosujemy j� do rozwi�zania stanu nieustalonego w obwodzie RL oraz RC przy zał�czeniu 

napi�cia stałego. 

 

Zadania sprawdzaj�ce 

 

Zadanie 10.1  

Wyznaczy� warunki pocz�tkowe w obwodzie przedstawionym na rys. 10.3. Parametry 

elementów obwodu s� nast�puj�ce: L=1H, C=0,5F, R=1Ω, )45sin(210)( otte += V, 

)45sin(2)( otti −= A. 

 
Rys. 10.3. Schemat obwodu do zadania 10.1 
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Rozwi�zanie 

Warunki pocz�tkowe dotycz� stanu ustalonego przed przeł�czeniem, w którym w obwodzie 

działaj� oba �ródła wymuszaj�ce. Stosuj�c metod� symboliczn� analizy obwodu otrzymujemy 
ojeE 4510=  

ojeI 45

2
2 −=  

1=ω  

1jLjZL == ω  

2/ jCjZC −=−= ω  

 

Równania obwodu: 

 

( )LLL IIRIZE ++=  

oj

L
L e

ZR
RIE

I 31,1121,7=
+
−=  

oj
CC eIZU 135

2
4 −==  

)31,11sin(221,7)( o
L tti +=  

)135sin(4)( o
C ttu −=  

 

Warunki pocz�tkowe: 

 

2)0( =−
Li  

22)0( −=−
Cu  

 

 

Zadanie 10.2  

Napisa� równanie stanu dla obwodu o strukturze przedstawionej na rys. 10.4. 
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Rys. 10.4. Schemat obwodu do zadania 10.2 

 

Rozwi�zanie 

Z praw Kirchhoffa napisanych dla obwodu z rysunku wynika 
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Lute

dt
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Po przekształceniach tych równa� otrzymujemy 
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Równanie stanu: 
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Zadanie 10.3  

Napisa� równanie stanu obwodu o strukturze przedstawionej na rys. 10.5. 
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Rys. 10.5 Schemat obwodu do zadania 10.3 

 

Rozwi�zanie 

Z równa� Kirchhoffa napisanych dla obwodu z rys. 10.5 otrzymuje si�  
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Po wyznaczeniu 
1Cu  z równania pierwszego i przekształceniu powstałych równa� 

otrzymujemy 
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Posta� macierzowa równa� stanu: 
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Jak wida� pomimo trzech elementów reaktancyjnych w obwodzie, równanie stanu jest 

drugiego rz�du. Wynika to z faktu, �e napi�cie jednego kondensatora jest liniowo zale�ne od 
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napi�cia �ródła i napi�cia na drugim kondensatorze. W wyniku redukcji liczby zmiennych 

stanu równania stanu s� zale�ne od pochodnej funkcji wymuszenia. 
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Lekcja 11. Stany nieustalone w obwodach RL i RC  

 

Wst�p 

Dla zrozumienia istoty stanu nieustalonego rozpatrzymy zjawiska jakie towarzysz� procesowi 

komutacji w najprostszych obwodach zawieraj�cych cewk� b�d� kondensator. Oba 

wymienione elementy reaktancyjne gromadz� energi�. Prawo zachowania energii wymusza 

pewien stan przej�ciowy zachodz�cy pomi�dzy stanami ustalonymi przed i po przeł�czeniu. Musi 

upłyn�� pewien czas trwania stanu przej�ciowego, w którym stan nieustalony przejdzie w 

ustalony.  

W tej lekcji analiz� stanu nieustalonego przeprowadzimy przy zastosowaniu metody 

klasycznej. Podamy opisy ró�niczkowe obwodów RL i RC oraz ich rozwi�zania w dziedzinie 

czasu. Przebiegi pr�dów i napi�� w obwodach zawieraj�cych jeden element reaktancyjny s� 

typu wykładniczego, scharakteryzowanego przez stał� czasow�, decyduj�c� o czasie trwania 

stanu nieustalonego. Poka�emy wpływ stałej czasowej na przebiegi czasowe w obu 

obwodach. 

 
 

 

11.1 Stan nieustalony w szeregowym obwodzie RL przy zał�czeniu napi�cia stałego 

Jako pierwszy przykład zastosowania metody klasycznej rozpatrzymy stan nieustalony w 

obwodzie szeregowym RL przy zerowych warunkach pocz�tkowych i zał�czeniu napi�cia 

stałego jak to zostało w symboliczny sposób przedstawione na rys. 11.1. Zerowe warunki 

pocz�tkowe obwodu oznaczaj�, �e 0)0( =−
Li . 

 

 
Rys. 11.1. Obwód szeregowy RL przy zał�czeniu napi�cia stałego 
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 Po przeł�czeniu w obwodzie RL powstaje stan nieustalony, który po okre�lonym 

czasie prowadzi do powstania nowego stanu ustalonego wynikaj�cego z nowego układu 

poł�cze� elementów. Stan nieustalony jest superpozycj� stanu ustalonego i przej�ciowego. 

 Stan ustalony w obwodzie RL przy wymuszeniu stałym oznacza, �e cewka stanowi 

zwarcie (rys. 11.2a).  

   
Rys. 11.2. Posta� obwodu RL do obliczenia składowej a) ustalonej i b) przej�ciowej 

 

 Na podstawie napi�ciowego prawa Kirchhoffa pr�d ustalony tej cewki jest równy  

 

 REtiLu /)( =  (11.1) 

 

Przechodz�c do obliczenia stanu przej�ciowego nale�y wyeliminowa� zewn�trzne �ródło 

zasilaj�ce. Poniewa� jest to �ródło napi�ciowe, nale�y go zewrze�. Schemat obwodu dla stanu 

przej�ciowego po zwarciu �ródła zasilaj�cego, dla którego odpowied� została wła�nie 

obliczona, ma posta� przedstawion� na rys. 11.2b. Stosuj�c prawo napi�ciowe Kirchhoffa dla 

tego obwodu przy uwzgl�dnieniu  

 

 
dt

di
Lu Lp

Lp =  (11.2) 

 

otrzymuje si� równanie ró�niczkowe jednorodne (brak wymuszenia) dla składowej 

przej�ciowej o postaci 

 

 0=+ Lp
Lp Ri

dt

di
L  (11.3) 
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Równanie charakterystyczne odpowiadaj�ce powy�szemu równaniu ró�niczkowemu 

przyjmuje posta� 

 

 0=+ RLs  (11.4) 

 

Równanie to posiada tylko jeden pierwiastek  

 
L
R

s −=1  (11.5) 

 

Wykorzystuj�c wzór (10.41) rozwi�zanie stanu przej�ciowego dla pr�du w obwodzie RL 

zapiszemy w postaci 

 

 RL
t

Lp eAi /
1

−
=  (11.6) 

 

w której współczynnik 1A  jest nieznan� stał� całkowania. Rozwi�zanie całkowite obwodu jest 

sum� składowej ustalonej i przej�ciowej. W zwi�zku z powy�szym pr�d cewki okre�lony jest 

nast�puj�cym wzorem  

 

 RL
t

LpLuL eA
R
E

tititi /
1)()()(

−
+=+=  (11.7) 

 

Z prawa komutacji dla cewki wynika, �e )0()0( +− = LL ii , st�d wobec 0)0( =−
Li  otrzymuje 

si� 

 

 10 A
R
E +=  (11.8) 

oraz  

 

 REA /1 −=  (11.9) 

 

St�d rozwi�zanie okre�laj�ce przebieg pr�du cewki w stanie nieustalonym przyjmuje posta� 
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 �
�
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�
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−
RL

t

L e
R
E

ti /1)(  (11.10) 

 

Wprowadzaj�c poj�cie stałej czasowej τ  obwodu RL  

 

 RL /=τ  (11.11) 

 

rozwi�zanie na pr�d cewki w stanie nieustalonym mo�na zapisa� w postaci 

 

 �
�
�

�
�
�
�

�
−=

−
τ
t

L e
R
E

ti 1)(  (11.12) 

 

Jednostk� stałej czasowej jest sekunda (jednostk� indukcyjno�ci jest 1H = 1Ωs a 

jednostk� rezystancji 1Ω). Łatwo wykaza�, �e po upływie trzech stałych czasowych ( τ3=t ) 

pr�d cewki uzyskuje prawie 95% swojej warto�ci ustalonej a po 5 stałych czasowych a� 

99,3%. Oznacza to, �e praktycznie po 5 stałych czasowych stan nieustalony w obwodzie 

zanika przechodz�c w stan ustalony. 

Na rys. 11.3 przedstawiono przebiegi pr�du cewki dla ró�nych warto�ci stałej 

czasowej. 

 

 
Rys. 11.3. Przebieg pr�du cewki w stanie nieustalonym 
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 Jest to przebieg typu wykładniczego, w którym stan przej�ciowy trwa tym dłu�ej im dłu�sza 

jest stała czasowa. Praktycznie po 5 stałych czasowych stan przej�ciowy w obwodzie zanika 

przechodz�c w stan ustalony. 

 Stał� czasow� obwodu RL mo�na wyznaczy� na podstawie zarejestrowanego 

przebiegu nieustalonego bez znajomo�ci warto�ci rezystancji i indukcyjno�ci. Zauwa�my, �e 

dla τ=t  pr�d cewki przyjmuje warto��  

 

 
R
E

e
R
E

iL 632,0)1()( 1 =−= −τ  (11.13) 

 

Oznacza to, �e warto�� pr�du 
R
E

ti tL 632,0)( ==τ  wyznacza na osi odci�tych warto�� stałej 

czasowej. Sposób wyznaczania stałej czasowej zilustrowany jest na rys. 11.4. 

 

 

 
Rys. 11.4. Ilustracja sposobu wyznaczania stałej czasowej na podstawie zarejestrowanego 

przebiegu pr�du cewki 

 
 

 Wyznaczenie rozwi�zania na pr�d w stanie nieustalonym w obwodzie RL pozwala na 

okre�lenie przebiegu czasowego pozostałych wielko�ci w obwodzie. Korzystaj�c z zale�no�ci 

definicyjnej cewki 
dt
di

Lu L
L =  otrzymuje si� 
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 RL
t

L
L Ee

dt
tdi

Ltu /)(
)(

−
==  (11.14) 

 

Przebieg napi�cia na cewce w stanie nieustalonym w obwodzie szeregowym RL 

przedstawiono na rys. 11.5.  

 

 
Rys. 11.5. Przebieg napi�cia na cewce w stanie nieustalonym w obwodzie szeregowym RL 

 
 

Napi�cie na rezystorze R, jak wynika z prawa Ohma, jest proporcjonalne do pr�du  

 

 �
�
�

�
�
�
�

�
−==

−
RL

t

LR eEtRitu /1)()(  (11.15) 

i ma kształt identyczny z przebiegiem pr�du w obwodzie przedstawionym na rys. 11.3. 

 

11.2 Stan nieustalony w gał�zi szeregowej RC przy zał�czeniu napi�cia stałego 

Rozpatrzymy stan nieustalony w obwodzie szeregowym RC przy zerowych warunkach 

pocz�tkowych i zał�czeniu napi�cia stałego (rys. 11.6).  
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Rys. 11.6. Zał�czenie napi�cia stałego do obwodu szeregowego RC 

 

Wobec braku zasilania w obwodzie przed przeł�czeniem w warunki pocz�tkowe obwodu s� 

zerowe, co oznacza, �e 0)0( =−
Cu .  

 Po przeł�czeniu powstaje w obwodzie stan nieustalony, który po pewnym czasie 

prowadzi do powstania nowego stanu ustalonego. Stan nieustalony obwodu jest superpozycj� 

stanu ustalonego i przej�ciowego. Stan ustalony w obwodzie RC przy wymuszeniu stałym 

(ω=0) oznacza, �e kondensator stanowi przerw� (rys. 11.7a).  

 

   
Rys. 11.7 Schemat obwodu RC dla składowej a) ustalonej, b) przej�ciowej 

 

 Zgodnie z prawem napi�ciowym Kirchhoffa napi�cie ustalone kondensatora jest równe  

 

 EtuCu =)(  (11.16) 

 

Schemat obwodu dla stanu przej�ciowego (po zwarciu �ródła zasilaj�cego, dla którego 

odpowied� została wła�nie obliczona) ma posta� przedstawion� na rys. 11.7b. Stosuj�c prawo 

napi�ciowe Kirchhoffa dla tego obwodu i uwzgl�dniaj�c, �e 
dt

du
Ci Cp

Cp = , otrzymuje si� 

równanie ró�niczkowe jednorodne o postaci 
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 0=+ Cp
Cp u

dt

du
RC  (11.17) 

 

Równanie charakterystyczne odpowiadaj�ce mu przyjmuje wi�c posta� 

 

 01 =+RCs  (11.18) 

 

Równanie to posiada jeden pierwiastek RCs /11 −= . W zwi�zku z powy�szym jego 

rozwi�zanie wynikaj�ce ze wzoru (10.41) przyjmie uproszczon� posta� 

 

 RC
t

ts
Cp eAeAu

−
== 11

1  (11.19) 

 

W rozwi�zaniu tym współczynnik 1A  jest stał� całkowania, któr� nale�y wyznaczy� 

korzystaj�c z prawa komutacji. Rozwi�zanie całkowite b�d�ce sum� składowej ustalonej i 

przej�ciowej przybiera wi�c posta� 

 

 RC
t

CpCuC eAEtututu
−

+=+= 1)()()(  (11.20) 

 

Z prawa komutacji dla kondensatora wynika, �e )0()0( +− = CC uu , st�d wobec 0)0( =−
Cu  

otrzymuje si� 

 

 10 AE +=  (11.21) 

 

oraz  

 

EA −=1  

 

Rozwi�zanie czasowe okre�laj�ce przebieg napi�cia na kondensatorze przyjmuje wi�c posta� 
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C eEtu 1)(  (11.22) 
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Wprowadzaj�c poj�cie stałej czasowej τ  obwodu RC jako iloczynu rezystancji R i 

pojemno�ci C 

 

 RC=τ  (11.23) 

 

rozwi�zanie na napi�cie kondensatora w stanie nieustalonym mo�na zapisa� w postaci 

 

 �
�
�

�
�
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�
−=

−
τ
t

C eEtu 1)(  (11.24) 

 

Jak łatwo sprawdzi� podstawow� jednostk� stałej czasowej w obwodzie RC jest równie� 

sekunda (jednostk� rezystancji jest 1Ω = 1V/A, a jednostk� pojemno�ci jest 1F = 1As/V). Na 

rys. 11.8 przedstawiono przebiegi napi�cia na kondensatorze w stanie nieustalonym 

�
�
�

�
�
�
�

�
−=

−
τ
t

C eEtu 1)(  dla ró�nych warto�ci stałej czasowej.  

 

 
Rys. 11.8. Przebiegi napi�cia na kondensatorze w stanie nieustalonym przy ró�nych stałych 

czasowych 
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Im dłu�sza stała czasowa tym dłu�ej trwa stan przej�ciowy w obwodzie (zanikanie zmian 

napi�cia do zera). 

Łatwo wykaza�, �e po upływie 3 stałych czasowych ( τ3=t ) napi�cie uzyskuje prawie 

95% swojej warto�ci ustalonej a po 5 stałych czasowych a� 99,3%. Oznacza to, �e 

praktycznie po 5 stałych czasowych stan nieustalony w obwodzie zanika przechodz�c w stan 

ustalony. 

 Stał� czasow� mo�na wyznaczy� bezpo�rednio na podstawie zarejestrowanego 

przebiegu nieustalonego bez znajomo�ci warto�ci rezystancji i pojemno�ci, podobnie jak to 

miało miejsce w przypadku obwodu RL. Zauwa�my, �e dla τ=t  napi�cie na kondensatorze 

przyjmuje warto��  

 

 EeEuC 632,0)1()( 1 =−= −τ  (11.25) 

 

Oznacza to, �e napi�cie Etu tC 632,0)( ==τ  wyznacza na osi odci�tych warto�� stałej 

czasowej. Ilustruje to rys. 11.9. 

 

 
Rys. 11.9. Wyznaczanie stałej czasowej obwodu RC na podstawie przebiegu czasowego 

napi�cia kondensatora 
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Po okre�leniu funkcji opisuj�cej przebieg napi�cia na kondensatorze mo�na okre�li� przebieg 

czasowy pr�du w obwodzie. Korzysta si� przy tym z zale�no�ci definicyjnej kondensatora 

dt
du

Ci C
C = , zgodnie z któr�  

 

 RC
t

c
C e

R
E

dt
tdu

Cti
−

==
)(

)(  (11.26) 

 

Przebieg pr�du ładowania kondensatora w stanie nieustalonym w obwodzie RC dla ró�nych 

stałych czasowych przedstawia rys. 11.10. 

 

 
Rys. 11.10. Przebieg pr�du ładowania kondensatora w obwodzie RC 

 
 

W chwili komutacji wyst�puje skokowa zmiana warto�ci pr�du (pr�d kondensatora nie jest 

obj�ty komutacyjnym prawem ci�gło�ci). Przebieg pr�du kondensatora d��y do warto�ci 

ustalonej zerowej (w stanie ustalonym kondensator stanowi przerw� dla pr�du). Stała czasowa 

zmian tego pr�du jest identyczna jak napi�cia i równa RC=τ . 

 

 

Zadania sprawdzaj�ce 

Zadanie 11.1  
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Okre�li� przebieg czasowy napi�cia na kondensatorze w stanie nieustalonym w obwodzie 

przedstawionym na rys. 11.11. Zastosowa� metod� klasyczn�. Przyj�� nast�puj�ce warto�ci 

parametrów: R=10kΩ, C=10µF, mA2)( == Iti . 

 

 
Rys. 11.11. Schemat obwodu do zadania 11.1 

 

Rozwi�zanie 

Warunki pocz�tkowe w obwodzie wynikaj� ze stanu ustalonego obwodu przed 

przeł�czeniem, który wobec wymuszenia stałego ma posta� uproszczon� przedstawion� na 

rys. 11.12. 

 

 
Rys. 11.12. Schemat obwodu w stanie ustalonym przed przeł�czeniem dla wymuszenia 

stałego 

 

VIRutu CC 20)0()( === −  

 

Stan ustalony w obwodzie po przeł�czeniu dotyczy obwodu przedstawionego na rys. 11.13. 
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Rys. 11.13. Schemat obwodu w stanie ustalonym po przeł�czeniu  

 

VIRutu CuCu 102/)0()( === +  

 

Stan przej�ciowy dotyczy obwodu po przeł�czeniu przedstawionego na rys. 11.14 

 

 
Rys. 11.14 Schemat obwodu w stanie przej�ciowym po przeł�czeniu  

 

Równania ró�niczkowe obwodu: 

 

005,0

0
2

=+

=+

dt

du
u

dt

duR
Cu

Cp
Cp

Cp
Cp

 

 

Równanie charakterystyczne: 

 

200005.01 1 −=→=+ ss  

 

Rozwi�zanie równania ró�niczkowego: 

 
t

Cp Aetu 200)( −=  

 

Rozwi�zanie całkowite obwodu 

 
t

CpCuC Aetututu 20010)()()( −+=+=  

 

Z prawa komutacji dla kondensatora wynika równo�� 
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101020)0()0( =→+=→= +− AAuu CC  

 

Posta� rozwi�zania ostatecznego: 

 

( )t
C etu 200110)( −+=  

 

Stała czasowa obwodu jest wi�c równa s05,0200/1 ==τ  

 

 

Zadanie 11.2  

Okre�li� przebieg czasowy pr�du cewki w stanie nieustalonym w obwodzie przedstawionym 

na rys. 11.15. Zastosowa� metod� klasyczn�. Przyj�� nast�puj�ce warto�ci parametrów: 

R=2Ω, R1=5Ω, , L=2H, )sin(220)( tte =  

 

 
Rys. 11.15. Schemat obwodu do zadania 11.2 

 

Rozwi�zanie 

Warunki pocz�tkowe dotycz� obwodu przedstawionego na rys. 11.16. 

 

 
Rys. 11.16. Schemat obwodu do wyznaczania warunków pocz�tkowych 
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Stosuj�c do tego obwodu metod� symboliczn� otrzymuje si� kolejno 

 

1=ω  

2jLjZL == ω  

11
22
22
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Wobec odł�czenia �ródła podczas przeł�czenia stan ustalony w obwodzie po przeł�czeniu jest 

zerowy, st�d 

 

0)0(0)( =→= +
LuLu iti  

 

Stan przej�ciowy dotyczy obwodu z rys. 11.17 

 

 
Rys. 11.17 Schemat obwodu do wyznaczenia składowej przej�ciowej 

 

Równanie ró�niczkowe obwodu: 
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Po wstawieniu warto�ci liczbowych otrzymuje si� 
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0
6
5 =+ Lp
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dt

di
 

 

Równanie charakterystyczne 
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Rozwi�zanie równania ró�niczkowego 

 
t

Lp Aeti 6/5)( −=  

 

Wobec braku składowej ustalonej rozwi�zanie to jest jednocze�nie rozwi�zaniem pełnym. 

St�d 

 
t
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Z praw komutacji wynika 
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Rozwi�zanie pełne obwodu przyjmuje wi�c posta� 
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Lekcja 12. Metoda operatorowa Laplace’a 

 

Wst�p 

Opis obwodów elektrycznych w stanie nieustalonym poprzez układ równa� ró�niczkowych 

jest wygodn� form� analizy przy zastosowaniu metod numerycznych. W przypadku 

analizowania zjawisk zachodz�cych w tych obwodach z zastosowaniem metod analitycznych 

metoda ta jest �mudna przy du�ej liczbie elementów indukcyjnych i pojemno�ciowych i st�d 

jej zastosowanie ograniczone jest praktycznie do rz�du n=2. W takich przypadkach znacznie 

wygodniejsze jest zastosowanie metod operatorowych, z których najwa�niejsza to metoda 

operatorowa Laplace’a. Rachunek operatorowy jako alternatywa do metody klasycznej polega 

na algebraizacji równa� ró�niczkowych opisuj�cych dany obwód. W ten sposób układ równa� 

ró�niczkowych zostaje zast�piony układem równa� algebraicznych typu funkcyjnego. 

Zastosowanie przekształcenia Laplace’a upraszcza operacj� rozwi�zywania równa� 

ró�niczkowych zast�puj�c j� rozwi�zaniem układu równa� algebraicznych. Istota 

przekształcenia Laplace’a polega na tym, �e ka�dej funkcji czasu f(t) okre�lonej dla t>0 

odpowiada pewna funkcja F(s) okre�lona w dziedzinie liczb zespolonych i odwrotnie, ka�dej 

funkcji F(s) odpowiada okre�lona funkcja czasu f(t). 

W tej lekcji omówimy podstawy rachunku operatorowego Laplace’a. Przedstawione 

zostan� definicje przekształcenia prostego i odwrotnego oraz podstawowe własno�ci 

przekształcenia. Podamy przykłady obliczania transformat prostej i odwrotnej, ilustruj�ce 

istot� transformacji Laplace’a. 

 
 

12.1 Wiadomo�ci podstawowe dotycz�ce rachunku operatorowego Laplace’a 

Zastosowanie przekształcenia Laplace’a upraszcza operacj� rozwi�zywania równa� 

ró�niczkowych zast�puj�c j� rozwi�zaniem układu równa� algebraicznych. Istota 

przekształcenia Laplace’a polega na tym, �e ka�dej funkcji czasu f(t) okre�lonej dla t>0 

odpowiada pewna funkcja F(s) okre�lona w dziedzinie liczb zespolonych i odwrotnie, ka�dej 

funkcji F(s) odpowiada okre�lona funkcja czasu f(t). Funkcj� f(t) nazywamy oryginałem i 

oznaczamy mał� liter�. Funkcj� F(s) nazywamy transformat� funkcji okre�lon� w dziedzinie 
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zmiennej zespolonej s i oznaczamy du�� liter�. Zmienna s jest nazywana cz�stotliwo�ci� 

zespolon�, przy czym ωσ js += , gdzie � oznacza pulsacj�. 

W elektrotechnice najcz��ciej u�ywane jest jednostronne przekształcenie Laplace’a, 

okre�lone par� równa�: 
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w których c jest bli�ej nieokre�lon� stał� warunkuj�c� poło�enie granic całkowania w 

obszarze zbie�no�ci transformaty. Pierwsze z równa� definiuje proste przekształcenie 

Laplace’a przyporz�dkowuj�ce oryginałowi transformat� zmiennej zespolonej s, a drugie 

przekształcenie odwrotne dokonuj�ce transformacji odwrotnej, czyli wyznaczaj�ce funkcj� 

oryginału na podstawie F(s). Zakładamy przy tym, �e funkcja f(t) jest funkcj� czasu, zadan� 

dla t>0 i równ� 0 dla t<0 oraz, �e nie ro�nie szybciej ni� funkcja wykładnicza. Proste 

przekształcenie Laplace’a okre�lone wzorem (12.1) dokonuje transformacji funkcji czasu f(t) 

na funkcj� F(s) zmiennej zespolonej s. Przekształcenie odwrotne okre�lone wzorem (12.2) 

dokonuje transformacji funkcji zespolonej F(s) na funkcj� czasu f(t). Wzór ten pełni jedynie 

rol� definicji i w praktyce nie u�ywa si� go do wyznaczania transformaty odwrotnej, 

wykorzystuj�c w zamian własno�ci transformat Laplace’a. 

 

 

Przykład 12.1 

 

Wyznaczymy z definicji transformat� Laplace’a funkcji stałej f(t)=A. Z definicji (12.1) 

transformaty otrzymuje si� 
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Przykład 12.2 
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Jako drugi przykład wyznaczymy transformat� Laplace’a funkcji wykładniczej atetf =)( , 

gdzie w ogólno�ci βα ja += . Z zastosowania wzoru (12.1) otrzymuje si� 
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Po wstawieniu granic całkowania i zało�eniu, �e sa <  (warunek zbie�no�ci ci�gu) otrzymuje 

si� 
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−
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Nale�y podkre�li�, �e jednostronne przekształcenie Laplace’a jest okre�lone w przedziale od 

zera do niesko�czono�ci, st�d posta� funkcji dla czasu ujemnego nie ma �adnego wpływu na 

transformat� Laplace’a.  

Na przykład funkcja stała f(t)=1 oraz funkcja skoku jednostkowego f(t)=1(t) 

(funkcja skokowa Heaviside’a) okre�lona wzorem  
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dla

dla
t  (12.3) 

 

maj� identyczne transformaty Laplace’a, pomimo tego �e dla t < 0 s� inne (pierwsza równa 1 

a druga równa 0) gdy� w zakresie czasowym od zera do niesko�czono�ci nie ró�ni� si� 

niczym. 

  Jakkolwiek definicja przekształcenia Laplace’a umo�liwia obliczenie transformaty dla 

dowolnej funkcji czasu, w obliczeniach in�ynierskich posługujemy si� najcz��ciej tablicami 

transformat Laplace’a zebranymi w poradnikach matematycznych, wykorzystuj�c przy tym 

podstawowe własno�ci tego przekształcenia.  
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12.2 Podstawowe własno�ci przekształcenia Laplace’a. 

Z wielu istniej�cych własno�ci przekształcenia Laplace’a ograniczymy si� tutaj do kilku 

podstawowych, których znajomo�� jest konieczna do okre�lenia stanów nieustalonych w 

obwodach RLC.  

 

12.2.1 Liniowo�� przekształcenia 

Je�li współczynniki a1 i a2 s� dowolnymi stałymi to  

 

 [ ] )()()()( 22112211 sFasFatfatfaL +=+  (12.4) 

 

 [ ] )()()()( 22112211
1 tfatfasFasFaL +=+−  (12.5) 

 

gdzie symbole L  i 1−L  oznaczaj� odpowiednio transformaty: prost� i odwrotn� Laplace’a. Z 

własno�ci liniowo�ci przekształcenia wynika, �e przekształcenie Laplace’a spełnia zasad� 

superpozycji.  

 

Przykład 12.3 

Dla zilustrowania u�yteczno�ci twierdzenia o liniowo�ci przekształcenia Laplace’a 

zastosujemy je do obliczenia transformaty funkcji cos(�t). Korzystaj�c z definicji funkcji 

cosinusoidalnej otrzymuje si� 
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Skorzystamy tutaj z wyprowadzonego wcze�niej wzoru na transformat� funkcji wykładniczej. 

Podstawiaj�c do odpowiedniego wzoru i stosuj�c zasad� superpozycji otrzymuje si� 
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12.2.2 Transformata pochodnej funkcji czasu 

Transformata pochodnej funkcji czasu spełnia relacj� 
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 )0()(
)( +−=��
�

��

� fssF
dt

tdf
L  (12.6) 

 

W której )0( +f  oznacza warto�� pocz�tkow� funkcji f(t). Mno�enie funkcji F(s) przez 

zmienn� zespolon� s odpowiada w dziedzinie czasu ró�niczkowaniu funkcji. St�d operator s 

nazywany jest operatorem ró�niczkowania. 

 

 

12.2.3 Transformata całki funkcji czasu 

Transformata całki funkcji czasu spełnia relacj� 
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Pomno�enie funkcji F(s) przez 1/s odpowiada w dziedzinie czasu całkowaniu funkcji. St�d 

operator s-1 jest nazywany równie� operatorem całkowania. 

 

 

12.2.4 Przesuni�cie w dziedzinie cz�stotliwo�ci 

Rozwa�my przesuni�cie argumentu funkcji operatorowej Laplace’a. Oznacza to, �e zamiast 

transformaty F(s) bierzemy pod uwag� funkcj� F(s-a). Twierdzenie o przesuni�ciu argumentu 

zmiennej zespolonej s mówi, �e spełniona jest wówczas zale�no�� 

 

 { } )()( asFtfeL at −=  (12.8) 

 

Przesuni�cie argumentu zespolonego s transformaty o warto�� a odpowiada w dziedzinie 

czasu pomno�eniu funkcji oryginału przez funkcj� wykładnicz� eat. Korzy�ci płyn�ce z 

powy�szej własno�ci zademonstrujemy na przykładzie wyznaczania transformaty odwrotnej 

Laplace’a funkcji o przesuni�tym argumencie s. 

 

 

Przykład 12.4 
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Nale�y wyznaczy� odwrotn� transformat� Laplace’a funkcji F(s) zadanej w postaci 

9)2(
2

)( 2 ++
+=

s
s

sF  

 

W rozwi�zaniu problemu wykorzystamy ostatni� własno�� przekształcenia w odniesieniu do 

funkcji rozwa�anej w przykładzie 12.3. Zgodnie z wynikami uzyskanymi w tym przykładzie 

mamy { }
22cos(

ω
ω

+
=

s
s

tL  przy warto�ci � = 3. Wprowadzaj�c przesuni�cie o warto�� a = 2 

w dziedzinie zmiennej zespolonej s uzyskuje si� zadan� w tym przykładzie funkcj� 

operatorow� Laplace’a. Oznacza to, �e jej transformata odwrotna odpowiada funkcji 

( )te at ωcos− . St�d transformata odwrotna funkcji zadanej w przykładzie wynosi 
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Twierdzenie o przesuni�ciu pozwoliło uzyska� transformat� odwrotn� Laplace’a bez 

konieczno�ci wykonywania operacji całkowania zadanej w definicji przekształcenia 

odwrotnego. 

 

 

12.2.5 Przesuni�cie w dziedzinie czasu 

Transformata Laplace’a funkcji czasu o argumencie przesuni�tym wzgl�dem pocz�tku układu 

współrz�dnych spełnia nast�puj�c� zale�no�� 

 

 [ ] )()(1)( sFeatatfL as−=−⋅−  (12.9) 

 

Przesuni�cie argumentu funkcji oryginalnej f(t) w dziedzinie czasu f(t-a)tf →)(  odpowiada 

w dziedzinie cz�stotliwo�ci pomno�eniu transformaty Laplace’a funkcji oryginalnej F(s) 

(nieprzesuni�tej) przez funkcj� wykładnicz� ase− . 

 Własno�� powy�sza jest cz�sto wykorzystywana przy obliczaniu transformat 

nietypowych funkcji jak równie� przy analizie obwodów o wymuszeniach impulsowych. 
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 Tutaj zilustrujemy jej u�yteczno�� przy obliczaniu transformaty impulsu Diraca, 

zwanej funkcj� impulsow� Diraca. Impulsem Diraca nazywamy wielko�� )(tδ  o 

nast�puj�cych własno�ciach. 
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Impuls Diraca przyjmuje warto�� niesko�czon� tylko dla jednego punktu t = 0 a w 

pozostałym zakresie ma warto�� zerow�. Warto�� niesko�czona stwarza pewne trudno�ci 

obliczeniowe. Aby je przezwyci��y� wprowadza si� jej aproksymacj� w postaci  
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której wykres dla ró�nych warto�ci h przedstawiony jest na rys. 12.1.  

 

 
Rys. 12.1. Aproksymacja funkcji Diraca przez funkcj� impulsow� 
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Im mniejsza warto�� h tym bardziej funkcja aproksymuj�ca zbli�a si� swym wygl�dem do 

funkcji Diraca. W granicy przy 0→h  funkcja aproksymuj�ca jest zbie�na do rzeczywistej 

funkcji Diraca. Transformata Laplace’a dla funkcji aproksymuj�cej jest dana w postaci 
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Bior�c pod uwag�, �e delta Diraca jest granic� funkcji aproksymuj�cej otrzymuje si�  
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Transformata Laplace’a funkcji delty Diraca jest równa jedno�ci. 

 

12.2.6 Transformata splotu 

Splot stanowi wa�ne poj�cie w teorii obwodów, gdy� za jego po�rednictwem okre�la si� 

odpowiedzi czasowe obwodów rzeczywistych RLC. Splot dwu funkcji czasu f1(t) i f2(t) 

oznaczony w postaci )()( 21 tftf ∗  jest zdefiniowany w nast�puj�cy sposób 
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Transformata Laplace’a splotu jest równa zwykłemu iloczynowi transformat poszczególnych 

funkcji tworz�cych splot 

 

 [ ] )()()()( 2121 sFsFtftfL ⋅=∗  (12.16) 

 

Powy�sza własno�� nosi w matematyce nazw� twierdzenia Borela. Zauwa�my, �e mno�enie 

splotowe dwu funkcji w dziedzinie czasu odpowiada zwykłemu mno�eniu ich transformat w 

dziedzinie cz�stotliwo�ci. Własno�� ta jest szczególnie wygodna w analizie obwodów 

zarówno w stanie ustalonym jak i nieustalonym. Zamiast �mudnych operacji w dziedzinie 
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czasu wykonuje si� transformacj� Laplace’a funkcji czasowych a nast�pnie wszystkie 

operacje wykonuje na transformatach. 

 

12.3 Przykłady transformat Laplace’a 

Obliczanie transformat Laplace’a polega na zastosowaniu wzoru (12.1) przy zadanej funkcji 

oryginału i przeprowadzeniu działa� w nim okre�lonych (całkowanie funkcji i wyznaczenie 

warto�ci na granicach całkowania). Przykłady wyznaczania transformaty Laplace’a dla 

funkcji impulsowej Diraca, warto�ci stałej, funkcji wykładniczej i cosinusoidalnej zostały 

zaprezentowane na pocz�tku tej lekcji.  

Obliczanie transformat dla wi�kszo�ci funkcji, zwłaszcza bardziej zło�onych, nie jest 

procesem łatwym i dlatego w praktyce in�ynierskiej najcz��ciej posługujemy si� tablicami 

gotowych transformat Laplace’a, których �ródło znale�� mo�na w wielu poradnikach 

matematycznych jak równie� podr�cznikach po�wi�conych rachunkowi operatorowemu. W 

tablicy 12.1 zestawiono wybrane przykłady transformat Laplace’a szczególnie cz�sto 

wykorzystywanych przy rozwi�zywaniu stanów nieustalonych w obwodach RLC. W dalszej 

cz��ci tej lekcji b�d� one wykorzystane do wyznaczania transformat odwrotnych Laplace’a 

(funkcji czasu odpowiadaj�cych transformatom).  

 

 

  Tablica 12.1 Tablica wybranych transformat Laplace’a 

f(t) F(s) 
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)cos( te t ωα−  22)( ωα
α
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+
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Zawarto�� tablicy przedstawiaj�ca zbiór funkcji czasu wraz z odpowiadaj�cymi im 

transformatami mo�e słu�y� zarówno wyznaczaniu transformaty Laplace’a przy zadanej 

funkcji czasu jak i działaniu odwrotnemu, to jest wyznaczeniu oryginału na podstawie zadanej 

postaci transformaty. Przykładowo, je�li transformata dana jest wzorem 
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to odpowiadaj�ca mu funkcja oryginału odczytana z tablicy 12.1 ma posta� 

 

)5sin(15)( 2 tetf t−= . 

 

W dalszej cz��ci rozwa�a� podamy rozwini�cie tej metody pozwalaj�ce na wyznaczenie 

transformaty odwrotnej dla dowolnej postaci funkcji wymiernej F(s) korzystaj�c z tablicy 

12.1. 

 

12.4 Wyznaczanie odwrotnej transformaty Laplace’a 

Aby wyznaczy� funkcj� czasu f(t) na podstawie danej transformaty nale�y dokona� 

odwrotnego przekształcenia Laplace’a. Zale�no�� definicyjna okre�lona wzorem (12.2) jest 

raczej bezu�yteczna ze wzgl�du na konieczno�� całkowania zło�onych zwykle funkcji, jak 

równie� na nieokre�lone precyzyjnie granice całkowania (stała c w definicji nie jest dokładnie 

okre�lona). Najcz��ciej korzysta si� z po�rednich metod wyznaczania oryginału wynikaj�cych 

z własno�ci samego przekształcenia. Niezale�nie od metody zastosowanej do wyznaczenia 

oryginału, zakłada� b�dziemy, �e transformata Laplace’a zadana jest w postaci wymiernej, 

czyli ilorazu dwu wielomianów zmiennej zespolonej s o współczynnikach rzeczywistych.  
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Dodatkowo przyjmiemy, �e stopie� licznika jest mniejszy ni� stopie� mianownika. Je�li 

warunek powy�szy byłby niespełniony, nale�y podzieli� licznik przez mianownik tak, aby 

wymusi� spełnienie tego warunku. Sposób post�powania w takim przypadku zilustrujemy na 

przykładzie. 

 

 

Przykład 12.5 

Dana jest transformata F(s) o postaci 
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Dziel�c licznik przez mianownik według najwy�szych pot�g otrzymuje si� rozwini�cie 

funkcji na sum� dwu składników pot�gowych zmiennej s oraz funkcj� wymiern� spełniaj�c� 

warunek, �e stopie� licznika jest mniejszy ni� stopie� mianownika 
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Przy obliczaniu transformaty odwrotnej powy�szej zale�no�ci tylko ostatni (zło�ony) składnik 

wymaga specjalnego post�powania. Składnik stały (-1) odpowiada funkcji impulsowej Diraca 

a funkcja 2s odpowiada� b�dzie warto�ci pochodnej funkcji Diraca pomno�onej przez dwa. 

 Istnieje wiele metod obliczania transformaty odwrotnej Laplace’a, wykorzystuj�cych 

własno�ci przekształcenia. Do najbardziej popularnych nale�� metoda residuów, rozkładu 

funkcji wymiernej na ułamki proste, metoda Heaviside’a oraz metoda bazuj�ca na 

wykorzystaniu tablic transformat Laplace’a. Tutaj ograniczymy si� do dwu najbardziej 

uniwersalnych metod: metody residuów oraz metody tablicowej wykorzystuj�cej tablice 

transformat Laplace’a. 

 

12.4.1 Metoda residuów 

Załó�my, �e funkcja wymierna F(s) zadana jest w postaci ilorazu dwu wielomianów zmiennej 

zespolonej s, okre�lona wzorem (12.17) 
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)(
sM
sL

sF =  (12.18) 

 

Pierwiastki licznika funkcji transformaty s� nazywane zerami a pierwiastki mianownika 

biegunami. Zauwa�my, �e bieguny s� uto�samione z pierwiastkami równania 

charakterystycznego wyst�puj�cego w metodzie klasycznej lub metodzie warto�ciami 

własnymi macierzy stanu A. W metodzie residuów korzysta si� z nast�puj�cego twierdzenia. 

 

Twierdzenie 

Je�eli funkcja F(s) jest ilorazem dwu wielomianów L(s) i M(s), przy czym stopie� 

wielomianu mianownika jest wy�szy ni� stopie� wielomianu licznika (n>m) to oryginał 

funkcji f(t) okre�lony jest nast�puj�cym wzorem 
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Sumowanie odbywa si� po wszystkich biegunach funkcji operatorowej F(s) niezale�nie od 

tego, czy bieguny s� pojedyncze czy wielokrotne. 

 Residuum funkcji ][�res  wyznacza si� korzystaj�c ze wzorów wynikaj�cych z 

własno�ci przekształcenia Laplace’a. W przypadku bieguna l-krotnego wzór jest nast�puj�cy 
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Szczególnie proste zale�no�ci otrzymuje si� dla bieguna jednokrotnego is . W takim 

przypadku  l=1 i wzór na residuum ulega znacznemu uproszczeniu  
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Wzór (12.19) wykorzystuj�cy residuum funkcji jest stosowalny dla dowolnych biegunów 

funkcji F(s), w tym biegunów rzeczywistych, zespolonych, jednokrotnych i wielokrotnych. 

Jednak�e przy biegunach zespolonych obliczenie residuum jest procesem do�� zło�onym i 

metoda nie jest konkurencyjna wzgl�dem innych. 
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Przykład 12.6 

Jako pierwszy przykład rozpatrzmy wyznaczenie transformaty odwrotnej Laplace’a funkcji 

F(s) danej wzorem  
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=
ss

s
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Zadana funkcja ma dwa bieguny: 11 −=s  oraz 32 −=s . Wykorzystuj�c wzór (12.19) 

otrzymuje si� 
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Na podstawie wzoru (12.21) otrzymuje si� 
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Przykład 12.7 

Funkcja operatorowa F(s) dana jest wzorem 
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Wyst�puj� 3 bieguny funkcji, z których jeden jest pojedynczy a dwa pozostałe równe sobie 

(jeden biegun podwójny): s1=s2=-3, s3=-4. Wykorzystuj�c wzory (12.20) i (12.21) otrzymuje 

si� nast�puj�cy schemat oblicze� 
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12.4.2 Metoda wykorzystuj�ca tablice transformat 

Metoda residuów jakkolwiek koncepcyjnie bardzo prosta staje si� �mudna, je�li bieguny 

układu s� zespolone. Jest to szczególnie widoczne przy wysokich stopniach mianownika 

transmitancji operatorowej. W takich przypadkach zwykle korzystniejsze jest zastosowanie 

metody wykorzystuj�cej tablice transformat Laplace’a. 

Przy korzystaniu z tablic transformat nale�y poprzez elementarne przekształcenia 

doprowadzi� dan� transformat� do postaci standardowej znajduj�cej si� w tablicy transformat 

(u nas tablica 12.1) a nast�pnie odczyta� z niej oryginał. Jest ona szczególnie wygodna je�li 

bieguny układu s� zespolone, gdy� w procesie przekształcania transformaty nie wyst�puje 

potrzeba wyznaczania tych biegunów a wszystkie obliczenia dokonywane s� na warto�ciach 

rzeczywistych. W praktyce przy stosowaniu tej metody transmitancj� wy�szych rz�dów (n>2) 

rozkłada si� na składniki rz�du drugiego i wszystkie przekształcenia dokonuje na 

wielomianach rz�du pierwszego lub drugiego. Id� metody wyja�nimy na przykładach 

liczbowych 

 

 

Przykład 12.8 

Obliczy� transformat� odwrotn� Laplace’a dla funkcji F(s) danej w postaci 
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Wobec zespolonych pierwiastków mianownika wykorzystamy tablic� transformat 12.1. 

Porównanie postaci danej transformaty z danymi zawartymi w tablicy wskazuje, �e nale�y j� 

doprowadzi� do postaci transformaty odpowiadaj�cej funkcji sinusoidalnej tłumionej 

wykładniczo (wiersz 6 w tablicy). Kolejno�� czynno�ci jest tu nast�puj�ca 
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Porównanie tej postaci z wierszem szóstym tablicy 12.1 pokazuje, �e 5,0=α  a 4/3=ω . 

Funkcja oryginału jest wi�c okre�lona wzorem 
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)4/3sin(3/4)( 5,0 tetf t−=  

 

 

Przykład 12.9 

Jako przykład drugi rozpatrzymy transformat� trzeciego rz�du o biegunach zespolonych.  
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W tym przypadku przed zastosowaniem metody tablicowej nale�y najpierw rozło�y� funkcj� 

zadan� na składniki o rz�dach nie wi�kszych ni� drugi. Ogóln� posta� rozkładu zapiszemy w 

nast�puj�cej formie 
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Współczynniki A, B i C rozkładu nale�y wyznaczy� w taki sposób, aby obie strony zale�no�ci 

równały si� sobie. Współczynnik A mo�na wyznaczy� stosuj�c metod� residuum, zgodnie z 

któr� 
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Wobec zespolonych warto�ci biegunów drugiego składnika rozkładu współczynniki B i C 

najlepiej jest wyznaczy� jako ró�nic� funkcji zadanej F(s) i składnika pierwszego rz�du, to 

jest 
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St�d funkcja zadana F(s) mo�e by� zapisana w postaci 
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Ze wzgl�du na liniowo�� przekształcenia Laplace’a transformata odwrotna sumy jest równa 

sumie transformat odwrotnych ka�dego składnika oddzielnie. Pierwszy składnik sumy 

odpowiada trzeciemu wierszowi tablicy 12.1. St�d 
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Składnik drugi wymaga wykonania wst�pnych przekształce� doprowadzaj�cych jego posta� 

do wierszy szóstego i siódmego tablicy 12.1. W efekcie tych przekształce� otrzymuje si� 
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Transformata odwrotna tego wyra�enia mo�e by� zatem zapisana w postaci 
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St�d na mocy twierdzenia o liniowo�ci transformata odwrotna Laplace’a zadanej funkcji F(s) 

jest sum� transformat odwrotnych obu składników rozkładu 
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Zadania sprawdzaj�ce 

Zadanie 12.1 

Wyznaczy� transformat� odwrotn� Laplace’a dla transmitancji operatorowej F(s)  
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Rozwi�zanie 

W rozwa�anym przypadku wszystkie bieguny s� rzeczywiste i pojedyncze. Ich warto�ci s� 

równe: s1=-1, s2=-2, s3=-5. Najskuteczniejsz� metod� pozostaje w tym przypadku metoda 

residuów, zgodnie z któr� 
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Warto�� funkcji residuum dla poszczególnych biegunów jest równa 
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Sumuj�c poszczególne składniki otrzymujemy 
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Zadanie 12.2 

Wyznaczy� transformat� odwrotn� Laplace’a dla transmitancji operatorowej F(s)  
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Rozwi�zanie 

W rozwa�anym przypadku wszystkie bieguny s� rzeczywiste, przy czym jeden z nich jest 

podwójny. Ich warto�ci s� równe: s1=-2, s2=-3, s3=s4=-5. Najskuteczniejsz� metod� pozostaje 

w tym przypadku metoda residuów, zgodnie z któr� 
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Warto�� funkcji residuum dla poszczególnych biegunów jest równa 
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Sumuj�c poszczególne składniki otrzymujemy 
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Zadanie 12.3 

 Wyznaczy� transformat� odwrotn� Laplace’a dla transmitancji operatorowej  
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Rozwi�zanie 

W rozwa�anym przypadku mamy do czynienia z biegunami zespolonymi, st�d przy 

wyznaczaniu transformaty odwrotnej Laplace’a wygodniejsza jest metoda wykorzystuj�ca 

tablice transformat. W tym celu przekształcimy wyra�enie transformaty do postaci 
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Z porównania szóstego i siódmego wiersza w tablicy 12.1 z wyra�eniem opisuj�cym zadan� 

transformat� otrzymuje si� 
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Lekcja 13. Metoda operatorowa analizy stanów nieustalonych w obwodach 

elektrycznych 

 

Wst�p 

W metodzie operatorowej Laplace’a zast�puje si� układ równa� ró�niczkowych poprzez 

układ równa� algebraicznych zmiennej zespolonej s. Jakkolwiek bezpo�rednie zastosowanie 

transformacji Laplace’a do równa� ró�niczkowych opisuj�cych obwód elektryczny pozwala 

uzyska� opis obwodu w dziedzinie operatorowej, najlepsz� metod� analizy obwodów w stanie 

nieustalonym przy zastosowaniu przekształcenia Laplace’a jest okre�lenie transformat pr�dów 

i napi�� bezpo�rednio na podstawie obwodu bez konieczno�ci układania równa� 

ró�niczkowo-całkowych.  

 W tej lekcji wprowadzimy metod� operatorow� Laplace’a do analizy stanu 

nieustalonego w obwodzie RLC bezpo�rednio na podstawie struktury obwodu bez stosowania 

równa� ró�niczkowych. Podamy modele operatorowe rezystora, cewki i kondensatora. 

Zostanie wprowadzona metoda superpozycji stanów ustalonego i przej�ciowego rozdzielaj�ca 

analiz� obwodu w stanie ustalonym po przeł�czeniu od analizy w stanie przej�ciowym. Zalet� 

takiego podej�cia jest znaczne uproszczenie oblicze�, zwłaszcza przy wyst�pieniu �ródeł 

sinusoidalnych. 

 

 

13.1 Modele operatorowe elementów obwodu 

Aby uzyska� bezpo�rednie przetworzenie postaci oryginalnej obwodu na obwód w dziedzinie 

operatorowej Laplace’a nale�y ka�dy element obwodu zast�pi� odpowiednim modelem w 

dziedzinie operatorowej. Tutaj podamy te modele dla trzech podstawowych elementów 

obwodu RLC. 

 

13.1.1 Rezystor 

Prawo Ohma dotycz�ce warto�ci chwilowych pr�du i napi�cia dla rezystora mo�na zapisa� w 

postaci 

 

 )()( tRitu RR =  (13.1) 
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Jest to równanie algebraiczne wi���ce pr�d i napi�cie na zaciskach elementu. Stosuj�c 

transformacj� Laplace’a do obu stron równania otrzymuje si� 

 

 )()( sRIsU RR =  (13.2) 

 

Jak wynika z powy�szej zale�no�ci impedancja operatorowa dla rezystora jest równa samej 

rezystancji RsZR =)( . Rys. 13.1 przedstawia model operatorowy rezystora, obowi�zuj�cy w 

dziedzinie zmiennej zespolonej s. 

 

 

 
Rys. 13.1. Model operatorowy rezystora 

 

 

13.1.2 Cewka 

Dla uzyskania modelu operatorowego cewki idealnej zastosujemy przekształcenie Laplace’a 

bezpo�rednio do równania opisuj�cego cewk� w dziedzinie czasu  
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i wykorzystamy własno�� dotycz�c� transformaty pochodnej. W efekcie otrzymuje si� 

 

 )0()()( +−= LLL LissLIsU  (13.4) 

 

Powy�szemu równaniu mo�na przyporz�dkowa� schemat obwodowy cewki w dziedzinie 

operatorowej przedstawiony na rys. 13.2  
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Rys.13.2 Model operatorowy cewki idealnej 

 

 

Jest to poł�czenie szeregowe impedancji operatorowej odpowiadaj�cej cewce idealnej i �ródła 

napi�ciowego. Zaciski A-B modelu odpowiadaj� zaciskom A-B w oryginalnym symbolu 

cewki. Impedancja sLsZL =)(  jest impedancj� operatorow� cewki a )0( +
LLi  reprezentuje 

�ródło napi�cia stanowi�ce integraln� cz��� modelu. 

 

 

13.1.3 Kondensator 

Dla uzyskania modelu operatorowego kondensatora idealnego skorzystamy z jego opisu w 

dziedzinie czasu  

 
dt

du
Cti C

C =)(  (13.5) 

Zastosujemy przekształcenie Laplace’a do obu stron równania kondensatora. W efekcie takiej 

operacji otrzymuje si� 
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Przepiszemy t� zale�no�� w postaci 
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Równaniu powy�szemu mo�na przyporz�dkowa� schemat operatorowy kondensatora 

przedstawiony na rys. 13.3. 
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Rys. 13.3 Model operatorowy kondensatora idealnego 

 

 

W modelu tym funkcja 
sC

Z C

1=  reprezentuje impedancj� operatorow� kondensatora a 

s
uC )0( +

 - �ródło napi�ciowe stanowi�ce integraln� cz��� modelu. 

 Modele operatorowe odpowiadaj�ce podstawowym elementom obwodu pozwalaj� 

przyporz�dkowa� ka�demu obwodowi rzeczywistemu jego schemat zast�pczy w dziedzinie 

transformat. W schemacie tym niezerowe warunki pocz�tkowe uwzgl�dnione s� poprzez 

dodatkowe �ródła napi�cia wyst�puj�ce w modelu operatorowym cewki i kondensatora. Taki 

sposób podej�cia do analizy stanu nieustalonego jest wygodny ze wzgl�du na to, �e 

umo�liwia napisanie równa� (algebraicznych, funkcyjnych) w postaci operatorowej 

bezpo�rednio na podstawie schematu zast�pczego bez potrzeby tworzenia równa� 

ró�niczkowych opisuj�cych obwód. 

 

 

13.2 Prawa Kirchhoffa dla transformat 

 Dla schematu operatorowego obwodu słuszne s� prawa Kirchhoffa, analogiczne do 

praw obowi�zuj�cych w dziedzinie czasu.  

 

Prawo pr�dowe  

Suma transformat pr�dów w dowolnym w��le obwodu elektrycznego jest równa zeru 
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Prawo napi�ciowe 

Suma transformat napi�� gał�ziowych w dowolnym oczku obwodu elektrycznego jest równa 

zeru 
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W równaniach tych transformaty pr�dów i napi�� zast�piły warto�ci czasowe wyst�puj�ce w 

podstawowej wersji praw Kirchhoffa. Znaki pr�dów i napi�� wyst�puj�cych w równaniach 

(13.8) i (13.9) ustalane s� w identyczny sposób jak w przypadku podstawowej wersji praw 

Kirchhoffa podanych dla wielko�ci rzeczywistych. 

 

 

13.3 Obliczenia pr�dów i napi�� w obwodzie metod� operatorow� 

 Obliczenia pr�dów i napi�� w stanie nieustalonym obwodu metod� operatorow� 

sprowadza� si� b�d� do wyznaczenia transformaty odpowiedniej wielko�ci a nast�pnie 

obliczenia transformaty odwrotnej Laplace’a dla okre�lenia zmiennej w dziedzinie czasu. Do 

obliczenia transformat pr�dów i napi�� mo�na stosowa� wszystkie poznane dot�d metody 

analizy obwodów, w tym metod� równa� Kirchhoffa, oczkow�, potencjałów w�złowych, 

Thevenina i Nortona operuj�ce transformatami Laplace’a zamiast warto�ciami zespolonymi 

czy warto�ciami w dziedzinie czasu (dla obwodu rezystancyjnego). 

 Podstawowymi zaletami metody operatorowej jest łatwo�� uwzgl�dnienia 

niezerowych warunków pocz�tkowych (przez wprowadzenie �ródeł napi�ciowych w modelu 

operatorowym) oraz sprowadzenie operacji ró�niczkowych do działa� algebraicznych.  

 

W ogólno�ci rozwi�zuj�c stan nieustalony w obwodzie metod� operatorow� nale�y 

wyró�ni� kilka etapów. 

1. Okre�lenie warunków pocz�tkowych w obwodzie, poprzez wyznaczenie rozwi�zania 

ustalonego obwodu przed przeł�czeniem i obliczenie warto�ci napi�� na kondensatorach i 

pr�dów cewek w chwili −= 0t , to jest )0( −
Li  oraz )0( −

Cu  

2. Okre�lenie rozwi�zania obwodu w stanie ustalonym po przeł�czeniu przy zastosowaniu 

metody symbolicznej z wykorzystaniem dowolnej metody analizy. Wynikiem jest posta� 

czasowa rozwi�zania ustalonego pr�dów cewek )(tiLu  i napi�� kondensatorów )(tuCu . 
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Przez zało�enie t=0 otrzymuje si� warto�ci pr�dów i napi�� w chwili pocz�tkowej, to jest 

)0( +
Lui  oraz )0( +

Cuu . 

3. Okre�lenie rozwi�zania obwodu w stanie przej�ciowym po przeł�czeniu przy 

zastosowaniu metody operatorowej. Dla otrzymania takiego rozwi�zania nale�y wykona� 

nast�puj�ce etapy: 

• utworzenie schematu obwodu dla składowej przej�ciowej poprzez wyeliminowanie 

�ródeł zewn�trznych wymuszaj�cych (zwarcie �ródeł napi�cia i rozwarcie �ródeł 

pr�du); obwód rzeczywisty dla składowej przej�ciowej w dziedzinie czasu nie zawiera 

�adnych �ródeł wymuszaj�cych 

• okre�lenie warunków pocz�tkowych dla składowej przej�ciowej przy wykorzystaniu 

praw komutacji, zgodnie z którymi )0()0()0( ++− += pu xxx ; z równania tego wynikaj� 

nast�puj�ce wzory na warunki pocz�tkowe dla składowych przej�ciowych pr�du 

cewki i napi�cia kondensatora 

 

 )0()0()0( +−+ −= LuLLp iii  (13.10) 

 )0()0()0( +−+ −= CuCCp uuu  (13.11) 

 

• utworzenie schematu operatorowego obwodu w stanie przej�ciowym poprzez 

zast�pienie elementów rzeczywistych obwodu ich modelami operatorowymi dla 

składowej przej�ciowej i rozwi�zanie obwodu wzgl�dem poszukiwanych pr�dów i 

napi�� operatorowych 

• wyznaczenie transformaty odwrotnej Laplace’a dla poszukiwanych wielko�ci 

przej�ciowych okre�lonych w punkcie poprzednim; w wyniku otrzymuje si� )(tiLp  

oraz )(tuCp . 

4. Rozwi�zanie obwodu w stanie nieustalonym jest sum� składowej ustalonej oraz składowej 

przej�ciowej, to jest  

 

 )()()( tititi LpLuL +=  (13.12) 

 )()()( tututu CpCuC +=  (13.13) 
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Składowa przej�ciowa zanika z czasem do zera i pozostaje jedynie składowa ustalona 

okre�laj�ca przebieg wielko�ci w stanie ustalonym. Taka metodyka rozwi�zania stanów 

nieustalonych przy zastosowaniu transformacji Laplace’a nosi nazw� metody superpozycji 

stanów, gdy� rozdziela w sposób jawny stan ustalony od stanu przej�ciowego. Jest 

szczególnie zalecana przy wymuszeniach sinusoidalnych, cho� obowi�zuje równie� dla 

obwodów pr�du stałego. Zalet� takiego podej�cia jest jej uniwersalno�� i stosowalno�� do 

ka�dego obwodu liniowego RLC niezale�nie od rodzaju wymuszenia (wymuszenia stałe lub 

sinusoidalne maj� jedynie wpływ na stan ustalony i s� wyeliminowane przy rozwi�zywaniu 

stanu przej�ciowego).  

 Nale�y podkre�li�, �e rozbicie stanu nieustalonego na ustalony i przej�ciowy jest 

zalecane jedynie przy istnieniu wymusze� sinusoidalnych w obwodzie po przeł�czeniu. Je�li 

�ródła takie nie wyst�puj� schemat operatorowy mo�e dotyczy� obwodu całkowitego, bez 

rozbijania go na schemat dla składowej ustalonej i przej�ciowej. W takim przypadku 

pozostawia si� zewn�trzne �ródła wymuszaj�ce w obwodzie przyjmuj�c ich model 

operatorowy, czyli zast�puj�c posta� czasow� �ródła (warto�� stała A przy wymuszeniu 

stałym) przez funkcj� 
s
A

. Warunki pocz�tkowe równie� nie podlegaj� modyfikacji, co 

oznacza, �e )0()0( −+ = LL ii  oraz )0()0( −+ = CC uu . 

 

 

Przykład 13.1 

Wyznaczy� przebieg czasowy napi�cia na kondensatorze w stanie nieustalonym w obwodzie 

z rys. 13.4 po przeł�czeniu. Dane liczbowe parametrów obwodu s� nast�puj�ce: 

Ω== 121 RR , HL 1= , FC 1= , 10)(2 =te V. �ródło wymuszaj�ce sinusoidalne dane jest w 

nast�puj�cej postaci )4/sin(25)(1 π+= tte V. 
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Rys. 13.4. Schemat obwodu do przykładu 13.10. 

 

Rozwi�zanie 

W rozwi�zaniu problemu wyznaczymy najpierw warunki pocz�tkowe w obwodzie 

rozwi�zuj�c stan ustalony przed przeł�czeniem. Poniewa� przed przeł�czeniem w obwodzie 

wyst�powały dwa �ródła: stałe i sinusoidalne w obliczeniu warunków pocz�tkowych (stan 

ustalony przed przeł�czeniem) nale�y zastosowa� metod� superpozycji �ródeł.  
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Rys. 13.5 Schematy obwodu: a) w stanie ustalonym przed przeł�czeniem (�ródło 

sinusoidalne), b) w stanie ustalonym przed przeł�czeniem (�ródło stałe), c) w stanie 

ustalonym po przeł�czeniu, d) schemat operatorowy dla składowej przej�ciowej 

 

 

Schemat obwodu w stanie ustalonym przed przeł�czeniem przy wymuszeniu sinusoidalnym 

przedstawiony jest na rys. 13.5a. Wobec rezonansu równoległego w gał�zi LC pr�d 

wydawany przez �ródło jest równy zeru a napi�cie na tej gał�zi jest równe napi�ciu �ródła. 

St�d  

 

 )4/sin(25)()1( π+= ttuCu  

 

Pr�d cewki (warto�� skuteczna zespolona) dany jest wzorem 

 

 4/
4/

)1( 5
1

5 π
π

j
j

Lu e
j

e
I −==  

 

co odpowiada postaci czasowej  

 

 )4/sin(25)()1( π−= ttiLu  

 

Uwzgl�dniaj�c �ródło stałe e2(t) uzyskuje si� znaczne uproszczenie obwodu (cewka dla pr�du 

stałego w stanie ustalonym stanowi zwarcie a kondensator przerw�) jak to przedstawiono na 

rys. 13.5b. Rozwi�zanie na pr�d cewki i napi�cie kondensatora ma wi�c posta�:  

 

0)()2( =tuCu  

10
1

10
)()2( ==tiLu  

 

Dokonuj�c superpozycji obu rozwi�za� otrzymuje si� 

 

 )4/sin(2510)()()( )2()1( π−+=+= ttititi LuLuLu  
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 )4/sin(25)()()( )2()1( π+=+= ttututu CuCuCu  

 

St�d warunki pocz�tkowe s� nast�puj�ce: 5)0( =−
Cu , 5)0( =−

Li . 

Po przeł�czeniu w obwodzie pozostaje jedynie �ródło sinusoidalne e1(t). Schemat 

obwodu dla tego wymuszenia pokazany jest na rys. 13.5c. Z analizy tego obwodu wynika 

nast�puj�ca procedura rozwi�zania. Wobec rezonansu równoległego w gał�zi LC pr�d 

wydawany przez �ródło jest równy zeru a napi�cie na tej gał�zi jest równe napi�ciu �ródła. 

St�d  

 

 )4/sin(25)( π+= ttuCu  

 

Pr�d cewki (warto�� skuteczna zespolona) dany jest wzorem 

 

 4/
45

5
1

5 πj
j

Lu e
j

e
I −==

�

 

 

co odpowiada postaci czasowej  

 

 )4/sin(25)( π−= ttiLu  

 

Stan pocz�tkowy dla składowej ustalonej pr�du cewki i napi�cia kondensatora przyjmuje wi�c 

nast�puj�ce warto�ci: 

 

5)0( =+
Cuu  

 

oraz 

 

5)0( −=+
Lui  

 

Warunki pocz�tkowe dla składowej przej�ciowej pr�du i napi�cia s� zatem równe: 

 

 0)0()0()0( =−= +−+
CuCCp uuu  
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 10)0()0()0( =−= +−+
LuLLp iii  

 

Schemat operatorowy obwodu przedstawiono na rys. 13.5d (�ródło wewn�trzne przy 

kondensatorze nie wyst�puje, bo 0)0( =+
Cpu . Zastosowanie metody potencjałów w�złowych 

do wyznaczenia postaci operatorowej rozwi�zania prowadzi do wyniku  

 

 
15,0

10
5,0/1

/10
)( 2 ++

−=
++

−=
ssss

s
sUCp  

 

Wobec zespolonych warto�ci własnych (pierwiastków mianownika transformaty napi�cia) w 

wyznaczaniu oryginału zastosujemy metod� wykorzystuj�c� tablice transformat. W zwi�zku z 

powy�szym transformat� przedstawimy w postaci przekształconej 

 

( )
( ) ( )

( )
( ) ( )22222

16/1525,0

16/15
33,10

16/1525,0

15/161016/15
15,0

10
)(

++
−=

++

⋅⋅−=
++

−=
ssss

sUCp  

 

 

Powy�szej funkcji operatorowej mo�na przyporz�dkowa� nast�puj�c� posta� czasow� (patrz 

wiersz szósty tablicy 12.1) 

 

( )tetu t
Cp 16/15sin33,10)( 25,0−−=  

 

Rozwi�zanie całkowite okre�laj�ce napi�cie kondensatora jest sum� składowej ustalonej i 

przej�ciowej 

 

( )tettututu t
CpCuC 16/15sin33,10)4/sin(25)()()( 25,0−−+=+= π  

 

Składowa przej�ciowa zanika z biegiem czasu ze stał� czasow� 4=τ  i po około 5 stałych 

czasowych pozostaje jedynie składowa ustalona sinusoidalna. 

 

Zadania sprawdzaj�ce 

Zadanie 13.1  
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Okre�li� przebieg napi�cia na kondensatorze w stanie nieustalonym po przeł�czeniu metod� 

operatorow� w obwodzie przedstawionym na rys. 13.6. Przyj�� nast�puj�ce parametry 

obwodu:R1=50Ω, R2=100Ω, C1=10µF, C2=20µF, 50)(1 =te V, 100)(2 =te V. 

 

 

Rys. 13.6 Schemat obwodu do zadania 13.1 

 

Rozwi�zanie 

Warunki pocz�tkowe: 

50)0( 11 ==− euC  

100)0( 22 ==− euC  

 

Ze wzgl�du na wymuszenie stałe nie zachodzi potrzeba stosowania metody superpozycji 

stanu. Schemat operatorowy obwodu w stanie nieustalonym przedstawiony jest na rys. 13.7 

 

 
Rys. 13.7 Schemat operatorowy obwodu 

 

Z metody potencjałów w�złowych zastosowanych do obwodu z rys. 9.18 wynika 

 



 328

( ) ( )
55

2
5

1
5

10210100/150/1

0102010
100
100

50
50

)( −−

+−+−

+++

⋅+++
=

ss

uu
sssU

CC

C  

 

( )10003
105,2250

)(
5

+
⋅+=

ss
s

sUC  

 

Bieguny układu: 

 

s1 = 0 

s2 = -1000 

 

Transformata odwrotna Laplace’a 

 
st

Cs
st

CsC essUsesUtu )1000)((lim)(lim)( 10000 ++= −→→  

 

t
C etu 1000

3
50

3
250

)( −+=  

 

W stanie ustalonym przy ∞→t  mamy 
3

250
)( =tuCu V. 

 

 

 

Zadanie 13.2  

Okre�li� pr�d cewki w stanie nieustalonym po przeł�czeniu w obwodzie przedstawionym na 

rys. 13.8. Przyj�� nast�puj�ce warto�ci parametrów obwodu: R=2Ω , L=1H, C=1/4F, 

)454sin(210)( otte += . 
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Rys. 13.8. Schemat obwodu do zadania 13.2 

 

Rozwi�zanie 

1) Warunki pocz�tkowe w obwodzie: 

4=ω  

2
5,2

44
10 45

=
+

=
j

e
I

oj

L  

)4sin(5,2)( ttiL =  

0)0( =−
Li  

0)0( =−
Cu  

 

2) Stan ustalony po przeł�czeniu w obwodzie (rys. 13.9) 

 

 

 
Rys. 13.9. Schemat obwodu w stanie ustalonym po przeł�czeniu 
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o
o

j
j

Lu e
jj

e
I 31,11

45

77.2
142

10 −=
−+

=  

oj
LuCu eIjU 31,10177,21 −=⋅−=  

)31,114sin(277,2)( o
Lu tti −=  

)31,1014sin(277,2)( o
Cu ttu −=  

76,0)0( −=+
Lui  

84,3)0( −=+
Cuu  

 

3) Stan przej�ciowy po przeł�czeniu 

Schemat operatorowy przedstawiony jest na rys. 13.10. 

 

 
Rys. 13.10 Schemat operatorowy obwodu po przeł�czeniu 

 

Warunki pocz�tkowe dla stanu przej�ciowego: 

 

76,0)0()0()0( =−= +−+
LuLLp iii  

84,3)0()0()0( =−= +−+
CuCCp uuu  

 

Posta� operatorowa rozwi�zania 
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42
84,376,0

/42
/)0()0(

)( 2 ++
−=

++
−

=
++

ss
s

ss

suLi
sI CpLp

Lp  

 

Wobec zespolonych biegunów zastosujemy metod� tablicow� okre�lenia transformaty 

odwrotnej. Zgodnie z ni� 

 

( ) ( )22 31

3
3

1
6,4)1(76,0

)(
++

⋅−+
=

s

s
sILp  

 

)3sin(67,2)3cos(76,0)( teteti tt
Lp

−− −=  

 

Rozwi�zanie całkowite na pr�d cewki w stanie nieustalonym 

 

)3sin(67,2)3cos(76,0)31,114sin(277,2)()()( tetettititi tto
LpLuL

−− −+−=+=  
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Lekcja 14. Stan nieustalony w obwodzie RLC przy zał�czeniu napi�cia 

stałego 

 
Wst�p 

Jednym z najwa�niejszych przypadków stanu nieustalonego s� zjawiska powstaj�ce w 

obwodzie RLC zawieraj�cym jednocze�nie cewk� i kondensator. W obwodzie takim powstaj� 

godne uwagi zjawiska, które znalazły ogromne zastosowanie w wielu dziedzinach elektroniki 

i elektrotechniki. 

W tej lekcji zostanie przedstawiona analiza stanu nieustalonego w obwodzie 

szeregowym RLC. Analiza zostanie przeprowadzona przy zastosowaniu rachunku 

operatorowego Laplace’a. W zale�no�ci od warto�ci rezystancji mog� powsta� trzy przypadki 

rozwi�zania: przypadek oscylacyjny, gdy aktualna rezystancja obwodu jest mniejsza od 

krytycznej, przypadek aperiodyczny krytyczny, gdy ta rezystancja jest równa rezystancji 

krytycznej oraz przypadek aperiodyczny, gdy rezystancja obwodu jest wi�ksza od krytycznej. 

Szczególnie interesuj�cy jest przypadek oscylacyjny, w którym przy zasilaniu obwodu 

napi�ciem stałym powstaj� drgania sinusoidalne o tłumionej amplitudzie. Przy rezystancji 

równej zeru w obwodzie powstaj� drgania sinusoidalne niegasn�ce. 

 
 

14.1 Równanie operatorowe obwodu 
Rozpatrzmy zał�czenie napi�cia stałego E do gał�zi szeregowej RLC przedstawionej na rys. 

14.1.  

 

 
Rys. 14.1. Zał�czenie napi�cia stałego do obwodu szeregowego RLC 
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Wobec zerowych warunków pocz�tkowych (brak wymuszenia w obwodzie przed 

przeł�czeniem) mamy 0)0( =−
Cu , 0)0( =−

Li .  

Stan ustalony w obwodzie przy wymuszeniu stałym nie wymaga specjalnych oblicze�, 

gdy� wobec przerwy, jak� reprezentuje kondensator, pr�d w obwodzie nie płynie ( 0)( =tiLu ) 

a napi�cie na kondensatorze jest równe napi�ciu zasilaj�cemu EtuCu =)( .  

 

 
Rys. 14.2 Schemat operatorowy obwodu RLC w stanie nieustalonym 

 

Schemat operatorowy obwodu w stanie nieustalonym przedstawiony jest na rys. 14.2. 

Warunki pocz�tkowe napi�cia kondensatora i pr�du cewki okre�laj� równania 

 

 0)0()0( == −+
CC uu  (14.1) 

 0)0()0( == −+
LL ii  (14.2) 

 

Z prawa napi�ciowego Kirchhoffa zastosowanego do obwodu wynika nast�puj�ca posta� 

operatorowa pr�du cewki 

 

 

LC
s

L
R

s

LE
sCRsL

sE
sI

1
/

/1
/

)(
2 ++

=
++

=  (14.3) 

 

Dla wyznaczenia transformaty odwrotnej nale�y obliczy� pierwiastki mianownika 

transmitancji, czyli  

 

 0
12 =++

LC
s

L
R

s  (14.4) 
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W wyniku rozwi�zania tego równania otrzymuje si� dwa pierwiastki (bieguny układu) 

 

 
LCL

R
L

R
s

1
22

2

1 −�
�

�
�
�

�+−=  (14.5) 

 

 
LCL

R
L

R
s

1
22

2

2 −�
�

�
�
�

�−−=  (14.6) 

 

Z postaci wzoru opisuj�cego bieguny wynika, �e w zale�no�ci od znaku funkcji 

podpierwiastkowej mo�liwe s� 3 przypadki rozwi�zania. 

• Przypadek aperiodyczny dla 
C
L

R 2> . Przy spełnieniu tego warunku oba bieguny s� 

rzeczywiste i ujemne. Charakter zmian pr�du w obwodzie w stanie przej�ciowym jest 

aperiodyczny (nieokresowy) zanikaj�cy do zera w sposób wykładniczy. 

• Przypadek aperiodyczny krytyczny wyst�puj�cy dla 
C
L

R 2= . Przy spełnieniu tego 

warunku oba bieguny s� rzeczywiste i równe sobie. Charakter zmian pr�du w obwodzie w 

stanie przej�ciowym jest równie� aperiodyczny, podobnie jak w przypadku pierwszym, 

ale jego czas trwania jest najkrótszy z mo�liwych. 

• Przypadek oscylacyjny (periodyczny) wyst�puj�cy dla 
C
L

R 2< . Przy spełnieniu tego 

warunku oba bieguny s� zespolone (zespolony i sprz��ony z nim). Charakter zmian pr�du 

w obwodzie w stanie przej�ciowym jest sinusoidalny tłumiony, o oscylacjach 

zanikaj�cych do zera. 

Rezystancja 
C
L

R 2=  nazywana jest rezystancj� krytyczn� i oznaczana w postaci krR . 

 

14.2 Przypadek aperiodyczny  

Rozpatrzymy najpierw przypadek pierwszy (aperiodyczny). Ze wzgl�du na to, �e oba bieguny 

s� rzeczywiste w obliczeniach transformacji odwrotnej najwygodniej jest zastosowa� metod� 

residuów. Zgodnie z ni� przebieg czasowy pr�du )(tip  mo�na zapisa� w postaci 

 



 335

 [ ]tsts ee

LCL
R

L

E
ti 21

1
2

2

)(
2

−

−�
�

�
�
�

�
=  (14.7) 

 

Podstawiaj�c warto�ci s1 i s2 okre�lone wzorami (14.5) i (14.6) otrzymuje si� posta� 

hiperboliczn� rozwi�zania na pr�d cewki w stanie nieustalonym 
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  (14.8) 

 

We wzorze wyst�puje czynnik tłumi�cy typu wykładniczego 
t

L
R

e 2
−

. Wielko�� 
L

R
2

=α  

nazywana jest współczynnikiem tłumienia. Jej warto�� jest proporcjonalna do warto�ci 

rezystancji. Im wi�ksza rezystancja tym wi�ksze tłumienie w obwodzie.  

W podobny sposób wyznaczy� mo�na pozostałe przebiegi czasowe w obwodzie: 

napi�cie cewki i kondensatora. Transformata napi�cia na kondensatorze wyra�ona jest 

wzorem 
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 (14.9) 

 

Po zastosowaniu wzoru na residuum otrzymujemy 

 

 ( )tsts
C eses

LCL
R

E
Etu 21

122
1

2
2

)( −

−�
�

�
�
�

�
+=  (14.10) 

 

Obliczenie napi�cia cewki w stanie nieustalonym mo�e by� uzyskane bezpo�rednio z postaci 

czasowej poprzez ró�niczkowanie zale�no�ci na pr�d cewki. Po wykonaniu odpowiednich 

działa� otrzymuje si� 
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 [ ]tsts
L eses

LCL
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==  (14.11) 

 

Na rys. 14.3 przedstawiono przebiegi pr�du, napi�cia na kondensatorze i cewce w stanie 

nieustalonym w obwodzie RLC dla R = 2,3Ω, C = 1F i L = 1H przy zał�czeniu napi�cia 

stałego E = 1V. Dla przyj�tych warto�ci parametrów elementów mamy do czynienia z 

przypadkiem aperiodycznym. 

 

 
Rys. 14.3. Przebiegi pr�du i napi�� w obwodzie RLC dla przypadku aperiodycznego 

 
 

Pr�d w obwodzie oraz napi�cie na kondensatorze zachowuj� ci�gło�� i spełniaj� prawa 

komutacji. W stanie ustalonym pr�d w obwodzie nie płynie (kondensator w stanie ustalonym 

stanowi przerw�) a napi�cie na kondensatorze przyjmuje warto�� napi�cia zasilaj�cego E. 

Zauwa�my ponadto, �e warto�ci maksymalnej pr�du odpowiada zerowa warto�� napi�cia na 

cewce (
dt
di

LtuL =)( ). W chwili, gdy napi�cie na cewce osi�ga warto�� maksymaln� ujemn�, 

w przebiegu napi�cia na kondensatorze mo�na zauwa�y� punkt przegi�cia. 

 Na rys. 14.4 przedstawiono wykresy przebiegów ładowania kondensatora w obwodzie 

RLC dla przypadku aperiodycznego opisanego wzorem (14.10) dla 3 ró�nych warto�ci 

współczynnika tłumienia 
L

R
2

=α .  
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Rys. 14.4. Przebiegi napi�� na kondensatorze dla ró�nej warto�ci współczynnika tłumienia 

 
 

Jak wida�, im wi�ksza jest warto�� tego współczynnika, tym dłu�ej trwa dochodzenie do 

stanu ustalonego. Interesuj�ce jest porównanie procesu ładowania kondensatora w obwodzie 

RLC w stanie aperiodycznym (wzór 14.10) oraz w obwodzie RC. Napi�cie i pr�d 

kondensatora w obwodzie RC, jak zostało pokazane w lekcji jedenastej opisane s� funkcjami 

( )RCt
C eEtu /1)( −−= , RCt

C e
R
E

ti /)( −= . Na rys. 14.5 przedstawiono przebiegi napi�cia na 

kondensatorze (rys. 14.5a) oraz pr�du (rys. 14.5b).  

 

  
Rys. 14.5 Porównanie procesu ładowania kondensatora w obwodzie RC i RLC 
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W napi�ciu uC(t) w obwodzie RLC widoczny jest łagodnie narastaj�cy przebieg z punktem 

przegi�cia. Pr�d ładowania kondensatora, b�d�cy jednocze�nie pr�dem cewki, narasta od 

warto�ci zerowej z zachowaniem ci�gło�ci, a wi�c spełniaj�c warunki nakładane przez prawa 

komutacji. W obwodzie RC widoczny jest gwałtowny skok pr�du w chwili przeł�czenia 

(prawa komutacji nie dotycz� pr�du kondensatora). 

 

 

14.3 Przypadek aperiodyczny krytyczny 

W przypadku aperiodycznym krytycznym, wobec spełnienia relacji 
C
L

R 2=  oba 

pierwiastki mianownika s� równe i transformata pr�du wyra�a si� wzorem  
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Zastosowanie wzoru na residuum dla pierwiastka podwójnego α−=−==
L

R
ss

221  prowadzi 

do nast�puj�cej postaci pr�du cewki )(ti  
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−

=  (14.13) 

 

W analogiczny sposób mo�na wyznaczy� pozostałe przebiegi (napi�cia kondensatora i cewki) 

dla stanu aperiodycznego krytycznego. W przypadku napi�cia na cewce bezpo�rednio poprzez 

ró�niczkowanie funkcji czasowej pr�du otrzymuje si� 
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1)( 2  (14.14) 
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Napi�cie na kondensatorze w stanie nieustalonym mo�na uzyska� bezpo�rednio z prawa 

napi�ciowego Kirchhoffa napisanego dla obwodu z rys. 14.1 po przeł�czeniu. Mianowicie 
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Na rys. 14.6 przedstawiono przebieg ładowania kondensatora w stanie aperiodycznym 

krytycznym na tle przypadku aperiodycznego.  

 

 
Rys. 14.6. Porównanie procesu ładowania kondensatora w obwodzie RLC dla przypadku 

aperiodycznego i aperiodycznego krytycznego 

 
 

Jedyna ró�nica wyst�puje w czasie trwania stanu przej�ciowego, który najszybciej zanika dla 

przypadku krytycznego. Charakter przebiegu pr�du i napi�� w obwodzie dla przypadku 

aperiodycznego krytycznego jest podobny do zwykłego przypadku aperiodycznego, z tym, �e 

najszybciej uzyskiwany jest stan ustalony (stan przej�ciowy trwa najkrócej z mo�liwych). 

 

14.4 Przypadek oscylacyjny  

Przypadek oscylacyjny zmian pr�du i napi�� w obwodzie szeregowym RLC wyst�puje przy 

spełnieniu warunku 
C
L

R 2<  a wi�c przy małych warto�ciach rezystancji R. W tym 

przypadku oba bieguny s� zespolone. Dla wyznaczenia postaci czasowej pr�du wygodniej jest 
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zastosowa� metod� tablic transformat. W tym celu nale�y przekształci� wyra�enie na pr�d 

operatorowy w taki sposób, aby doprowadzi� je do postaci wyst�puj�cej w tablicy 12.1. Dla 

zadanej postaci pr�du przekształcenia te s� jak nast�puje 
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Wprowad�my oznaczenie  

 

 2

2

4
1

L
R

LC
−=ω  (14.17) 

 

Wielko�� ω  jest pulsacj� drga� własnych obwodu RLC wyst�puj�cych w przypadku 

oscylacyjnym. Wykorzystuj�c tablic� transformat 12.1 mo�emy uzyska� posta� czasow� 

pr�du w obwodzie. Mo�na j� zapisa� w postaci  

 

 )sin()( 2 te
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=  (14.18) 

 

Pr�d w przypadku oscylacyjnym opisany jest funkcj� sinusoidaln� o amplitudzie zmieniaj�cej 

si� według funkcji wykładniczej. Czynnik 
t

L
R

e 2
−

 stanowi tłumienie przebiegu sinusoidalnego a 

jego warto�� jest proporcjonalna do warto�ci rezystancji obwodu RLC. Odwrotno�� 

współczynnika tłumienia charakteryzuje stał� czasow� 
R
L2=τ  obwodu RLC z jak� tłumione 

s� drgania sinusoidalne. 

Wykorzystuj�c podstawowe relacje zachodz�ce mi�dzy zmiennymi w obwodzie 

szeregowym RLC mo�na wyznaczy� pozostałe napi�cia w obwodzie w stanie nieustalonym. 

W przypadku cewki napi�cie uzyskuje si� przez zró�niczkowanie funkcji opisuj�cej pr�d 

ładowania.  
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 )sin()( 2 ϕω
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te
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Ltu
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L  (14.19) 

 

gdzie k�t ϕ jest okre�lony relacj�  
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Napi�cie na kondensatorze wyznaczy� mo�na bezpo�rednio z prawa napi�ciowego Kirchhoffa 

zastosowanego do obwodu rzeczywistego z rys. 14.1 
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Na rys. 14.7 przedstawiono przebiegi pr�du i napi�� w stanie nieustalonym w obwodzie RLC 

przy wyst�pieniu przypadku oscylacyjnego, czyli przy 
C
L

R 2< .  

 

 
Rys. 14.7. Przebiegi czasowe w obwodzie RLC dla przypadku oscylacyjnego 
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Przebieg pr�du ma charakter sinusoidalny, tłumiony wykładniczo do zera. Obwiednie 

przebiegu pr�du s� wyznaczone funkcjami 
t

L
R

e
L

E
tf 2)(

−
±=

ω
. Przy zasilaniu obwodu RLC 

napi�ciem stałym wytworzyły si� drgania własne o pulsacji 2

2

4
1

L
R

LC
−=ω . Pulsacja ta 

zale�y wył�cznie od parametrów obwodu RLC. Głównym czynnikiem reguluj�cym warto�� 

pulsacji wobec małej warto�ci rezystancji R dla przypadku oscylacyjnego jest warto�� 

indukcyjno�ci L oraz pojemno�ci C. Przy danych warto�ciach L, C i regulowanej rezystancji, 

pulsacja ro�nie przy malej�cej warto�ci rezystancji . 

 Drgania w obwodzie powstaj� na skutek wymiany energii mi�dzy polem 

elektrycznym kondensatora a polem magnetycznym cewki. Na skutek sko�czonej warto�ci 

rezystancji zachodzi rozpraszanie energii w postaci ciepła wydzielanego na rezystorze. St�d 

oscylacje powstaj�ce w obwodzie maj� charakter malej�cy. Szybko�� tłumienia okre�la stała 

tłumienia 
L

R
2

=α . Im wi�ksza warto�� rezystancji tym wi�ksze tłumienie w obwodzie i 

szybsze zanikanie drga� sinusoidalnych do zera. 

Na rys. 14.8 przedstawiono przykładowe przebiegi ładowania kondensatora w 

obwodzie RLC dla przypadków oscylacyjnych przy zmieniaj�cej si� warto�ci rezystancji.  

 

 
Rys. 14.8. Przebiegi napi�cia na kondensatorze dla przypadku oscylacyjnego przy 

zmieniaj�cej si� warto�ci rezystancji 
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Widoczne jest, �e im mniejsza warto�� rezystancji tym dłu�ej trwa stan przej�ciowy w 

obwodzie. Wobec małych warto�ci rezystancji wynikaj�cych z warunku wyst�powania 

przypadku oscylacyjnego jej wpływ na cz�stotliwo�� drga� własnych obwodu (wzór 14.17) 

jest stosunkowo niewielki. 

 Nale�y podkre�li�, �e jakkolwiek wyra�enia analityczne opisuj�ce przebiegi czasowe 

w obwodzie dla ró�nych przypadków tłumienia s� znacznie ró�ni�ce si� miedzy sob�, 

wszystkie reprezentuj� charakter ci�gły. Poszczególne przypadki przechodz� w siebie 

nawzajem przy ci�głej zmianie warto�ci rezystancji. Przy małej rezystancji tłumienie jest 

małe i przebieg pr�du oraz napi�� jest oscylacyjny, tłumiony wykładniczo. Wzrost warto�ci 

rezystancji powoduje wzrost tłumienia, drgania trwaj� krócej a� przy pewnej warto�ci 

krytycznej 
C
L

Rkr 2=  przechodz� w przebieg aperiodyczny (krytyczny), przy którym nie 

obserwuje si� ju� drga�. Dalszy wzrost rezystancji niewiele zmienia w charakterze 

jako�ciowym przebiegów poza wydłu�eniem stanu przej�ciowego. Ilustracj� powy�szego 

zjawiska na przykładzie napi�cia )(tuC  w obwodzie przedstawiono na rys. 14.9. 

 

 
Rys. 14.9. Przebiegi napi�cia na kondensatorze w obwodzie RLC przy ci�głej zmianie 

warto�ci rezystancji 
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14.5 Obwód bezstratny LC w stanie nieustalonym 

Interesuj�ce zjawiska w stanie nieustalonym wyst�puj� w obwodzie RLC o zerowej 

rezystancji. Obwód taki nazywa� b�dziemy obwodem LC. Jak wynika z przedstawionych 

wy�ej wzorów tłumienie w takim obwodzie jest zerowe ( 0
2

==
L

Rα ) a pulsacja drga� 

własnych zale�y wył�cznie od indukcyjno�ci i pojemno�ci i okre�lona jest wzorem 

 

 
LC
1=ω  (14.22) 

 

Przy zerowym tłumieniu drgania oscylacyjne powstałe w obwodzie na skutek stanu 

przej�ciowego nigdy nie gasn�. Obwód zasilony napi�ciem stałym generuje niegasn�ce 

drgania sinusoidalne staj�c si� generatorem sygnałów harmonicznych. Przypadek powstania 

drga� niegasn�cych w obwodzie LC przedstawiono na rys. 14.10, na którym przedstawiono 

przebieg napi�cia na kondensatorze, pr�du w obwodzie oraz napi�cia cewki. 

 

 
Rys. 14.10. Przebiegi pr�du i napi�� w stanie nieustalonym w obwodzie LC 

 
 

W obwodzie zaobserwowa� mo�na powstanie dwukrotnego przepi�cia na kondensatorze 

(warto�� maksymalna napi�cia jest równa 2E). 

Zjawisko powstawania niegasn�cych drga� sinusoidalnych w obwodzie LC 

wykorzystuje si� powszechnie w generatorach drga� harmonicznych. W rozwi�zaniach 
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praktycznych takich generatorów konieczne jest jednak zastosowanie elementów 

odtłumiaj�cych, kompensuj�cych sko�czone tłumienie wynikaj�ce z istnienia rezystancji 

uzwoje� cewki i sko�czonej stratno�ci kondensatora. Rol� układów odtłumiaj�cych obwód 

pełni� mog� elementy aktywne generuj�ce energi�, takie jak wzmacniacze operacyjne, 

tranzystory, pewne typy diód itp. 

 

Zadania sprawdzaj�ce 

Zadanie 14.1 

Warto�ci indukcyjno�ci i pojemno�ci w obwodzie szeregowym RLC s� równe: L = 0,01H 

oraz �F1=C . Okre�li� zmiany cz�stotliwo�ci drga� własnych tego obwodu w funkcji 

warto�ci rezystancji R zmieniaj�cej si� od zera do rezystancji krytycznej. 

 

Rozwi�zanie 

Cz�stotliwo�� drga� własnych obwodu szeregowego RLC dana jest wzorem 
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Rezystancja krytyczna 

 

Ω== 2002
C
L

Rkr  

 

Na rys. 14.11 przedstawiono zale�no�� cz�stotliwo�ci drga� własnych obwodu od warto�ci 

rezystancji R w podanym zakresie zmian rezystancji 
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Rys. 14.11. Wykres zale�no�ci cz�stotliwo�ci drga� własnych obwodu od warto�ci rezystancji 

 
 

 

Zadanie 14.2  

Okre�li� charakter odpowiedzi czasowej w obwodzie szeregowym RLC, je�li indukcyjno�� 

L = 0,1H, pojemno�� C = 10-5F a warto�ci rezystancji s� równe: a) R = 50Ω, b) R = 200Ω, 

c) R = 500Ω. 

 

Rozwi�zanie 

Charakter odpowiedzi czasowych w obwodzie RLC zale�y od stosunku rezystancji obwodu 

do rezystancji krytycznej. W przypadku danych w obwodzie rezystancja krytyczna jest równa 

 

Ω== 2002
C
L

Rkr  

 

W zwi�zku z powy�szym otrzymujemy: 

a) krRR <  →  przypadek oscylacyjny 

b) krRR =  →  przypadek aperiodyczny krytyczny 

c) krRR >  →  przypadek aperiodyczny 
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Lekcja 15. Transmitancja operatorowa obwodów  

 

Wst�p 

W tej lekcji wprowadzone zostanie poj�cie transmitancji operatorowej obwodu. Podane 

zostan� definicje ró�nych rodzajów transmitancji oraz metod ich wyznaczania 

wykorzystuj�cych impedancje operatorowe elementów. Poznamy zwi�zek transmitancji 

operatorowej z opisem stanowym obwodu. Wprowadzone zostan� definicje odpowiedzi 

impulsowej i skokowej oraz ich zwi�zek z transmitancj� operatorow�. Na podstawie opisu 

operatorowego i odpowiedzi impulsowej zostanie wyja�nione poj�cie stabilno�ci obwodu i 

udowodniony zwi�zek stabilno�ci z poło�eniem biegunów na płaszczy�nie zmiennej 

zespolonej.  

 
 

15.1 Definicja transmitancji operatorowej 

Rozwa�ania dotycz�ce analizy stanów nieustalonych metod� operatorow� zakładały badanie 

zjawisk zachodz�cych w obwodach na skutek przeł�cze�. W ogólnym przypadku 

zakładali�my wyst�pienie niezerowych warunków pocz�tkowych wynikaj�cych ze stanu 

obwodu przed komutacj�. Badania dotyczyły dowolnych pr�dów lub napi�� w obwodzie. Z 

punktu widzenia praktycznego szczególnie wa�ny jest przypadek zerowych warunków 

pocz�tkowych i obliczania jedynie wybranego pr�du lub napi�cia w obwodzie traktowanego 

jako sygnał wyj�ciowy. W takim przypadku wygodnie jest wprowadzi� poj�cie transmitancji 

operatorowej. 

 We�my pod uwag� obwód zło�ony z dowolnych elementów pasywnych RLCM i 

�ródeł sterowanych nie zawieraj�cych wewn�trz �adnych �ródeł niezale�nych. Wyró�nijmy w 

tym obwodzie jedn� par� zacisków uwa�anych za wej�ciowe, do których przykładamy �ródło 

wymuszaj�ce oraz drug� par� zacisków wyj�ciowych, z których zbieramy pr�d (zaciski 

zwarte) lub napi�cie (zaciski rozwarte). 

 Transmitancja operatorowa okre�la zwi�zek mi�dzy transformat� operatorow� sygnału 

wyj�ciowego (odpowiedzi), któr� tutaj oznaczymy w ogólno�ci przez Y(s) oraz transformat� 

operatorow� wymuszenia (sygnału wej�ciowego), oznaczon� ogólnie przez X(s). 

Transmitancj� operatorow� nazywa� b�dziemy stosunek transformaty sygnału wyj�ciowego 
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(pr�du lub napi�cia) do transformaty sygnału wej�ciowego układu (�ródła napi�ciowego lub 

pr�dowego) przy zerowych warunkach pocz�tkowych 
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)(
sX
sY

sT =  (15.1) 

 

W zale�no�ci od sygnału wej�ciowego i wyj�ciowego układu wyró�ni� mo�na cztery rodzaje 

transmitancji operatorowych: transmitancja napi�ciowa, pr�dowa, napi�ciowo-pr�dowa i 

pr�dowo-napi�ciowa. Przyjmijmy oznaczenie bramy wej�ciowej cyfr� 1 a bramy wyj�ciowej 

cyfr� 2 jak to pokazano na rys. 15.1. 

 

 
Rys. 15.1. Oznaczenie układu przy definicji transmitancji 

 

 

15.1.1 Transmitancja napi�ciowa (napi�ciowo-napi�ciowa) 

Transmitancja napi�ciowa dotyczy stosunku dwu napi�� zewn�trznych układu. Sygnałem 

wej�ciowym jest �ródło napi�ciowe, a sygnałem wyj�ciowym napi�cie na dowolnym 

elemencie uznane za napi�cie wyj�ciowe. Jest ona definiowana w postaci  
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sU
sU

sTu =  (15.2) 

 

W definicji transmitancji napi�ciowej zakłada si�, �e napi�cie wyj�ciowe układu mierzone 

jest w stanie jałowym tzn. przy ∞=0Z  (bez obci��enia zacisków wyj�ciowych, I2=0). 
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15.1.2 Transmitancja pr�dowa (pr�dowo-pr�dowa) 

Transmitancja pr�dowa dotyczy stosunku dwu pr�dów zewn�trznych układu, z których jeden 

jest pr�dem wymuszaj�cym a drugi pr�dem gał�zi uznanym za pr�d wyj�ciowy i jest 

definiowana w postaci  
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sTi =  (15.3) 

 

W definicji tej transmitancji zakłada si�, �e pr�d wyj�ciowy I2 jest mierzony w cz��ci 

bezimpedancyjnej gał�zi wyj�ciowej 00 =Z  odpowiadaj�cej U2 = 0. 

 

15.1.3 Transmitancja napi�ciowo-pr�dowa 

Transmitancja napi�ciowo-pr�dowa przyjmuje napi�cie na dowolnym elemencie obwodu jako 

sygnał wyj�ciowy Y(s). Sygnałem wej�ciowym X(s) jest wymuszenie pr�dowe. Jest zatem 

zdefiniowana w postaci 
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sTui =  (15.4) 

Napi�cie U2 mierzone jest w stanie jałowym ( ∞=0Z ) obwodu. 

 

15.1.4 Transmitancja pr�dowo-napi�ciowa 

Transmitancj� pr�dowo-napi�ciow� definiuje si� jako stosunek pr�du wyj�ciowego do 

napi�cia wej�ciowego (sygnałem wej�ciowym X(s) jest napi�cie wymuszaj�ce a sygnałem 

wyj�ciowym Y(s) pr�d dowolnego elementu w obwodzie) 
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sTiu =  (15.5) 

Szczególnym przypadkiem transmitancji napi�ciowo-pr�dowej jest impedancja wej�ciowa 

układu, w definicji której przyjmuje si�, �e pr�d i napi�cie dotycz� tej samej bramy 

wej�ciowej. Jej definicja jest przyjmowana w postaci 
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Definicja impedancji wej�ciowej układu zakłada dowolny stan obci��enia Z0. Nale�y jednak 

zwróci� uwag�, �e ka�da zmiana impedancji obci��enia zmienia impedancj� wej�ciow�. St�d 

definiuj�c impedancj� wej�ciow� nale�y sprecyzowa�, przy jakim obci��eniu jest ona 

wyznaczana. 

W identyczny sposób mo�na zdefiniowa� impedancj� wyj�ciow�, w której pr�d i 

napi�cie dotycz� bramy wyj�ciowej układu Odwrotno�� impedancji wej�ciowej (lub 

wyj�ciowej) nazywana jest admitancj� wej�ciow� (wyj�ciow�), która mo�e by� 

zinterpretowana jako szczególny przypadek transmitancji pr�dowo-napi�ciowej. 

 

15.2 Transmitancja operatorowa obwodów RLC 

Przy wyznaczaniu transmitancji operatorowej obwodu zawieraj�cego rezystancje, 

indukcyjno�ci, indukcyjno�ci sprz��one i pojemno�ci wykorzystuje si� model operatorowy 

poszczególnych elementów R, L, C i M wprowadzony w lekcji poprzedniej. Przy zało�eniu 

zerowych warunków pocz�tkowych dla indukcyjno�ci i pojemno�ci modele tych elementów 

nie zawieraj� �ródeł a jedynie impedancje operatorowe Z(s). Zestaw impedancji 

operatorowych dla elementów pasywnych przedstawiono w tablicy 15.1 

 

Tablica 15.1 Impedancje operatorowe przyporz�dkowane elementom pasywnym 

Element Impedancja operatorowa 

Rezystancja R RZR =  

Indukcyjno�� własna L sLZL =  

Indukcyjno�� wzajemna M±  sMZ M ±=  

Pojemno�� C 
sC

ZC

1=  

 

 

Dla obwodów pasywnych zawieraj�cych elementy R, L, C i M obliczenie transmitancji 

operatorowej polega na zast�pieniu elementu rzeczywistego poprzez ich impedancje 

operatorowe a nast�pnie wykorzystuj�c dowoln� metod� analizy (metoda praw Kirchhoffa, 

w�złowa, oczkowa, Thevenina, Nortona) nale�y wyznaczy� odpowied� operatorow� w 

funkcji wymuszenia. Wobec liniowo�ci obwodu ka�da jego odpowied� (dowolny pr�d i 
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dowolne napi�cie) jest liniow� funkcj� wymuszenia. Obliczaj�c transmitancj� dzieli si� 

odpowied� przez wymuszenie, w wyniku czego zmienna b�d�ca wymuszeniem ulega redukcji 

i w efekcie transmitancja zale�y wył�cznie od parametrów RLC obwodu oraz �ródeł 

sterowanych, b�d�c jednocze�nie funkcj� zmiennej zespolonej s. Metod� wyznaczania 

transmitancji operatorowej zilustrujemy na przykładzie obwodu LC przedstawionego na rys. 

15.2. 

 

Przykład 15.1 

Nale�y wyznaczy� transmitancj� napi�ciow� obwodu przedstawionego na rys. 15.2a, 

zakładaj�c, �e napi�cie wyj�ciowe pochodzi z elementów L i C poł�czonych równolegle. 

 

 
Rys. 15.2. Schematy obwodów do wyznaczania transmitancji: a) obwód oryginalny, b) 

schemat operatorowy obwodu 
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Rozwi�zanie  

Schemat operatorowy obwodu do wyznaczenia transmitancji przedstawiony jest na rys. 15.2b 

(warunki pocz�tkowe s� z definicji zerowe). Zast�puj�c cewk� i kondensator poł�czone 

równolegle jedn� impedancj� zast�pcz� )(sZ LC  

 

LC
s

s
C

sC
sL

sC
sL

sZ LC 1

1

1

1

)(
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=
+

⋅
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i stosuj�c prawo napi�ciowe Kirchhoffa do tak uproszczonego obwodu, otrzymuje si� 
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Po prostych przekształceniach uzyskuje si� wynik na transmitancj� napi�ciow� w postaci 
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W ostatecznym wyra�eniu na transmitancj� operatorow� zmienna stanowi�ca wymuszenie nie 

wyst�puje (uległa redukcji). Przyjmijmy nast�puj�ce warto�ci elementów obwodu: L = 1H, 

L1 = 0,5H, C = 1F (warto�ci znormalizowane). Podstawiaj�c je do wzoru na Tu(s) 

otrzymujemy 

 

3
2

)( 2 +
=

s
sTu  

 

Jest to tak zwana posta� wymierna, zawieraj�ca wielomian zmiennej zespolonej s zarówno w 

liczniku (stopie� równy zeru) jak i w mianowniku (stopie� równy dwa).  

W ogólnym przypadku obwodu elektrycznego liniowego zawieraj�cego rezystory, 

cewki i kondensatory oraz �ródła sterowane dowolna transmitancja operatorowa ma posta� 

funkcji wymiernej o stopniu licznika równym m i stopniu mianownika równym n  
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Współczynniki ai mianownika oraz bi licznika s� funkcjami parametrów elementów obwodu i 

dla ich konkretnych warto�ci przyjmuj� warto�ci rzeczywiste. Najwy�szy stopie� wielomianu 

jest równy (w szczególnych przypadkach mniejszy) liczbie elementów reaktancyjnych (cewek 

i kondensatorów) obwodu. Najcz��ciej w obwodach wyst�puj�cych w praktyce stopie� 

mianownika jest nie mniejszy ni� stopie� licznika. 

 Poj�cie impedancji operatorowej jest uogólnieniem impedancji zespolonej elementów 

stosowanej w metodzie symbolicznej przy analizie stanów ustalonych w obwodzie 

zawieraj�cym wymuszenia sinusoidalne. Łatwo pokaza� to zakładaj�c s = jω we wzorach 

okre�laj�cych odpowiednie impedancje operatorowe. Dla elementów indukcyjnych i 

pojemno�ciowych przy zało�eniu s = jω otrzymuje si� nast�puj�ce zale�no�ci 

 

 )()( ωωω jZLjsZ LjsL ==
=

 (15.8) 

 )()( ωωω jZMjsZ MjsM =±=
=

 (15.9) 

 )(
1

)( ω
ωω jZ

Cj
sZ CjsC ==

=
 (15.10) 

 

Impedancje Z(jω) reprezentuj� impedancje symboliczne elementów RLC, obowi�zuj�ce w 

analizie stanów ustalonych przy wymuszeniach sinusoidalnych. Zało�enie s=jω upraszcza 

zatem opis obwodu w stanie nieustalonym do opisu obwodu w stanie ustalonym przy 

zało�eniu wymuszenia sinusoidalnego. 

 

15.3 Zwi�zek transmitancji operatorowej z opisem stanowym układu 

Jak zostało pokazane w lekcji dziesi�tej obwody liniowe RLC mog� by� opisane w dziedzinie 

zmiennych stanu poprzez równanie stanu, którego posta� macierzowa jest nast�puj�ca 

 

 BuAxx +=
dt
d

 (15.11) 
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Zmienna x jest wektorem zmiennych stanu, u wektorem wymusze� napi�ciowych i 

pr�dowych wyst�puj�cych w obwodzie, A jest macierz� stanu a B – macierz� wymusze�. 

Je�li zbiór sygnałów wyj�ciowych obwodu oznaczymy w postaci wektora y, to mo�na je 

wyrazi� jako kombinacj� liniow� zmiennych stanu oraz wymusze�. Oznacza to, �e wektor 

wyj�ciowy y mo�e by� zapisany w postaci macierzowej 

 

 DuCxy +=  (15.12) 

 

Wielko�ci C i D wyst�puj�ce we wzorze stanowi� równie� macierze o odpowiednich 

wymiarach. 

W stosunku do opisu macierzowego (15.11) i (15.12) zastosujemy przekształcenie 

Laplace’a. Przy zało�eniu zerowych warunków pocz�tkowych i uwzgl�dnieniu własno�ci 

przekształcenia dotycz�cej transformaty pochodnej, z równania (15.11) otrzymuje si� 

 

 )()()( ssss BUAXX +=  (15.13) 

 

St�d 

 

 ( ) )()( 1 sss BUA1X −−=  (15.14) 

 

Poddaj�c równie� drugie równanie stanu (15.12) przekształceniu Laplace’a otrzymuje si� 

 

 )()()( sss DUCXY +=  (15.15) 

 

Po uwzgl�dnieniu zale�no�ci (15.14) otrzymuje si� 

 

 

 ( ) ( )[ ] )()()()( 11 ssssss UDBA1CDUBUA1CY +−=+−= −−  (15.16) 

 

Przy uwzgl�dnieniu jednego wej�cia (wymiar wektora u równy jeden) i jednego wyj�cia 

(wymiar wektora y równy tak�e jeden) wektor wyj�ciowy Y(s) staje si� skalarem Y(s), 

podobnie jak wymuszenie U(s). Transmitancja operatorowa jest wi�c okre�lona w postaci 
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 ( )[ ]Ds
sU
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sT +−== − BA1C 1

)(
)(

)(  (15.17) 

 

We wzorze tym macierz D upro�ciła si� do skalara. Zauwa�my, �e mianownik transmitancji 

operatorowej jest równy wielomianowi charakterystycznemu macierzy A, to jest  

 

 )det()( A1 −= ssM  (15.18) 

 

Pierwiastki tego mianownika (bieguny układu) s� to�same z warto�ciami własnymi macierzy 

stanu A. Wzór (15.17) stanowi zwi�zek mi�dzy opisem stanowym układu a opisem 

operatorowym transmitancyjnym. 

 

Przykład 15.2 

Wyznaczy� opis transmitancyjny układu opisanego nast�puj�cymi macierzami stanu 
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Na podstawie wzoru (15.17) otrzymuje si� 
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Warto�ci własne macierzy stanu, b�d�ce równie� biegunami układu s� równe 73,51 −=s , 

27,22 −=s .  

 

15.4 Odpowied� impulsowa i skokowa układu 

Opis obwodu w dziedzinie zmiennej zespolonej s pozwala bada� jego zachowanie przy 

pobudzeniu dowolnym wymuszeniem. Szczególnie wa�ne s� wła�ciwo�ci dynamiczne 

obwodów (stan nieustalony) przy pobudzeniu za pomoc� pewnych wymusze� standardowych. 

Do takich wymusze� nale�y impuls Diraca )(tδ  oraz funkcja skoku jednostkowego 1(t). 
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15.4.1 Odpowied� impulsowa 

Odpowiedzi� impulsow� układu nazywamy jego odpowied� czasow� na wymuszenie w 

postaci impulsu Diraca przy zerowych warunkach pocz�tkowych obwodu. Dla wyznaczenia 

odpowiedzi impulsowej wykorzystuje si� poj�cie transmitancji operatorowej T(s). 

Transformata funkcji impulsowej Diraca jest równa 1, zatem obliczaj�c odpowied� obwodu 

przyjmiemy wymuszenie X(s)=1. Bezpo�rednio z definicji transmitancji wynika 

 

 )()(
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)( sTsY
sY
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sT =→==  (15.19) 

 

Odpowied� impulsowa układu jest transformat� odwrotn� Laplace’a sygnału Y(s). St�d 

 

 [ ] [ ])()()( 11 sTLsYLty −− ==  (15.20) 

 

Z powy�szej zale�no�ci wynika, �e odpowied� impulsowa jest transformat� odwrotn� 

Laplace’a transmitancji operatorowej T(s) układu. 

 

15.4.2 Odpowied� skokowa 

Odpowiedzi� skokow� układu nazywamy odpowied� czasow� tego układu na wymuszenie w 

postaci skoku jednostkowego 1(t) przy zerowych warunkach pocz�tkowych obwodu. Bior�c 

pod uwag�, �e transformata Laplace’a funkcji jednostkowej 1(t) jest równa 1/s otrzymuje si� 
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Odpowied� skokowa jest transformat� odwrotn� Laplace’a sygnału Y(s). St�d 
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Odpowied� skokowa układu jest wi�c transformat� odwrotn� Laplace’a transmitancji 

operatorowej T(s) tego układu, podzielonej przez zmienn� zespolon� s. Podobnie jak 
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odpowied� impulsowa odpowied� skokowa jest okre�lona w pełni przez transmitancj� 

operatorow� T(s) układu. 

 

 

Przykład 15.3 

Dla zilustrowania rozwa�a� teoretycznych obliczmy odpowied� impulsow� i skokow� układu 

o zadanej transmitancji operatorowej  
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Rozwi�zanie 

Stosuj�c metod� residuów dla zadanej postaci transmitancji T(s) otrzymujemy: 

• odpowied� impulsow� 
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• odpowied� skokow� 
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Na rys. 15.3 przedstawiono wykres czasowy odpowiedzi impulsowej (rys. 15.3a) i skokowej 

(rys. 15.3b) układu o zadanej postaci transmitancji operatorowej T(s). 
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a)  

b)  

Rys. 15.3 Odpowiedzi a) impulsowa, b)skokowa układu 
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15.5 Stabilno�� układów liniowych  

Opis układów liniowych za pomoc� transmitancji operatorowej b�d� równowa�ny mu opis 

równaniami stanu pozwala bada� bada� cechy jako�ciowe układu na podstawie analizy 

poło�enia jego biegunów (warto�ci własnych macierzy stanu). Do najwa�niejszych cech 

układu nale�� poj�cie stabilno�ci oraz charakter odpowiedzi układu w stanie przej�ciowym na 

skutek przyło�enia wymuszenia zewn�trznego. 

 Stabilno�� układu jest rozumiana w sensie ograniczonej amplitudy odpowiedzi na 

wymuszenie o sko�czonej warto�ci. Układ nazywa� b�dziemy stabilnym, je�li jego 

odpowied� czasowa na sko�czon� warto�� pobudzenia b�dzie ograniczona co do amplitudy. 

Stabilno�� wymaga, aby przy zaniku pobudzenia odpowied� układu w stanie ustalonym przy 

∞→t  była ograniczona co do amplitudy (stabilno�� w sensie zwykłym) lub zerowa 

(stabilno�� w sensie asymptotycznym). Oznacza to, �e dla układów stabilnych odpowied� w 

stanie przej�ciowym powinna zanika� do zera lub co najmniej nie narasta�, pozostaj�c na 

ustalonym poziomie. 

 Stabilno�� układu mo�e wi�c by� oceniana na podstawie odpowiedzi impulsowej. Je�li 

odpowied� ta zanika do zera lub pozostaje na stałym poziomie przy ∞→t  układ jest 

stabilny. Je�li natomiast odpowied� impulsowa ma charakter narastaj�cy w czasie – układ jest 

niestabilny. Zauwa�my, �e odpowied� impulsowa jest transformat� odwrotn� Laplace’a 

transmitancji operatorowej 

 

 [ ])()( 1 sTLty −=  (15.23) 

 

Je�li bieguny układu oznaczymy przez is  gdzie i = 1, 2, ..., n, wówczas w przypadku 

biegunów jednokrotnych na podstawie metody residuów odpowied� impulsowa mo�e by� 

wyra�ona wzorem  
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Wzór ten dowodzi, �e je�li wszystkie bieguny układu s� poło�one wył�cznie w lewej 

półpłaszczy�nie zmiennej zespolonej s, 0)( ≤isR , wówczas odpowied� impulsowa zanika z 

czasem do zera lub pozostaje ograniczona co do amplitudy (gdy cz��� biegunów lub 

wszystkie znajd� si� na osi urojonej). 
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 Sytuacja jest nieco bardziej zło�ona, gdy cz��� biegunów jest wielokrotna. Dla 

uproszczenia ograniczymy si� tylko do biegunów dwukrotnych. Załó�my, �e liczba takich 

dwukrotnych biegunów jest równa m. W takim przypadku zastosowanie wzorów na residuum 

przy obliczaniu transformaty odwrotnej prowadzi do wyniku 
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Przy niezerowej warto�ci cz��ci rzeczywistej biegunów poło�onych w lewej półpłaszczy�nie 

odpowied� przej�ciowa układu przy ∞→t  b�dzie zanika� do zera (układ stabilny 

asymptotycznie). Przy poło�eniu biegunów na osi urojonej 0)( =isR  układ mo�e by� stabilny 

(cho� nie asymptotycznie), je�li s� to bieguny pojedyncze lub niestabilny, je�li bieguny s� 

wielokrotne. Utrata stabilno�ci na skutek poło�enia bieguna wielokrotnego na osi urojonej 

wynika z pojawienia si� we wzorze na odpowied� impulsow� czynnika proporcjonalnego do 

czasu. Zauwa�my, �e przy spełnieniu warunku 0)Re( =ks  i zało�eniu bieguna zespolonego 

ωjsk =  wyra�enie ts
k

kteB  mo�e by� rozwini�te do postaci ( )tjttBteB k
ts

k
k ωω sincos += . 

Wobec ograniczonych warto�ci funkcji sinus i cosinus czynnik ten przy ∞→t  narasta 

nieograniczenie, co prowadzi do utraty stabilno�ci. 

 W konsekwencji warunkiem stabilno�ci układu jest poło�enie biegunów w lewej 

półpłaszczy�nie, a w przypadku biegunów wielokrotnych wył�czenie ich z osi urojonej.  

 

 
Rys. 15.4. Zale�no�� stabilno�ci układu od poło�enia biegunów 
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Na rys. 15.4 zilustrowano wpływ poło�enia biegunów na stabilno�� układu. O� urojona 

rozgraniczaj�ca obszar stabilny od niestabilnego jest obszarem warunkowo stabilnym 

(stabilny w sensie zwykłym przy biegunach jednokrotnych i niestabilny przy biegunach 

wielokrotnych). 

 Interesuj�cy jest równie� wpływ poło�enia biegunów na charakter odpowiedzi 

impulsowej układu liniowego. Rys. 15.5 przedstawia odpowiedzi impulsowe układu drugiego 

rz�du przy ró�nych poło�eniach biegunów. 
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Rys. 15.5 Odpowiedzi impulsowe układu drugiego rz�du przy ró�nych poło�eniach biegunów 

 
 

W zale�no�ci od warto�ci biegunów mamy do czynienia ze stanem aperiodycznym (bieguny 

poło�one na osi rzeczywistej) oraz oscylacyjnym (bieguny zespolone). Zanikanie odpowiedzi 

impulsowej do zera �wiadczy o stabilno�ci asymptotycznej układu. Odpowied� o 

ograniczonej amplitudzie nie zanikaj�ca z czasem �wiadczy o stabilno�ci zwykłej układu. 

Odpowied� narastaj�ca z czasem jest cech� układu niestabilnego. 

 

Zadania sprawdzaj�ce 

Zadanie 15.1  

Wyznaczy� transmitancj� operatorow� typu napi�ciowego obwodu z rys. 15.6. Zało�y�: 

R = 1Ω, L = 2H, C = 1F. 
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Rys. 15.6. Schemat obwodu do zadania 15.1 

 

Rozwi�zanie 

Schemat operatorowy obwodu przy zerowych warunkach pocz�tkowych stosowany do 

wyznaczenia transmitancji przedstawiony jest na rys. 15.7 

 

 
Rys. 15.7. Posta� operatorowa obwodu 

 

Kolejne etapy wyznaczania transmitancji: 

Pr�d I(s) 
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Po podstawieniu warto�ci liczbowych otrzymuje si� 
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ss
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Zadanie 15.2  

Wyznaczy� odpowied� impulsow� i skokow� dla obwodu przedstawionego na rys. 15.8. 

Odpowiedzi dotycz� napi�cia wyj�ciowego obwodu przy zasilaniu napi�ciowym. Zało�y� 

nast�puj�ce warto�ci elementów: R1 = 1Ω, R2 = 1Ω, L = 2H, C = 0,5F. 

 

 
Rys. 15.8. Schemat obwodu do zadania 15.2 

 

Rozwi�zanie 

Schemat operatorowy obwodu przy zerowych warunkach pocz�tkowych stosowany do 

wyznaczenia transmitancji przedstawiony jest na rys. 15.9 
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Rys. 15.9. Posta� operatorowa obwodu 

 

Kolejne etapy wyznaczania transmitancji: 

Pr�d I(s) 
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Po podstawieniu warto�ci liczbowych otrzymuje si� 
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Odpowied� impulsowa okre�lona b�dzie przy zastosowaniu metody korzystaj�cej z tablic 

transformat. W zwi�zku z powy�szym 
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Odpowied� skokowa 
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Odpowiedzi impulsowa i skokowa układu podane s� na rys. 15.10 

 

a) odpowied� impulsowa 

 
 

b) odpowied� skokowa 
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Rys. 15.10. Odpowiedzi impulsowa i skokowa układu 

 
 

Zadanie 15.3  

Wyznaczy� impedancj� wej�ciow� w postaci operatorowej dla obwodu przedstawionego na 

rys. 15.11. Impedancj� wej�ciow� potraktowa� jako transmitancj� napi�ciowo-pr�dow�. 

 

 
Rys. 15.11. Schemat obwodu do zadania 15.3 
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Rozwi�zanie 

Z prawa pr�dowego i napi�ciowego Kirchhoffa napisanych dla obwodu z rys. 15.11 

otrzymuje si�  
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gdzie oo ZY /1= . Z równania drugiego otrzymuje si�  
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Po podstawieniu do wzoru pierwszego otrzymujemy 
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Lekcja 16. Charakterystyki cz�stotliwo�ciowe układów 

 

Wst�p 

Transmitancja operatorowa poza odpowiedziami czasowymi pozwala równie� wyznaczy� 

charakterystyki obwodu w stanie ustalonym przy wymuszeniu sinusoidalnym o zmiennej 

warto�ci cz�stotliwo�ci. 

 W lekcji szesnastej skupimy si� na charakterystykach cz�stotliwo�ciowych obwodów 

RLC. Podane zostan� definicje charakterystyki amplitudowej i fazowej oraz logarytmicznej 

charakterystyki amplitudowej a tak�e sposób ich wyznaczania na podstawie transmitancji 

operatorowej. Rozwa�one zostan� przykłady charakterystyk cz�stotliwo�ciowych układów 

pierwszego rz�du: członu całkuj�cego i ró�niczkuj�cego oraz przesuwnika fazowego. 

Zdefiniowane zostan� podstawowe transmitancje operatorowe drugiego rz�du, opisuj�ce filtry 

bikwadratowe typu dolnoprzepustowego, �rodkowoprzepustowego oraz górnoprzepustowego. 

Przedstawione zostan� charakterystyki cz�stotliwo�ciowe odpowiadaj�ce tym filtrom oraz 

przeanalizowany zostanie wpływ dobroci filtru na kształt charakterystyk 

cz�stotliwo�ciowych. 

 

 

16.1 Definicje charakterystyk cz�stotliwo�ciowych 

Charakterystyk� cz�stotliwo�ciow� układu nazywa� b�dziemy zale�no�� warto�ci sygnału 

wyj�ciowego tego układu od cz�stotliwo�ci przy jednostkowym wymuszeniu sinusoidalnym 

przyło�onym na wej�cie układu. Charakterystyk� t� mo�na wyznaczy� bezpo�rednio na 

podstawie transmitancji operatorowej T(s). Nosi ona nazw� transmitancji widmowej układu. 

Oznaczmy transmitancj� widmow� w postaci )( ωjT . Łatwo pokaza�, �e jest ona 

zdefiniowana jako transmitancja operatorowa dla ωjs = , to znaczy 

 

 ωω
js

sTjT
=

= )()(  (16.1) 
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Transmitancja widmowa reprezentuje sob� liczb� zespolon� b�d�c� funkcj� pulsacji ω. 

Przedstawiaj�c j� w postaci wykładniczej, to jest )()()( ωϕωω jejTjT =  mo�na zdefiniowa� 

dwa rodzaje charakterystyk cz�stotliwo�ciowych: 

• charakterystyka amplitudowa przedstawia sob� zale�no�� modułu transmitancji 

widmowej )( ωjT od pulsacji ω  (cz�stotliwo�ci  f), to jest )( ωjT  

• charakterystyka fazowa okre�la zale�no�� argumentu transmitancji widmowej )( ωjT od 

pulsacji (cz�stotliwo�ci) to jest )(ωϕ . Charakterystyka fazowa reprezentuje sob� 

przesuni�cie fazowe mi�dzy sygnałem wej�ciowym a wyj�ciowym dla danej pulsacji ω . 

 

Charakterystyki cz�stotliwo�ciowe przedstawia si� zwykle na wykresie modułu lub fazy w 

zale�no�ci od pulsacji (cz�stotliwo�ci). Je�li wielko�ci podlegaj�ce wykre�laniu ró�ni� si� 

znacznie pod wzgl�dem warto�ci (np. zmieniaj� si� w zakresie od 1 do 610 ) wygodnie jest 

wprowadzi� skal� logarytmiczn� zwykle o podstawie 10. Dotyczy to okre�lonego zakresu 

cz�stotliwo�ci. W przypadku charakterystyki amplitudowej skal� logarytmiczn� przelicza si� 

na decybele (dB) definiuj�c logarytmiczn� charakterystyk� amplitudow�  

 

  ( ))(log20 10 ωjT  (16.2) 

 

Na rys. 16.1 przedstawiono przykładowo charakterystyk� amplitudow� (rys. 16.1a) oraz 

logarytmiczn� charakterystyk� amplitudow� (rys. 16.1b) odpowiadaj�c� tej samej transmitacji 

danej wzorem 
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Rys. 16.1. Posta� liniowa (a) oraz logarytmiczna (b) charakterystyki amplitudowej 

odpowiadaj�cej transmitancji T(s) 

 

 

Ka�dy rodzaj przedstawienia charakterystyki amplitudowej podkre�la inne szczegóły w jej 

przebiegu. Charakterystyka logarytmiczna podkre�la stosunkowo niewielkie w skali globalnej 

zmiany dynamiczne w tak zwanym pa�mie zaporowym, gdzie amplituda sygnału jest bardzo 

mała w stosunku do pasma przepustowego, podczas gdy skala liniowa uwypukla globalny 

charakter przebiegu trac�c drobne szczegóły w zakresie cz�stotliwo�ci gdzie warto�ci 

sygnałów s� małe. 

Je�li badany zakres cz�stotliwo�ci jest bardzo szeroki (np. od 1Hz do 1MHz) 

wygodnie jest wprowadzi� skal� logarytmiczn� równie� dla cz�stotliwo�ci. Charakterystyk� 

fazow� wykre�la si� zwykle w skali liniowej dla fazy i liniowej lub logarytmicznej dla 

cz�stotliwo�ci (pulsacji). 

 

Przykład 16.1 

Wyznaczy� charakterystyki cz�stotliwo�ciowe transmitancji napi�ciowej układu RL 

przedstawionego na rys. 16.2a 
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Rys. 16.2 Schematy obwodu do przykładu 16.1: a) schemat rzeczywisty,  

b) posta� operatorowa obwodu 

 

Rozwi�zanie 

Zast�puj�c elementy rzeczywiste poprzez ich impedancje operatorowe otrzymuje si� kolejno: 
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Podstawiaj�c ωjs =  do powy�szej zale�no�ci otrzymuje si� 
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Charakterystyka amplitudowa układu okre�lona jest wi�c zale�no�ci� 
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a charakterystyk� fazow� opisuje wzór 

 

)/arctg()( RLωωϕ −=  
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Rys. 16.3 przedstawia wykresy charakterystyki amplitudowej i fazowej obwodu o 

warto�ciach �1=R  i L=1H w funkcji pulsacji ω . 

 

 
Rys. 16.3. Wykres charakterystyki amplitudowej i fazowej układu  

 

 

Charakterystyka amplitudowa wskazuje na dobre (nie tłumione) przenoszenie cz�stotliwo�ci 

małych. W miar� wzrostu warto�ci cz�stotliwo�ci charakterystyka amplitudowa maleje, co 

oznacza, �e sygnał wyj�ciowy ma coraz mniejsz� amplitud�. Taki obwód ma wi�c charakter 

układu dolnoprzepustowego (szeregowo wł�czona cewka w miar� wzrostu cz�stotliwo�ci ma 

coraz wi�ksz� impedancj� tłumi�c� przebieg pr�du przepływaj�cego przez rezystor 

wyj�ciowy). 

 

16.2 Przykłady transmitancji operatorowych pierwszego rz�du  

W praktyce in�ynierskiej zdefiniowano wiele u�ytecznych postaci transmitancji 

operatorowych. Tutaj ograniczymy si� jedynie do trzech najprostszych transmitancji 

pierwszego rz�du: układu całkuj�cego, ró�niczkuj�cego oraz przesuwnika fazowego. 
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16.2.1 Układ całkuj�cy 

Transmitancja idealnego układu całkuj�cego definiowana jest w postaci 

 

 sksT /)( =  (16.3) 

 

Układ nosi nazw� całkuj�cego, gdy� operator 1/s w dziedzinie cz�stotliwo�ci zespolonej 

Laplace’a oznacza całkowanie funkcji w dziedzinie czasu. Charakterystyk� cz�stotliwo�ciow� 

układu całkuj�cego opisuje zale�no�� 

 

 
�90/)( je

k
jkjT −==

ω
ωω  (16.4) 

 

Wykres charakterystyki amplitudowej  

 
ω

ω k
jT =)(  (16.5) 

 

 oraz fazowej  

 

 �90)( −=ωϕ  (16.6) 

 

 dla układu całkuj�cego przy k>0 przedstawiono na rys. 16.4.  
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Rys. 16.4 Charakterystyki cz�stotliwo�ciowe układu całkuj�cego: a) amplitudowa, b) fazowa 

 

 

Charakterystyka amplitudowa jest typu hiperbolicznego, a charakterystyka fazowa stała 

(przesuni�cie fazowe stałe i równe �90−  niezale�nie od cz�stotliwo�ci). 

 

16.2.2 Układ ró�niczkuj�cy 

Transmitancja układu ró�niczkuj�cego dana jest w postaci 

 

 kssT =)(  (16.7) 

 

Układ nosi nazw� ró�niczkuj�cego, gdy� operator s w dziedzinie cz�stotliwo�ci zespolonej 

oznacza ró�niczkowanie funkcji w dziedzinie czasu. Charakterystyka cz�stotliwo�ciowa  

opisana jest zale�no�ci� 

 

 
�90)( jekkjjT ωωω ==  (16.8) 
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Charakterystyka amplitudowa jest funkcj� liniow� 

 

 ωω kjT =)(   (16.9) 

 

a charakterystyka fazowa stała, niezale�nie od cz�stotliwo�ci 

 

 �90)( =ωϕ  (16.10) 

 

Wykres obu charakterystyk układu ró�niczkuj�cego przy k>0 przedstawiono na rys. 16.5.  

 

 
Rys. 16.5 Charakterystyki cz�stotliwo�ciowe układu ró�niczkuj�cego: a) amplitudowa, 

b) fazowa 
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16.2.3 Przesuwnik fazowy 

Przesuwnik fazowy jest układem przesuwaj�cym faz� napi�cia wyj�ciowego wzgl�dem 

wej�ciowego bez zmiany amplitudy sygnału. Transmitancj� przesuwnika fazowego okre�la 

zale�no�� 

 

 
as
as

sT
+
+−=)(  (16.11) 

 

Charakterystyka cz�stotliwo�ciowa przesuwnika okre�lona jest nast�puj�c� relacj� 
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gdzie k�t ( )ωφ  okre�lony jest wzorem �
�

�
�
�

�=
a
ωωφ arctg)( . Powy�sza zale�no�� potwierdza, �e 

przesuwnik fazowy nie zmienia amplitudy sygnału wej�ciowego ( 1)( =ωjT ) a wpływa 

jedynie na przesuni�cie fazowe mi�dzy sygnałem wej�ciowym i wyj�ciowym. 

Charakterystyka fazowa przesuwnika okre�lona jest zale�no�ci� 

 

 �
�

�
�
�

�−=
a
ωωϕ arctg2)(  (16.13) 

 

Na rys. 16.6 przedstawiono wykres charakterystyki fazowej przesuwnika o transmitancji 

(16.11) w funkcji pulsacji dla warto�ci a=1.  
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Rys. 16.6. Charakterystyka fazowa przesuwnika w funkcji pulsacji 

 

 

 Przesuni�cie fazowe układu jest funkcj� cz�stotliwo�ci i zmienia si� od zera do warto�ci 
o180 . Warto�� przesuni�cia fazowego dla konkretnej warto�ci cz�stotliwo�ci mo�na 

regulowa� poprzez zmian� współczynnika a transmitancji. Na rys. 16.7 przedstawiono wykres 

przedstawiaj�cy zmian� k�ta przesuni�cia fazowego układu dla pulsacji jednostkowej przy 

zmianie warto�ci współczynnika a. 

 

 
Rys. 16.7. Charakterystyka fazowa przesuwnika w funkcji warto�ci współczynnika a 
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16.3 Transmitancje operatorowe układów drugiego rz�du 

16.3.1 Posta� ogólna transmitancji bikwadratowej  

Szczególnym przypadkiem transmitancji operatorowej jest transmitancja drugiego rz�du, 

zwana bikwadratow�, szczególnie cz�sto wykorzystywana w teorii filtrów. Ogólna posta� tej 

transmitancji dana jest wzorem 
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2
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)(
asas
bsbsb

sM
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sT
++
++==  (16.14) 

 

W przypadku wykorzystania tej transmitancji w teorii filtrów wielomiany licznika i 

mianownika zakłada si� w specjalnej postaci. W przypadku mianownika przyjmuje si� 

 

 2
0

02)( ωω ++= s
Q

ssM  (16.15) 

 

Wielko�� 0ω  jest pulsacj� �rodkow� (rezonansow�) filtru a Q dobroci�. Posta� licznika 

transmitancji jest uzale�niona od rodzaju filtru. Tutaj rozpatrzymy przykładowo trzy 

podstawowe rodzaje filtrów i ich transmitancje. S� to 

 

• Filtr dolnoprzepustowy 
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2
0

sM
A

sT DP
DP

ω=  (16.16) 

 

Wielko�� DPA  jest wzmocnieniem filtru w pa�mie przepustowym i mierzona jest dla 0=s . 

 

• Filtr �rodkowoprzepustowy 
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sT

SP
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=  (16.17) 

 

Wielko�� SPA  jest wzmocnieniem filtru w pa�mie przepustowym i mierzona jest dla pulsacji 

0ωjs = . 
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• Filtr górnoprzepustowy 

 

 
)(

)(
2

sM
sA

sT GP
SP =  (16.18) 

 

Wielko�� GPA  jest wzmocnieniem filtru w pa�mie przepustowym i mierzona jest dla pulsacji 

równej ∞=s . 

Charakterystyki cz�stotliwo�ciowe filtrów otrzymuje si� po wstawieniu ωjs =  do 

transmitancji operatorowej odpowiadaj�cej danemu rodzajowi filtru. Moduł zale�no�ci 

wyznacza charakterystyk� amplitudow� a k�t fazowy – charakterystyk� fazow�. 

 

 

16.3.2 Charakterystyki cz�stotliwo�ciowe filtru dolnoprzepustowego 

Po wstawieniu zale�no�ci ωjs =  do wzoru na transmitancj� )(sTDP  otrzymuje si� 

charakterystyk� filtru dolnoprzepustowego w postaci 
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Jest to funkcja zespolona pulsacji. Moduł tej funkcji stanowi charakterystyk� amplitudow� a 

faza – charakterystyk� fazow� układu. Charakterystyki te wyra�one s� w postaci 

 

• charakterystyka amplitudowa 
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• charakterystyka fazowa  

 



 381

 
)(

arctg)( 22
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j  (16.21) 

 

Na rys. 16.8a przedstawiono typowe charakterystyki amplitudowe a na rys. 16.8b 

charakterystyki fazowe filtru dolnoprzepustowego drugiego rz�du dla dwu ró�nych dobroci: 

2/1>Q  oraz 2/1≤Q .  

 

  
 a) b) 

Rys. 16.8. Charakterystyki cz�stotliwo�ciowe filtru bikwadratowego dolnoprzepustowego: 

a) amplitudowe, b) fazowe 

 

 

Dla dobroci 2/1>Q  charakterystyka amplitudowa jest niemonotoniczna i osi�ga 

maksimum dla pulsacji 

 

 2
0 2/11 Qm −= ωω  (16.22) 

 

Dla dobroci 2/1≤Q  przebieg charakterystyki amplitudowej staje si� monotoniczny 

(pulsacja mω  przyjmuje warto�� nierzeczywist� – urojon�). Przy 2/1=Q  charakterystyka 

jest maksymalnie płaska. 
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 Pulsacja mω  (je�li jest okre�lona) jest ró�na od pulsacji �rodkowej 0ω . Jak z 

charakterystyk cz�stotliwo�ciowych wida� pulsacja �rodkowa odpowiada warto�ci przy której 

przesuni�cie fazowe układu jest równe –90 stopni. Mo�e by� wi�c łatwo wyznaczona z 

charakterystyki fazowej. Dobro� układu mo�na z kolei prosto wyznaczy� wykorzystuj�c 

posta� charakterystyki amplitudowej. Obliczaj�c j� dla dwu warto�ci cz�stotliwo�ci: zerowej i 

�rodkowej otrzymuje si� 
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Wyznaczenie dobroci na podstawie charakterystyk cz�stotliwo�ciowych polega wi�c na 

okre�leniu warto�ci charakterystyki amplitudowej dla dwu cz�stotliwo�ci: zerowej i 

�rodkowej a nast�pnie podstawieniu tych warto�ci do powy�szego wzoru. 

 

16.3.3 Charakterystyki cz�stotliwo�ciowe filtru �rodkowoprzepustowego 

Po wstawieniu zale�no�ci ωjs =  do wzoru na transmitancj� )(sTSP  otrzymuje si� 

charakterystyk� cz�stotliwo�ciowej filtru �rodkowoprzepustowego w postaci 

 

 

Q
j

Q
jA

jT
SP

SP
022

0

0

)(
)( ωωωω

ωω

ω
+−

=  (16.24) 

 

Jest to funkcja zespolona pulsacji. Moduł tej funkcji stanowi charakterystyk� amplitudow� a 

faza – charakterystyk� fazow� układu. Charakterystyki te wyra�one s� w postaci 

 

• charakterystyka amplitudowa 

 
2

0222
0

0

)(

)(

��
�

�
��
�

�+−

=

Q
Q

A
jT SP

SP

ωωωω

ωωω  (16.25) 

 

• charakterystyka fazowa  
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Na rys. 16.9a przedstawiono typowe charakterystyki amplitudowe a na rys. 16.9b 

charakterystyki fazowe filtru �rodkowoprzepustowego drugiego rz�du dla dwu ró�nych 

dobroci, przy czym 21 QQ >   

 

  
 a) b) 

Rys. 16.9 Charakterystyki cz�stotliwo�ciowe filtru �rodkowoprzepustowego drugiego rz�du: 

a) amplitudowe, b) fazowe 

 

 

 Z charakterystyk cz�stotliwo�ciowych wida�, �e pulsacja �rodkowa odpowiada 

warto�ci maksymalnej charakterystyki amplitudowej. Dobro� filtru okre�la stosunek pulsacji 

�rodkowej 0ω  do 3 decybelowego pasma przenoszenia 0ω∆  (zakres cz�stotliwo�ci którego 

kra�ce wyznaczaj� warto�ci charakterystyki amplitudowej przyjmuj�ce 2/1  warto�ci 

maksymalnej) 

 

 
0

0

ω
ω

∆
=Q  (16.27) 

 

Interpretacja 3 decybelowego pasma przenoszenia przedstawiona jest na rys. 16.10. 
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Rys. 16.10 Interpretacja 3 decybelowego pasma przenoszenia 

 

 

16.3.4 Charakterystyki cz�stotliwo�ciowe filtru górnoprzepustowego 

Po wstawieniu zale�no�ci ωjs =  do wzoru na transmitancj� )(sTGP  otrzymuje si� 

charakterystyk� cz�stotliwo�ciow� filtru górnoprzepustowego w postaci 
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Jest to funkcja zespolona pulsacji. Moduł tej funkcji stanowi charakterystyk� amplitudow� a 

faza – charakterystyk� fazow� układu. Charakterystyki te wyra�one s� wzorami 

 

• charakterystyka amplitudowa 
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• charakterystyka fazowa  
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Na rys. 16.11a przedstawiono typowe charakterystyki amplitudowe a na rys. 16.11b 

charakterystyki fazowe filtru dolnoprzepustowego drugiego rz�du dla dwu ró�nych dobroci: 

2/1>Q  oraz 2/1≤Q .  

 

  
 a) b) 

Rys. 16.11 Charakterystyki cz�stotliwo�ciowe filtru górnoprzepustowego: a) amplitudowe, 

b) fazowe 

 

 

 Dla dobroci 2/11 >Q  charakterystyka amplitudowa jest niemonotoniczna i osi�ga 

maksimum dla pulsacji 
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Dla dobroci 2/11 ≤Q  przebieg charakterystyki amplitudowej staje si� monotoniczny i 

maksimum funkcji nie wyst�puje. Przy 2/11 =Q  charakterystyka jest maksymalnie płaska. 
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 Pulsacja mω  (je�li jest okre�lona) jest ró�na od pulsacji �rodkowej 0ω . Jak z 

charakterystyk cz�stotliwo�ciowych wida� pulsacja �rodkowa odpowiada warto�ci przy której 

przesuni�cie fazowe układu jest równe 90 stopni. Mo�e by� wi�c łatwo wyznaczona z 

charakterystyki fazowej. Dobro� układu mo�na z kolei prosto wyznaczy� wykorzystuj�c 

posta� charakterystyki amplitudowej. Obliczaj�c j� dla dwu warto�ci cz�stotliwo�ci: 

cz�stotliwo�ci maksymalnej (teoretycznie niesko�czonej) i �rodkowej otrzymuje si� 
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Wyznaczenie dobroci na podstawie charakterystyk cz�stotliwo�ciowych polega wi�c na 

okre�leniu warto�ci charakterystyki amplitudowej dla dwu cz�stotliwo�ci: maksymalnej 

(teoretycznie niesko�czonej) i �rodkowej a nast�pnie podstawieniu do powy�szego wzoru. 

 

16.4 Charakterystyki cz�stotliwo�ciowe układu n-tego rz�du 

Najbardziej ogólnym przypadkiem jest układ opisany transmitancj� operatorow� T(s) n-tego 

rz�du o postaci ogólnej zadanej wzorem 
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Zał�czony do podr�cznika program interakcyjny CHARAKTERYSTYKI umo�liwia 

wykre�lanie charakterystyk cz�stotliwo�ciowych (amplitudowych i fazowych) układów 

opisanych za pomoc� transmitancji operatorowej o postaci okre�lonej wzorem (16.33). 

Transmitancja widmowa T(j�) takiego układu wyznaczana jest z transmitancji operatorowej 

T(s) przez podstawienie s=j�. W wyniku otrzymuje si� 
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Transmitancja widmowa przedstawia sob� funkcj� zespolon� pulsacji ω i mo�e by� zapisana 

w postaci ogólnej jako 
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 )()()( ωωω jBAjT +=  (16.35) 

 

Cz��� rzeczywista A(�) i urojona B(�) s� funkcjami zarówno współczynników ai, bi licznika 

i mianownika transmitancji operatorowej, jak i aktualnej warto�ci pulsacji �. Charakterystyka 

amplitudowa przedstawia sob� moduł transmitancji widmowej okre�lony wzorem 

 

 )()()( 22 ωωω BAjT +=  (16.36) 

 

Charakterystyka fazowa jest faz� transmitancji widmowej i wyznaczana jest z zale�no�ci 

 

 ��
�

�
��
�

�
=

)(
)(

)(
ω
ωωϕ

A
B

arctg  (16.37) 

 

Powy�sze zale�no�ci zostały wykorzystane do badania charakterystyk cz�stotliwo�ciowych 

układów opisanych transmitancj� operatorow� T(s) zadawan� przez u�ytkownika. Wej�cie w 

program CHARAKTERYSTYKI nast�puje przez klikni�cie w ikon� programu. 

 

 
Rys. 16.12. Okno programu CHARAKTERYSTYKI 
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U�ytkownik zadaje stopie� licznika i mianownika transmitancji, a tak�e warto�ci wszystkich 

współczynników wielomianu licznika i mianownika. Okre�la równie� zakres pulsacji, dla 

którego wykre�lane b�d� charakterystyki cz�stotliwo�ciowe. W programie zało�ono, �e 

maksymalny rz�d układu nie powinien przekroczy� warto�ci 9.  

Wykorzystuj�c podane wcze�niej zale�no�ci cz�stotliwo�ciowe program wykre�la 

charakterystyki amplitudowe (liniow� i logarytmiczn� wyra�on� w decybelach) oraz 

charakterystyk� fazow� w stopniach. Charakterystyki filtru zostaj� wykre�lone w oddzielnych 

oknach, pozwalaj�cych na skalowanie oraz ogl�danie w powi�kszeniu poszczególnych 

odcinków krzywych. 

 

Zadania sprawdzaj�ce 

Zadanie 16.1  

Wyznaczy� charakterystyki cz�stotliwo�ciowe obwodu przedstawionego na rys. 16.13 bior�c 

pod uwag� transmitancj� napi�ciow�. 

 

 
Rys. 16.13. Schemat obwodu do zadania 16.1 

 

Rozwi�zanie 

Transmitancja napi�ciowa obwodu okre�lona jest wzorem 
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Transmitancja widmowa obwodu okre�lona jest na podstawie transmitancji operatorowej 

)(sTu  przy zało�eniu ωjs =  
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Charakterystyka amplitudowa 
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Charakterystyka fazowa 

 

( )RCωωϕ arctg)( −=  

 

Na rys. 16.14 przedstawiono charakterystyk� amplitudow� i fazow� dla warto�ci 

jednostkowych elementów obwodu (R = 1 Ω  i C = 1F) 

 

 
Rys. 16.14 Charakterystyki cz�stotliwo�ciowe obwodu z rys. 16.12: 

a) charakterystyka amplitudowa, b) charakterystyka fazowa 
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Zadanie 16.2 

Wykre�li� charakterystyki cz�stotliwo�ciowe członu inercyjnego pierwszego rz�du opisanego 

wzorem  
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Rozwi�zanie 

Przy zało�eniu ωjs =  otrzymuje si� charakterystyk� widmow� postaci  
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Charakterystyka amplitudowa 
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Charakterystyka fazowa 
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Na rys. 16.15 przedstawiono wykresy charakterystyki amplitudowej (rys. 16.15a) i fazowej 

(rys. 16.15b). 
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Rys. 16.15 Wykresy charakterystyki amplitudowej (a) i fazowej (b) członu inercyjnego z 

zadania 16.2 

 

 

Zadanie 16.3  

Napisa� wyra�enie na transmitancj� filtru bikwadratowego dolno-, �rodkowo- i 

górnoprzepustowego o nast�puj�cych parametrach: 10 =ω , Q = 2 przy jednostkowych 

wzmocnieniach w pasmach przepustowych. 

 

Rozwi�zanie 

Korzystaj�c z podstawowych wzorów na transmitancje bikwadratowe otrzymuje si� 

• Filtr dolnoprzepustowy 
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• Filtr �rodkowoprzepustowy 
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• Filtr górnoprzepustowy 
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Lekcja 17. Czwórniki 

 

Wst�p 

W opisie obwodów elektrycznych bardzo cz�sto interesuj� nas jedynie odpowiedzi dotycz�ce 

jednej gał�zi obwodu w zale�no�ci od sygnału wymuszaj�cego przyło�onego na wej�ciu 

obwodu. W takim przypadku wygodnie jest sprowadzi� opis obwodu do zale�no�ci 

wyst�puj�cych mi�dzy pr�dami i napi�ciami na zaciskach uwa�anych za wej�cie i wyj�cie, 

wprowadzaj�c poj�cie czwórnika.  

Lekcja siedemnasta po�wi�cona jest podstawowym informacjom o czwórnikach. 

Zostan� podane definicje oraz podstawowe opisy macierzowe czwórników: impedancyjny, 

admitancyjny, hybrydowy oraz ła�cuchowy. Rozpatrzone zostan� ró�ne poł�czenia 

czwórnikowe oraz opisy macierzowe takich układów. Pokazany zostanie zwi�zek 

transmitancji operatorowej z opisem macierzowym czwórnika. 

 

 

17.1 Definicja czwórnika 

Czwórnik jest elementem czterozaciskowym, maj�cym dwie pary uporz�dkowanych 

zacisków, z których jedna para jest wej�ciem a druga para wyj�ciem Oznaczenie czwórnika z 

zaznaczonymi zwrotami pr�dów i napi�� ko�cówkowych jest przedstawione na rys. 17.1. 

 

 
Rys. 17.1. Oznaczenie czwórnika z zaznaczonymi zwrotami pr�dów i napi�� 

 

 W odniesieniu do wej�cia i wyj�cia czwórnika musi by� spełniony warunek równo�ci 

pr�dów: 

 

 '
11 II =   (17.1) 
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 '
22 II =  (17.2) 

 

jak to zaznaczono na rysunku. Sygnały pr�du i napi�cia po stronie wej�ciowej oznacza� 

b�dziemy ze wska�nikiem 1, a po stronie wyj�ciowej – ze wska�nikiem 2. Przyjmiemy 

umownie, �e oba pr�dy: na wej�ciu i wyj�ciu s� zwrócone do prostok�ta oznaczaj�cego 

czwórnik. 

 W zale�no�ci od elementów tworz�cych obwód, czwórnik mo�e by� liniowy (gdy 

wszystkie elementy obwodu s� liniowe) lub nieliniowy. W dalszych rozwa�aniach 

ograniczymy si� wył�cznie do czwórników liniowych. Czwórnik nazywa� b�dziemy 

pasywnym, je�li nie wytwarza energii a jedynie pobiera j� ze �ródła zasilaj�cego i przetwarza 

w okre�lony sposób. Czwórnik zło�ony z samych elementów pasywnych R, L, C i M jest 

zawsze czwórnikiem pasywnym. Czwórnik pasywny jest zdolny do gromadzenia i 

rozpraszania energii pobranej ze �ródła, mo�e j� równie� oddawa� na zewn�trz, jednak w 

dowolnej chwili czasowej t energia ta nie mo�e przewy�sza� energii pobranej. Czwórnik, 

który nie spełnia powy�szych warunków jest czwórnikiem aktywnym (generatorem energii). 

 

17.2 Równania czwórnika 

Czwórnik mo�e by� scharakteryzowany za pomoc� dwóch równa� liniowych wi���cych ze 

sob� dwa wielko�ci pr�dowe i dwie napi�ciowe dotycz�ce bramy wej�ciowej i wyj�ciowej: 

1I , 2I , 1U  oraz 2U . W zale�no�ci od wyboru zmiennych mo�na wyró�ni� 6 podstawowych 

postaci równa� czwórnika. S� to 

• posta� admitancyjna, w której pr�dy wej�ciowy i wyj�ciowy (I1, I2) s� wyra�one w 

zale�no�ci od napi�� zewn�trznych (U1, U2) 

• posta� impedancyjna, w której napi�cia wej�ciowe i wyj�ciowe (U1, U2) s� wyra�one w 

zale�no�ci od pr�dów ko�cówkowych (I1, I2) 

• posta� hybrydowa w której para wielko�ci (U1, I2) jest wyra�ona jako funkcja drugiej pary 

(I1, U2) 

• posta� hybrydowa odwrotna w której para wielko�ci (I1, U2) jest wyra�ona jako funkcja 

drugiej pary (U1, I2) 

• posta� ła�cuchowa w której para wielko�ci (U1, I1) dotycz�ca zacisków wej�ciowych jest 

wyra�ona jako funkcja drugiej pary (U2, I2) zwi�zanej z zaciskami wyj�ciowymi 
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• posta� ła�cuchowa odwrotna w której para wielko�ci (U2, I2) dotycz�ca zacisków 

wyj�ciowych jest wyra�ona jako funkcja drugiej pary (U1, I1) zwi�zanej z zaciskami 

wej�ciowymi. 

 

17.2.1 Równanie admitancyjne 

Je�eli za zmienne niezale�ne przyjmie si� napi�cia obu bram U1 oraz U2 czwórnik przyjmie 

opis admitancyjny, który mo�na wyrazi� w postaci 
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Macierz Y jest nazywana macierz� admitancyjn� a parametry tej macierzy maj� interpretacj� 

admitancji operatorowych.  

 

17.2.2 Równanie impedancyjne 

Je�eli za zmienne niezale�ne przyjmie si� pr�dy obu bram I1 oraz I2 , czwórnik przyjmie opis 

impedancyjny, który mo�na wyrazi� w postaci 
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Macierz Z jest nazywana macierz� impedancyjn� a parametry tej macierzy maj� interpretacj� 

impedancji operatorowych. Łatwo jest udowodni�, �e macierze impedancyjna i admitancyjna 

s� powi�zane relacj� 

 

 1−= ZY  (17.5) 

 

17.2.3 Równanie hybrydowe 

Przy opisie hybrydowym za zmienne niezale�ne wybiera si� pr�d wej�ciowy i napi�cie 

wyj�ciowe czwórnika. Równanie hybrydowe przyjmuje si� w postaci 
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w której H jest macierz� hybrydow�. Jak wida� z opisu hybrydowego parametr H11 ma 

interpretacj� impedancji a H22 admitancji. Parametry H12 i H21 s� bezwymiarowe i wyra�aj� 

stosunek odpowiednio dwu napi�� i dwu pr�dów w obwodzie.  

 

17.2.3 Równanie hybrydowe odwrotne 

Opis hybrydowy odwrotny czwórnika definiuje si� w postaci 
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Stanowi on odwrotno�� opisu hybrydowego macierz� H. Obie macierze powi�zane s� 

nast�puj�ca relacj� 1−= HG . 

 

17.2.4 Równanie ła�cuchowe 

Równanie ła�cuchowe czwórnika uzale�nia pr�d i napi�cie na wej�ciu czwórnika od pr�du i 

napi�cia na jego wyj�ciu 
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W równaniu tym, inaczej ni� w pozostałych opisach, przyjmuje si� pr�d 2I  wypływaj�cy z 

czwórnika, w zwi�zku z czym przy zało�onym na wst�pie zwrocie pr�du do czwórnika w 

opisie pojawia si� pr�d wyj�ciowy ze znakiem minus. Elementy macierzy ła�cuchowej A 

nazywane s� parametrami ła�cuchowymi czwórnika.  

 

17.2.5 Równanie ła�cuchowe odwrotne 

Równanie ła�cuchowe odwrotne czwórnika uzale�nia pr�d i napi�cie na wyj�ciu czwórnika 

od pr�du i napi�cia na jego wej�ciu 

 

 �
�

�
�
�

�

−
=�

�

�
�
�

�

−�
�

�
�
�

�
=�

�

�
�
�

�

1

1

1

1

2221

1211

2

2

I

U
B

I

U

BB

BB

I

U
 (17.9) 



 397

 

Ostatni rodzaj opisu czwórnikowego (równanie ła�cuchowe odwrotne) jest rzadko stosowany. 

Macierz B wyst�puj�ca w tym opisie nazywana jest macierz� ła�cuchow� odwrotn�. 

 Ka�dy z przedstawionych typów macierzy jednoznacznie opisuje czwórnik. Wybór 

którego� z nich jest uwarunkowany struktur� obwodu, sposobem poł�czenia czwórników, 

łatwo�ci� wyznaczenia parametrów, itp. Przej�cie z jednego opisu do drugiego polega na 

przegrupowaniu zmiennych i wyznaczeniu odpowiednich relacji mi�dzy tymi zmiennymi. 

 Du�a liczba stosowanych opisów macierzowych czwórnika wynika równie� z faktu, 

�e dla niektórych czwórników pewne opisy mog� nie istnie�. Najbardziej uniwersalne pod 

tym wzgl�dem s� opisy hybrydowe wykorzystuj�ce macierz H lub G, które mo�na otrzyma� 

dla wi�kszo�ci obwodów elektrycznych.  

 

Przykład 17.1 

Wyznaczy� opis czwórnika przedstawionego na rys. 17.2. Czwórnik ten nosi nazw� 

czwórnika typu T i jest jedn� z najpopularniejszych struktur czwórnikowych. 

 

 
Rys. 17.2. Schemat obwodu do przykładu 17.1 

 

Rozwi�zanie 

Z prawa napi�ciowego i pr�dowego Kirchhoffa zastosowanego do obwodu z rys. 17.2 mo�na 

napisa� nast�puj�ce równania  
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Po podstawieniu równania pierwszego do drugiego otrzymuje si� 
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( ) ( )( )22121211 1 IYZZZZUYZU −++++=  

 

Je�li jako opis macierzowy przyjmiemy równanie ła�cuchowe to zale�no�ci okre�laj�ce pr�d 

wej�ciowy i napi�cie wej�ciowe w funkcji pr�du i napi�cia wyj�ciowego mo�na zapisa� w 

postaci 
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Macierz ła�cuchowa A dana jest wi�c wzorem 
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Je�li jako opis macierzowy przyjmiemy równanie impedancyjne, wówczas z przetworzenia 

równania ła�cuchowego otrzymujemy 
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Macierz impedancyjna dana jest wi�c w postaci 
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Jest to macierz symetryczna, która jest równa macierzy oczkowej obwodu tworz�cego 

analizowany czwórnik. 

 

17.3 Zwi�zek transmitancji operatorowych z opisem czwórnikowym 

Opis macierzowy czwórników jest najbardziej uniwersalnym opisem układu 

czteroko�cówkowego, obejmuj�cym wszystkie cztery wielko�ci zewn�trzne: pr�dy i napi�cia 

obu bram. Jest zatem idealny do wyznaczenia dowolnej transmitancji układu, gdy� z jednego 
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równania czwórnikowego wynikaj� wszystkie mo�liwe zwi�zki mi�dzy wielko�ciami 

bramowymi. W lekcji tej tym poka�emy zwi�zek opisu transmitancyjnego z parametrami 

macierzowymi czwórnika. 

 

17.3.1 Transmitancja napi�ciowa 

 We�my pod uwag� transmitancj� napi�ciow�, jako stosunek napi�cia wyj�ciowego do 

napi�cia wej�ciowego w dziedzinie operatorowej przy zało�eniu zerowego pr�du obci��enia 

czwórnika ( 0)(2 =sI ) 
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sTu =  (17.10) 

 

Z równania ła�cuchowego, wobec 0)(2 =sI  otrzymujemy 

 

 )()( 2111 sUAsU =  (17.11) 

St�d  
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O transmitancji napi�ciowej decyduje jeden parametr ła�cuchowy A11 czwórnika. W 

identyczny sposób uzyska� mo�na relacj� wi���c� transmitancj� napi�ciow� z parametrami 

dowolnego opisu czwórnikowego. Przykładowo na podstawie opisu admitancyjnego z 

równania drugiego czwórnika, wobec 02 =I , wynika 

 

 02221212 =+= UYUYI  (17.13) 

 

St�d  
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17.3.2 Impedancja wej�ciowa 

Okre�lenie funkcji impedancji wej�ciowej układu czwórnika wymaga ustalenia przy jakiej 

impedancji obci��enia badany jest czwórnik. Załó�my w ogólno�ci obci��enie czwórnika 

impedancj� Zo. Z równa� ła�cuchowych czwórnika otrzymuje si�  
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gdzie Yo oznacza admitancj� obci��enia (odwrotno�� impedacji Zo, Yo=1/Zo). Z powy�szych 

równa� otrzymuje si�  
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Impedancja wej�ciowa czwórnika obci��onego jest funkcj� wszystkich parametrów 

ła�cuchowych tego czwórnika. Pewne uproszczenia powstaj� w stanach szczególnych 

obci��e�. Na przykład w stanie jałowym na zaciskach wyj�ciowych (Yo=0)  

 

 
21

11)(
A
A

sZwe =  (17.17) 

 

oraz w stanie zwarcia na wyj�ciu ( ∞=oY ) 

 

 
22

12)(
A
A

sZwe =  (17.18) 

 

impedancja wej�ciowa zale�y wył�cznie od dwóch parametrów ła�cuchowych. Identyczne 

zale�no�ci okre�laj�ce impedancje wej�ciow� otrzyma� mo�na na podstawie dowolnego opisu 

czwórnikowego. 

 

Przykład 17.2 

Wyznaczy� wyra�enie na transmitancj� napi�ciow� i impedancj� wej�ciow� czwórnika z 

przykładu 17.1 
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Rozwi�zanie 

Macierz ła�cuchowa czwórnika z przykładu 17.1 ma posta� 
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Transmitancja napi�ciowa w stanie jałowym na wyj�ciu jest wi�c równa  
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Wobec braku obci��enia czwórnika przez impedancj� Z2 nie przepływa pr�d, st�d całe 

napi�cie wyj�ciowe pochodzi z impedancji poprzecznej Z (dzielnik impedancyjny). 

 Impedancja wej�ciowa czwórnika przy obci��eniu bramy wyj�ciowej impedancj� Zo 

na podstawie wzoru (17.16) jest równa 
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Jest ona funkcj� wszystkich parametrów układu oraz impedancji obci��enia. 

 

17.4 Poł�czenia czwórników 

Mnogo�� opisów czwórnikowych wynika z ró�norodno�ci poł�cze�, jakie s� mo�liwe przy 

zało�eniu dost�pno�ci obu bram: wej�ciowej i wyj�ciowej. Rozwa�ymy tu podstawowe 

poł�czenie czwórników mi�dzy sob�: poł�czenie ła�cuchowe, szeregowe, równoległe oraz 

szeregowo-równoległe i równolegle-szeregowe. 

 

17.4.1 Poł�czenie ła�cuchowe 

Poł�czenie ła�cuchowe, zwane równie� kaskadowym czwórników to takie poł�czenie , w 

którym zaciski wej�ciowe jednego czwórnika s� przył�czone do zacisków wyj�ciowych 

poprzedniego. Przykład poł�czenia ła�cuchowego dwu czwórników przedstawiony jest na 

rys. 17.3.  
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Rys. 17.3. Poł�czenie ła�cuchowe czwórników 

 

Łatwo jest pokaza�, �e macierz ła�cuchowa A czwórników poł�czonych kaskadowo jest 

równa iloczynowi macierzy ła�cuchowych poszczególnych czwórników tworz�cych to 

poł�czenie 

 

 21AAA =  (17.19) 

 

Przy wi�kszej liczbie czwórników poł�czonych kaskadowo macierz ła�cuchowa wypadkowa 

jest równa iloczynowi macierzy ła�cuchowych wszystkich czwórników branych w kolejno�ci 

ich wyst�powania w ła�cuchu.  

 

 nAAAA ⋅⋅⋅= 21  (17.20) 

 

Nale�y zwróci� uwag�, �e przy mno�eniu macierzy istotna jest kolejno�� tych macierzy, gdy� 

w ogólno�ci 1221 AAAA ≠ .  

 

17.4.2 Poł�czenie szeregowe czwórników 

Dwa czwórniki s� poł�czone szeregowo, je�li spełnione s� warunki: 

• pr�d wej�ciowy jednego czwórnika jest równy pr�dowi wej�ciowemu drugiego a pr�d 

wyj�ciowy jednego czwórnika jest równy pr�dowi wyj�ciowemu drugiego 

• napi�cie wej�ciowe (wyj�ciowe) poł�czenia jest równe sumie napi�� wej�ciowych 

(wyj�ciowych) ka�dego czwórnika. 

 

Na rys. 17.4 przedstawiono układ dwu czwórników poł�czonych szeregowo, spełniaj�cy 

powy�sze warunki. 
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Rys. 17.4. Poł�czenie szeregowe czwórników 

 

 Łatwo jest pokaza�, �e w poł�czeniu szeregowym czwórników macierz impedancyjna Z 

poł�czenia jest równa sumie macierzy impedancyjnych ka�dego czwórnika. Oznacza to, �e  

 

 21 ZZZ +=  (17.21) 

 

Przy wi�kszej liczbie czwórników poł�czonych szeregowo macierz impedancyjna 

wypadkowa jest równa sumie macierzy impedancyjnych wszystkich czwórników 

wyst�puj�cych w poł�czeniu. 

 

 �
=

=
n

i
i

1

ZZ  (17.22) 

 

 Kolejno�� sumowania macierzy impedancyjnych nie odgrywa �adnej roli. 

 

 

17.4.3 Poł�czenie równoległe czwórników 

Dwa czwórniki s� poł�czone równolegle, je�li spełnione s� warunki: 

• napi�cie wej�ciowe ka�dego czwórnika jest takie samo, podobnie napi�cie wyj�ciowe  

• pr�d wej�ciowy (wyj�ciowy) poł�czenia jest równy sumie pr�dów wej�ciowych 

(wyj�ciowych) ka�dego czwórnika. 

 

Na rys. 17.5 przedstawiono układ dwu czwórników poł�czonych równolegle, spełniaj�cy 

powy�sze warunki.  

 



 404

 
Rys. 17.5. Poł�czenie równoległe czwórników 

 

Łatwo jest pokaza�, �e w poł�czeniu równoległym czwórników macierz admitancyjna Y 

poł�czenia jest równa sumie macierzy admitancyjnych ka�dego czwórnika. Oznacza to, �e  

 

 21 YYY +=  (17.23) 

 

Przy wi�kszej liczbie czwórników poł�czonych równolegle macierz admitancyjna 

wypadkowa jest równa sumie macierzy admitancyjnych wszystkich czwórników 

wyst�puj�cych w poł�czeniu.  
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YY  (17.24) 

Kolejno�� sumowania macierzy admitancyjnych nie odgrywa �adnej roli. 

 

 

17.4.4 Poł�czenie szeregowe-równoległe czwórników 

Dwa czwórniki s� poł�czone szeregowo-równolegle, je�li spełnione s� warunki: 

• pr�d wej�ciowy ka�dego czwórnika jest taki sam a napi�cie wej�ciowe poł�czenia jest 

równe sumie napi�� wej�ciowych ka�dego czwórnika 

• pr�d wyj�ciowy poł�czenia jest równy sumie pr�dów wyj�ciowych ka�dego czwórnika a 

napi�cie wyj�ciowe obu czwórników jest takie samo. 

 

Na rys. 17.6 przedstawiono układ dwu czwórników poł�czonych szeregowo-równolegle 

(szeregowo po stronie zacisków wej�ciowych i równolegle po stronie zacisków 

wyj�ciowych), spełniaj�cy powy�sze warunki.  
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Rys. 17.6. Poł�czenie szeregowo-równoległe czwórników 

 

Łatwo jest pokaza�, �e w poł�czeniu szeregowo-równoległym czwórników macierz 

hybrydowa H poł�czenia jest równa sumie macierzy hybrydowych H ka�dego czwórnika. 

Oznacza to, �e  

 

 21 HHH +=  (17.25) 

 

Przy wi�kszej liczbie czwórników poł�czonych szeregowo-równolegle macierz hybrydowa H, 

wypadkowa dla całego poł�czenia jest równa sumie macierzy hybrydowych H wszystkich 

czwórników wyst�puj�cych w poł�czeniu.  

 �
=

=
n

i
i

1

HH  (17.26) 

Kolejno�� sumowania macierzy hybrydowych nie odgrywa �adnej roli. 

 

 

17.4.5 Poł�czenie równoległo-szeregowe czwórników 

Dwa czwórniki s� poł�czone równolegle-szeregowo, je�li spełnione s� warunki: 

• napi�cie wej�ciowe ka�dego czwórnika jest takie samo a pr�d wej�ciowy poł�czenia jest 

równy sumie pr�dów wej�ciowych ka�dego czwórnika 

• pr�d wyj�ciowy ka�dego czwórnika jest taki sam a napi�cie wyj�ciowe poł�czenia jest 

równe sumie napi�� wyj�ciowych ka�dego z nich. 

 

Na rys. 17.7 przedstawiono układ dwu czwórników poł�czonych równolegle-szeregowo 

(równolegle po stronie zacisków wej�ciowych i szeregowo po stronie zacisków 

wyj�ciowych), spełniaj�cy powy�sze warunki.  
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Rys. 17.7. Poł�czenie równoległo-szeregowe czwórników 

 

Łatwo jest pokaza�, �e w poł�czeniu równolegle-szeregowym czwórników macierz 

hybrydowa odwrotna G poł�czenia jest równa sumie macierzy hybrydowych G ka�dego 

czwórnika. Oznacza to, �e  

 

 21 GGG +=  (17.27) 

 

Przy wi�kszej liczbie czwórników poł�czonych równolegle-szeregowo macierz hybrydowa 

odwrotna G, wypadkowa dla całego poł�czenia jest równa sumie macierzy hybrydowych G 

wszystkich czwórników wyst�puj�cych w poł�czeniu. 
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GG  (17.28) 

 Kolejno�� sumowania macierzy nie odgrywa �adnej roli. 

 

Zadania sprawdzaj�ce 

Zadanie 17.1 

 Wyznaczy� macierzowy opis czwórnikowy czwórnika typu Π  o strukturze podanej na rys. 

17.8. 
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Rys. 17.8. Struktura i oznaczenia admitancji w czwórniku typu Π  

 

Rozwi�zanie 

Układ równa� Kirchhoffa opisuj�cych obwód  
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Równania czwórnikowe 
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Macierz admitancyjna 
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Zadanie 17.2  

Wyznaczy� macierz ła�cuchow� czwórnika odpowiadaj�cego obwodowi z rys. 17.9. Okre�li� 

na tej podstawie transmitancj� napi�ciow� układu. 
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Rys. 17.9. Schemat obwodu do zadania 17.2 

 

Rozwi�zanie 

Z równa� Kirchhoffa dla obwodu z rys. 17.9 otrzymuje si� 
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Opis ła�cuchowy czwórnika 
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Transmitancja napi�ciowa okre�lana przy zało�eniu 02 =I  jest równa 
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Zadanie 17.3  

Wyznaczy� transmitancj� napi�ciow� czwórnika na podstawie znanej macierzy 

impedancyjnej Z. 

 

Rozwi�zanie 
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Transmitancja napi�ciowa z zało�enia okre�lona jest przy warunku 02 =I . Z opisu 

impedancyjnego czwórnika  
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wobec 02 =I  otrzymujemy 
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Lekcja 18. Wybrane zastosowania czwórników 

 

Wst�p 

Istnieje ogromna ró�norodno�� czwórników wa�nych z punktu widzenia zastosowa� 

praktycznych. Tutaj ograniczymy si� do trzech, najbardziej reprezentatywnych z punktu 

widzenia zastosowa� in�ynierskich: �yratora, konwertera ujemno-impedancyjnego oraz 

idealnego wzmacniacza napi�ciowego. 

 Poka�emy analiz� wybranych zastosowa� tych czwórników. Udowodnimy 

uniwersalno�� wzmacniacza operacyjnego, pozwalaj�cego zrealizowa� wiele typów układów, 

w tym układ sumatora wielowej�ciowego, układ całkuj�cy, układ ró�niczkuj�cy, przesuwnik 

fazowy, �yrator i konwerter ujemno-impedancyjny.  

 
 

18.1 �yrator 

�yrator jest czwórnikiem opisanym nast�puj�c� macierz� ła�cuchow� 
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Parametr zG  jest nazywany konduktancj� �yracji a zz GR /1=  rezystancj�. Oznaczenia 

graficzne �yratora przedstawione s� na rys. 18.1.   

 

 
Rys. 18.1. Oznaczenia graficzne �yratora 
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Znak minus wyst�puj�cy przy pr�dzie wyj�ciowym wynika z przyj�tego zwrotu pr�du 

wyj�ciowego (do pudełka). Równaniu ła�cuchowemu �yratora odpowiada opis admitancyjny 

o postaci 
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 Najwa�niejsz� własno�ci� �yratora jest przetwarzanie impedancji obci��enia w impedancj� 

odwrotnie proporcjonaln� do niej. Rozwa�my układ �yratora obci��onego impedancj� oZ  

(rys. 18.2). 

 

 
Rys. 18.2. Układ �yratora obci��onego impedancj� 

 

 Impedancja wej�ciowa takiego układu zdefiniowana w postaci 
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po uwzgl�dnieniu wzoru (17.16) wobec 011 =A , zRA =12 , zGA =12 , 022 =A  jest równa  
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Impedancja układu �yratora obci��onego impedancj� Zo jest odwrotnie proporcjonalna do 

impedancji obci��enia ze współczynnikiem proporcjonalno�ci równym 2
zR . Je�li �yrator 

zostanie obci��ony kondensatorem o impedancji operatorowej równej Zo = 1/sC (rys. 18.2)  
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to impedancja wej�ciowa układu jest równa 

 

 CsRZ zwe
2=  (18.5) 

 

Jest to posta� odpowiadaj�ca ogólnemu opisowi impedancji operatorowej cewki ZL=sL. 

Zatem układ �yratora obci��onego pojemno�ci� C przedstawia sob� cewk� o indukcyjno�ci L  

 

 CRL z
2=  (18.6) 

 

Powy�szej zale�no�ci matematycznej mo�na przyporz�dkowa� transformacj� układow� 

zilustrowan� na rys. 18.3. 

 

 
Rys. 18.3. Realizacja indukcyjno�ci przy pomocy �yratora 

 
 

�yrator jako czwórnik jest bardzo łatwo realizowalny w praktyce przy wykorzystaniu 

układów tranzystorowych lub wzmacniaczy operacyjnych. Z tego wzgl�du układy 

wykorzystuj�ce �yratory s� powszechnie stosowane w układach elektronicznych (np. filtrach) 

eliminuj�c z nich cewki, trudno realizowalne w technologii scalonej. 

 

18.2 Konwerter ujemno-impedancyjny (NIC) 

Konwerter ujemno-impedancyjny (NIC) jest czwórnikiem aktywnym (wytwarzaj�cym 

energi�) posiadaj�cym własno�� przetwarzania pr�du b�d� napi�cia z ujemnym znakiem. 

Wyró�nia si� dwa rodzaje konwerterów ujemno-impedancyjnych 
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• NIC z inwersj� pr�du (INIC) 
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• NIC z inwersj� napi�cia (VNIC) 
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Parametr K (Ki dla konwertera ujemno-impedancyjnego pr�du oraz Ku dla konwertera 

ujemno-impedancyjnego napi�cia) jest współczynnikiem przetwarzania b�d� pr�du b�d� 

napi�cia. W konwerterze INIC pr�d wej�ciowy jest proporcjonalny do pr�du wyj�ciowego z 

ujemnym współczynnikiem proporcjonalno�ci –Ki przy niezmienionej warto�ci napi�cia 

wej�ciowego. W konwerterze VNIC napi�cie wej�ciowe jest proporcjonalne do napi�cia 

wyj�ciowego z ujemnym współczynnikiem proporcjonalno�ci –Ku przy niezmienionym 

pr�dzie wej�ciowym. 

Konwerter impedancyjny przetwarza impedancj� obci��enia w impedancj� wej�ciow� 

z ujemnym znakiem. Rozwa�my układ konwertera INIC obci��onego impedancj� Zo, 

przedstawiony na rys. 18.4  

 

 
Rys. 18.4. Układ konwertera ujemno-impedancyjnego obci��onego impedancj� 
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Wykorzystuj�c równania konwertera i uwzgl�dniaj�c równanie opisuj�ce obci��enie 

22 )( UIZU oo =−=  impedancja wej�ciowa układu dana jest zale�no�ci� 
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Jak z powy�szego równania wynika konwerter ujemno-impedancyjny obci��ony impedancj� 

Zo reprezentuje sob� (z punktu widzenia wej�cia) impedancj� ujemn� io KZ /− . Podobn� 

własno�� ma konwerter ujemno-impedancyjny napi�cia (VNIC).  

Cecha ta mo�e by� wykorzystana do realizacji rezystancji ujemnej. Mianowicie 

przyjmuj�c obci��enie konwertera rezystancj� oo RZ =  otrzymuje si� impedancj� wej�ciow� 

równ� iowe KRZ /−= . Nale�y pami�ta�, �e ujemna rezystancja zastosowana samodzielnie 

prowadzi do niestabilno�ci układu (wobec ujemnych warto�ci rezystancji bieguny układu 

znajd� si� w prawej półpłaszczy�nie). Z tego wzgl�du stosuje si� j� zwykle w specjalnych 

poł�czeniach z innymi elementami obwodowymi zapewniaj�cymi stabilne działanie układu. 

 Konwerter ujemno-impedancyjny jest łatwo realizowalny w technologii scalonej przy 

wykorzystaniu tranzystorów lub wzmacniaczy operacyjnych. Z tego wzgl�du jest ch�tnie 

wykorzystywany w elektronice przy realizacji filtrów, generatorów i innych układów 

przetwarzania sygnałów. 

 

18.3 Idealny wzmacniacz napi�ciowy 

Idealny wzmacniacz napi�cia jest czwórnikiem opisanym nast�puj�c� macierz� hybrydow� 
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Jak wynika z powy�szej zale�no�ci idealny wzmacniacz napi�ciowy nie pobiera pr�du 

(impedancja wej�ciowa równa niesko�czono�ci) a przetwarza jedynie napi�cie wej�ciowe w 

wyj�ciowe zgodnie z relacj� 

 

 12 AUU =  (18.11) 
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Oznaczenie techniczne wzmacniacza i odpowiadaj�cy mu schemat obwodowy reprezentuj�cy 

równanie (18.10) przedstawia rys. 18.5.  

 

 
Rys. 18.5. Oznaczenie wzmacniacza napi�ciowego o sko�czonym wzmocnieniu A 

 

Wej�cie układu stanowi przerw� (impedancja wej�ciowa równa niesko�czono�ci). Na wyj�ciu 

istnieje jedynie idealne �ródło napi�cia sterowane napi�ciem. St�d impedancja wyj�ciowa 

takiego układu jest równa zeru. 

 

18.4 Idealny wzmacniacz operacyjny 

Wzmacniacz operacyjny jest szczególnym rodzajem wzmacniacza napi�ciowego niezwykle 

wa�nym i cz�sto stosowanym przy realizacji innych układów. Jego oznaczenie oraz zast�pczy 

schemat obwodowy przedstawia rys. 18.6.  

 

 
Rys. 18.6. Oznaczenie idealnego wzmacniacza operacyjnego 

 
 

Idealny wzmacniacz operacyjny nie pobiera pr�du na wej�ciu (impedancja wej�ciowa równa 

niesko�czono�ci) a jego napi�cie wyj�ciowe jest proporcjonalne do wej�ciowego napi�cia 
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ró�nicowego −+ −= UUU1 , przy czym +U jest napi�ciem wej�cia nieodwracaj�cego a −U  

napi�ciem wej�cia odwracaj�cego wzmacniacza 

 

 12 AUU =  (18.12) 

 

Przy zało�eniu idealno�ci wzmacniacza operacyjnego warto�� wzmocnienia A d��y do 

niesko�czono�ci. Bior�c pod uwag�, �e napi�cie wyj�ciowe wzmacniacza mo�e przyjmowa� 

jedynie warto�ci sko�czone, napi�cie ró�nicowe 1U  w idealnym wzmacniaczu operacyjnym 

musi by� równe zeru. Idealny wzmacniacz operacyjny zachowuje si� wi�c tak, jakby stanowił 

na wej�ciu jednocze�nie zwarcie i rozwarcie. W efekcie idealny wzmacniacz operacyjny 

charakteryzuje si� nast�puj�cymi wła�ciwo�ciami: 

• niesko�czona warto�� wzmocnienia napi�ciowego 

• zerowa warto�� impedancji wyj�ciowej 

• niesko�czona impedancja wej�ciowa 

• spełnienie wszystkich powy�szych cech dla zakresu cz�stotliwo�ci od zera do 

niesko�czono�ci. 

 

Na rys. 18.7 przedstawiono obwodowy schemat zast�pczy idealnego wzmacniacza 

operacyjnego, wykorzystuj�cy �ródło napi�cia sterowane napi�ciem. 

 

 
Rys. 18.7. Schemat zast�pczy idealnego wzmacniacza operacyjnego 

 

W rzeczywisto�ci wzmacniacz operacyjny realizowany w technologii scalonej ma sko�czon� 

warto�� zarówno impedancji wej�ciowej (rz�du megaomów) jak i wzmocnienia 

napi�ciowego. Co wi�cej wzmocnienie napi�ciowe jest w istotny sposób zale�ne od 

cz�stotliwo�ci i zmienia si� od warto�ci około miliona dla napi�� stałych (f=0) do warto�ci 

równej jeden przy cz�stotliwo�ci rz�du megaherców. Impedancja wyj�ciowa wzmacniacza 

rzeczywistego przyjmuje warto�� około Ω70  zamiast warto�ci zerowej w przypadku 
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idealnym. Warto�ci powy�sze mog� si� zmienia� w zale�no�ci od technologii wykonania. W 

zakresie cz�stotliwo�ci do 1kHz rzeczywisty wzmacniacz operacyjny z du�ym przybli�eniem 

mo�e by� jednak traktowany jako idealny. 

 

18.5 Wybrane zastosowania wzmacniaczy operacyjnych 

Wzmacniacz operacyjny dzi�ki swoim unikalnym cechom znalazł ogromne zastosowanie w 

technice elektronicznej. Tutaj ograniczymy si� do wybranych zastosowa�, w tym realizacji 

wzmacniacza sumacyjnego, układu całkuj�cego, układu ró�niczkuj�cego, przesuwnika 

fazowego, konwertera ujemno-impedancyjnego oraz �yratora. 

18.5.1 Wzmacniacz sumacyjny 

Wzmacniacz sumacyjny jest układem dokonuj�cym sumowania napi�� wej�ciowych z 

odpowiedni�, zadan� wag�. Je�li sygnały wej�ciowe oznaczymy jako Ui, to napi�cie 

wyj�ciowe wzmacniacza sumacyjnego dane jest w postaci sumy wa�onej 

 

 j
j

jo UkU �=  (18.13) 

 

Wagi kj oznaczaj� wzmocnienie (dodatnie lub ujemne) odpowiedniego sygnału Uj w układzie. 

Schemat układu sumujacego sygnały wej�ciowe z dowoln� wag� przy ograniczeniu si� do 

jednego sygnału o wzmocnieniu ujemnym i jednego o wzmocnieniu dodatnim przedstawiono 

na rys. 18.8. 
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Rys. 18.8. Schemat sumatora dwu sygnałów 

 

 Wobec przyj�tych oznacze� elementów i napi�� w�złowych z pr�dowego prawa Kirchhoffa 

napisanego dla dwu w�złów obwodu wynikaj� nast�puj�ce równania 

 

 
( )
( ) ( )0011

022

UUGUGUUG

UGUUG

f −+=−
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 (18.14) 

 

Ze wzgl�du na niesko�czon� warto�� wzmocnienia wzmacniacza operacyjnego napi�cie w 

obu punktach sumacyjnych wzmacniacza jest sobie równe, to znaczy 

 

 −+ = UU  (18.15) 

 

Z rozwi�zania tego układu równa� wynika 
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oraz  
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Przy dwu sygnałach wej�ciowych sygnał wyj�ciowy wzmacniacza sumacyjnego jest wi�c 

równy sumie wa�onej sygnałów wej�ciowych  

 

 22110 UkUkU +=  (18.18) 

 

przy czym współczynniki wzmocnie� obu torów  

 

 
fG
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1 −=  (18.19) 
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 (18.20) 

 

s� przeciwnego znaku. Przedstawiona powy�ej struktura wzmacniacza pozwala wi�c 

zrealizowa� dowolne wzmocnienie, zarówno dodatnie jak i ujemne. Zauwa�my, �e je�li 

przyjmiemy zrównowa�ony układ rezystorów, spełniaj�cy warunek równo�ci sumy 

konduktancji wł�czonych w obu w�złach sumacyjnych  

 

 2010 GGGGG f +=++ +−  (18.21) 

 

to wyra�enie na wzmocnienie k2 upraszcza si� do postaci analogicznej jak wzmocnienie k1, 

czyli 

 

 
fG

G
k 2

2 =  (18.22) 

 

Przy spełnieniu warunku zrównowa�enia konduktancji w w�złach sumacyjnych oba 

wzmocnienia (dodatnie i ujemne) s� okre�lone jako stosunek odpowiedniej dla danego toru 

konduktancji wej�ciowej do konduktancji sprz��enia zwrotnego Gf. Reguła doboru 
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rezystorów dla uzyskania odpowiedniego wzmocnienia jest wi�c bardzo prosta, a 

poszczególne tory nie wpływaj� na siebie.  

Co wi�cej przedstawiony tu układ wzmacniacza sumacyjnego łatwo jest uogólni� na 

sumator o dowolnej liczbie wej�� i wyj�� przez dodanie nast�pnych kanałów.  

 

 
Rys. 18.9. Schemat sumatora wielowej�ciowego o wzmocnieniach dodatnich i 

ujemnych 

 

Na rys. 18.9 przedstawiono schemat sumatora o wielu wej�ciach odwracaj�cych realizuj�cych 

wzmocnienia ujemne i nieodwracaj�cych realizuj�cych wzmocnienia dodatnie pozwalaj�cych 

uzyska� dowolne, niezale�ne od siebie warto�ci wzmocnie� w kanale przy spełnieniu 

warunku zrównowa�enia konduktancji w w�złach dodatnim i ujemnym  
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Wzmocnienia w poszczególnych torach s� wyra�one wzorami identycznymi do przypadku 

układu o dwu wej�ciach 
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− −=  (18.24) 

dla −= ni ,...,2,1  oraz  

 

 
f

i
i G

G
k

+
+ =  (18.25) 

 

dla += ni ,...,2,1 . Warunek zrównowa�enia jest łatwy do spełnienia ze wzgl�du na 

wyst�pienie nadmiarowych warto�ci konduktancji doziemnych +
0G  oraz −

0G . 

 

18.5.2 Układ całkuj�cy 

Schemat układu realizuj�cego operacj� całkowania z wykorzystaniem wzmacniacza 

operacyjnego jest przedstawiony na rys. 18.10.  

 

 
Rys. 18.10. Schemat układu całkuj�cego 

 

Przyjmuj�c wzmacniacz jako idealny i wykorzystuj�c fakt, �e wzmacniacz nie pobiera pr�du 

a jego napi�cie ró�nicowe jest równe zeru otrzymuje si� nast�puj�ce równania opisuj�ce 

układ 

 

 RIU =1  (18.26) 
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U
1

2 −=  (18.27) 

 

Z przekształcenia tych równa� wynika wzór na transmitancj� napi�ciow� 

 

 
sRCU
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sT

1
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2 −==  (18.28) 

 

Z porównania wzoru z zale�no�ci� definicyjn� układu całkuj�cego sksT /)( =  wynika, �e 

obwód z rys. 18.10 realizuje człon całkuj�cy ze współczynnikiem 
RC

k
1−= . Warto�� 

współczynnika k jest ujemna.  

 

18.5.3 Układ ró�niczkuj�cy 

Schemat układu realizuj�cego operacj� ró�niczkowania o transmitacji kssT =)(  z 

wykorzystaniem wzmacniacza operacyjnego jest przedstawiony na rys. 18.11. 

 

 
Rys. 18.11. Schemat układu ró�niczkuj�cego 

 

Podobnie jak w przypadku poprzednim przyjmujemy wzmacniacz jako idealny. 

Uwzgl�dniaj�c to otrzymuje si� nast�puj�ce równania opisuj�ce układ. 

 

 I
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U
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1 =  (18.29) 

 RIU −=2  (18.30) 
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Z przekształcenia tych równa� wynika wzór na transmitancj� napi�ciow� układu 

 

 sRC
U
U

sT −==
1

2)(  (18.31) 

 

Z porównania transmitacji z zale�no�ci� definicyjn� kssT =)(  wynika, �e obwód z rys. 18.11 

realizuje człon ró�niczkuj�cy ze współczynnikiem RCk −= . Warto�� współczynnika jest 

ustalana poprzez dobór rezystancji i pojemno�ci układu. 

 

18.5.4 Układ przesuwnika fazowego 

Schemat układu przesuwnika fazowego przedstawiony jest na rys. 18.12. 

 

 
Rys. 18.12. Schemat przesuwnika fazowego 

 

Po uwzgl�dnieniu idealno�ci wzmacniacza otrzymuje si� nast�puj�ce równania opisuj�ce 

obwód 
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Z pierwszego i drugiego równania wynika 
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Po podstawieniu tych wielko�ci do wzoru trzeciego opisuj�cego napi�cie wyj�ciowe 

otrzymuje si� 
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Transmitancja napi�ciowa układu wynikaj�ca z powy�szego wzoru jest wi�c nast�puj�ca 
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Z porównania tego wyniku z ogólna postaci� transmitancji przesuwnika fazowego  

 

 
as
as

sT
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+−=)(  (18.39) 

 

wynika, �e układ z rys. 18.12 realizuje przesuwnik fazowy z warto�ci� parametru a okre�lon� 

wyra�eniem 

 

 RCa /1=  (18.40) 

 

Steruj�c warto�ci� rezystancji R lub pojemno�ci� C mo�emy zatem kształtowa� 

charakterystyk� fazow� przesuwnika i k�t przesuni�cia mi�dzy napi�ciem wej�ciowym i 

wyj�ciowym. 
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18.5.5 Konwerter ujemno-impedancyjny (NIC) 

Schemat obwodu przedstawiaj�cego realizacj� konwertera ujemno-impedancyjnego pr�du 

przedstawiony jest na rys. 18.13.  

 

 
Rys. 18.13. Schemat układu INIC 

 

Po uwzgl�dnieniu idealno�ci wzmacniacza operacyjnego z równa� Kirchhoffa wynikaj� 

nast�puj�ce zwi�zki 

 

 21 UU =  (18.41) 

 2211 IRIR =  (18.42) 

 

Mo�na je zapisa� w formie równania ła�cuchowego czwórnika 
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odpowiadaj�cego dokładnie opisowi konwertera ujemno-impedancyjnego pr�du ze stał� 

konwersji  
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Ustalenie warto�ci tej stałej odbywa si� poprzez odpowiedni dobór rezystancji wyst�puj�cych 

w układzie. 

 

18.5.6 �yrator 

�yrator jest wyj�tkowo wa�nym elementem obwodu, stosowanym powszechnie w 

elektronice. Spo�ród wielu istniej�cych realizacji obwodowych poka�emy jedn�, łatw� w 

praktycznej implementacji stosuj�c� wzmacniacze sumacyjne napi�ciowe o sko�czonych 

wzmocnieniach równych 1± . Schemat obwodowy �yratora przedstawia rys. 18.14. 

 

 
Rys. 18.14. Układ realizacji �yratora wykorzystuj�cy wzmacniacze sumacyjne 

 

Przy zało�eniu idealno�ci wzmacniaczy (impedancja wej�ciowa niesko�czona, impedancja 

wyj�ciowa zerowa) pr�dy wej�ciowy i wyj�ciowy układu opisuj� relacje 

 

 ( )[ ] 22111 UGUUUGI zz =−−=  (18.45) 

 ( )[ ] 11222 UGUUUGI zz −=+−=  (18.46) 

 

Równanie admitancyjne układu dane jest wi�c w postaci 
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z której wynika, �e konduktancja �yracji jest równa konduktancji Gz wyst�puj�cej w układzie. 
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18.6 Analiza układów ze wzmacniaczami operacyjnymi metod� grafów przepływu 

sygnałów Masona 

 

Efektywna analiza układów elektronicznych zawieraj�cych wzmacniacze operacyjne przy 

bezpo�rednim u�yciu praw Kirchhoffa jest mo�liwa jedynie dla obwodów zawieraj�cych mał� 

liczb� wzmacniaczy. Przy analizie du�ych układów o wielu wzmacniaczach operacyjnych 

najbardziej efektywne pozostaje zastosowanie metody grafów przepływowych Masona.  

 

18.6.1 Podstawowe poj�cia grafów Masona 

Graf Masona jest graficznym odzwierciedleniem układu równa� liniowych i odpowiada 

przepływowi sygnałów w obwodzie elektrycznym. Wyró�ni� w nim mo�na w�zły, 

odpowiadaj�ce zmiennym wyst�puj�cym w równaniu oraz gał�zie opisane wagami, 

odpowiadaj�ce współczynnikom równa�. Przykładowo, je�li dany jest układ równa� 

liniowych  
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 (18.48) 

  

to w pierwszej kolejno�ci nale�y go przekształci� do postaci 
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Graf Masona odpowiadaj�cy powy�szemu układowi równa� przedstawiony jest na rys. 18.15 

 

 
Rys. 18.15. Graf Masona odpowiadaj�cy układowi równa� liniowych (18.49) 



 428

 

Ka�demu w�złowi grafu odpowiada zmienna xi (i = 1, 2 w przykładzie) lub wymuszenie 

jednostkowe. W�zły poł�czone s� gał�ziami, którym przyporz�dkowane s� współczynniki 

przy poszczególnych zmiennych układu równa� (18.49). Współczynniki te, zwane 

wzmocnieniami (transmitancjami) gał�zi stanowi� wagi, z jakimi sumowane s� zmienne w 

poszczególnych w�złach. Sygnał w�zła (zmienna xi) jest równy sumie wagowej sygnałów 

dopływaj�cych do danego w�zła. W grafie mo�na wyró�ni� p�tle składaj�ce si� z gał�zi 

jednakowo skierowanych tworz�cych zamkni�ty cykl (bez powtórze� gał�zi i w�złów). W 

szczególno�ci p�tl� mo�e tworzy� jedna gał�� wychodz�ca i wchodz�ca do tego samego 

w�zła. Transmitancja p�tli jest równa iloczynowi wzmocnie� (transmitancji) gał�zi 

tworz�cych p�tl�. 

 Jedn� z najwa�niejszych zalet grafów Masona jest prosta reguła topologiczna 

okre�laj�ca dowolny sygnał w grafie. Reguła ta dotyczy transmitancji definiowanej jako 

stosunek sygnału dowolnego w�zła grafu uznanego za wyj�ciowy do sygnału w�zła 

�ródłowego, czyli w�zła z którego sygnały jedynie odpływaj� (w przykładzie takim w�złem 

jest w�zeł o sygnale równym jeden). Oznaczmy t� transmitancj� przez 
we

wy

x

x
T = . Zgodnie z 

reguł� Masona transmitancj� t� okre�la wzór 
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W powy�szym wyra�eniu 	 oznacza wyznacznik główny grafu okre�lany zgodnie ze wzorem 
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We wzorze tym pierwsza suma oznacza sumowanie po wszystkich transmitancjach p�tli Gi 

istniej�cych w grafie. Suma druga dotyczy iloczynów transmitancji p�tli rozł�cznych branych 

po dwie naraz. Suma trzecia dotyczy iloczynów transmitancji p�tli rozł�cznych branych po 

trzy. Rozwini�cie wyznacznika prowadzi si� a� do wyczerpania wszystkich mo�liwych 

kombinacji wielokrotnych p�tli rozł�cznych, bior�c sumy na przemian ze znakiem plus i 

minus, jak to pokazano we wzorze (18.51). 
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Wyra�enie � ∆
k

kkT  w liczniku transmitancji dotyczy sumowania po wszystkich 

drogach prowadz�cych od w�zła �ródłowego (wej�ciowego) do w�zła wyj�ciowego, przy 

czym Tk oznacza iloczyn wzmocnie� gał�zi prowadz�cych od �ródła do w�zła wyj�ciowego a 

	k jest wyznacznikiem 	 okre�lonym dla tej cz��ci grafu (podgrafu), która jest rozł�czna z k-

t� drog� Tk (przy braku p�tli w podgrafie wyznacznik 	 jest to�samo�ciowo równy 1). 

Z rozwi�zania grafu z rys. 18.15 przy pomocy reguły Masona otrzymuje si� 

nast�puj�ce transmitancje (w�zeł �ródłowy jest skojarzony z sygnałem jednostkowym): 
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Rozwi�zania na warto�ci zmiennych x1 i x2 układu równa� (18.48) uzyskano bezpo�rednio na 

podstawie reguły topologicznej Masona zastosowanej wzgl�dem grafu z rys. 18.15. W 

identyczny sposób mo�na wyznaczy� rozwi�zanie dowolnie zło�onego systemu opisanego 

poprzez graf Masona.  

 

Jako nast�pny przykład rozpatrzmy graf przepływu sygnałów przedstawiony na rys. 18.16, o 

wzmocnieniach gał�zi opisanych literami a, b, c, … l.  

 

 
Rys. 18.16. Graf przepływu sygnałów do przykładu 
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Stosuj�c reguł� Masona wyznaczymy transmitancj� 
wex
x

T 5= . Bezpo�rednio na podstawie 

analizy struktury grafu otrzymuje si� 

 

( ) ( ) cdhlhlcdlcdhlhcd
lbfjlbcejladfjhadgkhbgklaej

T
−+++++−

−+−+−+−+−+−=
1

)1()1()1()1()1()1(
 

 

W transmitancji tej wyra�enie mianownika (wyznacznik główny 	) zawiera trzy składniki 

zwi�zane z p�tlami (suma wzmocnie� wszystkich p�tli, iloczynów wzmocnie� p�tli 

rozł�cznych branych po dwa i p�tli rozł�cznych branych po trzy). 

 

18.6.2 Zastosowanie grafu Masona w analizie obwodów ze wzmacniaczami  

Graf Masona mo�na narysowa� dla ka�dego obwodu, w szczególno�ci obwodu zawieraj�cego 

wzmacniacze napi�ciowe, bez konieczno�ci wypisywania układu równa� opisuj�cych ten 

obwód. Aby stworzy� reguły automatycznego tworzenia grafu rozpatrzmy wybrane rodzaje 

poł�cze� elementów składowych obwodu. Na rys. 18.17a przedstawiono typowe poł�czenie 

elementów pasywnych w w��le k. 

 

a)   b)  

Rys. 18.17. Typowe poł�czenie elementów pasywnych w w��le (a)  

oraz graf Masona odpowiadaj�cy takiemu poł�czeniu (b) 

 

Z prawa pr�dowego Kirchhoffa dla tego w�zła wynika nast�puj�ce równanie 
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 ( ) ( ) ( ) kkknnkk VYVVYVVYVVY 02211 ... =−++−+−  (18.52) 

 

Po prostych przekształceniach otrzymuje si� 

 

 n
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n

sksk
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Y
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1  (18.53) 

 

gdzie Ysk jest sum� admitancji wł�czonych w w��le k-tym, �
=

+=
n

i
iksk YYY

1
0 . Powy�szemu 

równaniu odpowiada graf Masona przedstawiony na rys. 18.17b. Graf ten ma struktur� 

podobn� do struktury obwodu, przy czym ka�demu elementowi Yi (i = 1, 2, ..., n) odpowiada 

wzmocnienie gał�zi grafu równe 
sk

i

Y
Y

. Ka�da gał�� jest skierowana do w�zła Vk, którego 

reprezentacj� graficzn� w danej chwili tworzymy. Bior�c pod uwag� powy�sze, graf 

odpowiadaj�cy w�złowi z rys. 18.17a mo�e by� utworzony automatycznie bez potrzeby 

pisania równa� Kirchhoffa. 

 W przypadku obwodu zawieraj�cego wzmacniacze napi�ciowe konieczne staje si� 

podanie reguły tworzenia grafu odpowiadaj�cego wzmacniaczowi. Na rys. 18.18a 

przedstawiony jest wzmacniacz napi�ciowy o dwu wej�ciach (inwersyjnym i nieinwersyjnym) 

o wzmocnieniu A w obu torach (w szczególno�ci wzmocnienie A mo�e d��y� do 

niesko�czono�ci, jak to ma miejsce w idealnych wzmacniaczach operacyjnych).  

 

  
a)      b) 

Rys. 18.18. Model wzmacniacza napi�ciowego o dwu wej�ciach (a) i jego graf Masona (b) 

 

Napi�cie wyj�ciowe Vo wzmacniacza opisuje wyra�enie 

 

21 AVAVVo −=  
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któremu mo�na przyporz�dkowa� bezpo�rednio graf Masona przedstawiony na rys. 18.18b. 

 Buduj�c graf dla zło�onego obwodu elektrycznego nale�y wyró�ni� w nim w�zły i 

zwi�zane z nimi potencjały w�złowe. W�złem �ródłowym (niezale�nym) grafu jest �ródło 

wymuszaj�ce istniej�ce w obwodzie, wzgl�dem którego definiowana jest transmitancja T. Z 

tego w�zła sygnały mog� jedynie odpływa�. Budow� grafu rozpoczynamy od uło�enia 

wszystkich w�złów grafu w układzie podobnym do ich rozmieszczenia w obwodzie. 

Nast�pnie budujemy oddzielnie reprezentacj� graficzn� dla ka�dego w�zła reprezentuj�cego 

zmienn� zale�n� korzystaj�c b�d� z reguły dotycz�cej w�zła z elementami pasywnymi (rys. 

8.17) b�d� w�zła odpowiadaj�cego wzmacniaczowi (rys. 18.18). Je�li w�zeł poło�ony jest na 

wyj�ciu wzmacniacza jego reprezentacja graficzna odpowiada wzmacniaczowi, w 

przeciwnym wypadku w�złowi „pasywnemu”.  

18.6.3 Przykłady zastosowania grafów w analizie obwodów 

 

Przykład 18.1 

Sposób automatycznego tworzenia grafu dla obwodu elektrycznego przedstawimy na 

przykładzie obwodu z rys. 18.19. 

 

 
Rys. 18.19. Przykład obwodu ze wzmacniaczem operacyjnym 

 

Obwód zawiera trzy w�zły zale�ne (V1, V2 i Uwy), w zwi�zku z tym nale�y zbudowa� 

reprezentacj� graficzn� dla ka�dego z nich (V1 i V2 – w�zły pasywne, Uwy – w�zeł na wyj�ciu 

wzmacniacza). Na rys. 18.20 przedstawiono graf przepływu sygnałów odpowiadaj�cy 

obwodowi z rys. 18.19.  
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Rys. 18.20. Graf przepływu sygnałów odpowiadaj�cy obwodowi z rys. 18.19 

 

Z reguły Masona zastosowanej do tego grafu wynika nast�puj�ce rozwi�zanie 
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gdzie 43211 YYYYYs +++=  , 532 YYYs += . Po uproszczeniu wzoru otrzymuje si� ostateczn� 

posta� rozwi�zania 
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Przy potraktowaniu wzmacniacza jako idealnego o niesko�czonym wzmocnieniu ( ∞→A ) 

wzór powy�szy upraszcza si� do postaci 

 

( ) 4343215

31

YYYYYYY
YY

T
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−
=∞  

 

stanowi�cej cz�sto punkt wyj�ciowy przy projektowaniu filtrów elektrycznych. 
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Przykład 18.2 

Jako przykład rozpatrzmy obwód elektryczny RC z pi�cioma wzmacniaczami napi�ciowymi 

o sko�czonych wzmocnieniach przedstawiony na rys. 18.21. Nale�y wyznaczy� transmitancj� 

napi�ciow� T=Uwy/Uwe tego obwodu stosuj�c metod� grafów przepływowych Masona. 

 

 
Rys. 18.21. Obwód elektryczny do przykładu 18.2 

 

Graf przepływu sygnałów odpowiadaj�cy temu obwodowi, utworzony w sposób 

automatyczny zgodnie z regułami podanymi w punkcie poprzednim, przedstawiony jest na 

rys. 18.22.  

 

 
Rys. 18.22. Graf przepływu sygnałów dla obwodu z rys. 18.21 
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Po zastosowaniu reguły Masona otrzymuje si� nast�puj�c� posta� transmitancji napi�ciowej T 

obwodu. 
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gdzie 43214 YYYYYs +++= , 7655 YYYYs ++= , 64 YYYswy += . Po uproszczeniu wzoru 

otrzymuje si� rozwi�zanie zadania w postaci 
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Podstawiaj�c konkretne warto�ci na poszczególne admitancje obwodu otrzymuje si� 

transmitancj� operatorow� obwodu T=T(s). 

 

Przykład 18.3 

Jako nast�pny przykład rozpatrzymy obwód RC z trzema wzmacniaczami operacyjnymi o 

wzmocnieniach A, przedstawiony na rys. 18.23, realizuj�cymi funkcj� transmitancji 

napi�ciowej 
we

wy

U

U
sT =)( . 

 

 
Rys. 18.23. Struktura obwodu RC z trzema wzmacniaczami operacyjnymi 

 



 436

Graf Masona odpowiadaj�cy temu obwodowi przedstawiony jest na rys. 18.24. Zawiera on 

pi�� p�tli, w�ród których wyst�puj� p�tle rozł�czne po dwie i po trzy. 

 

 
Rys. 18.24. Graf Masona odpowiadaj�cy obwodowi z rys. 18.23 

 

Stosuj�c reguł� Masona otrzymuje si� nast�puj�c� posta� transmitancji napi�ciowej. 
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gdzie mianownik transmitancji M(s) dany jest wzorem 
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W praktyce przyjmuje si� zwykle wzmacniacz operacyjny jako element idealny o 

wzmocnieniu ∞→A . Przy takim zało�eniu transmitancja upraszcza si� do postaci funkcji 

bikwadratowej typu dolnoprzepustowego 
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Zadania sprawdzaj�ce 

Zadanie 18.1  

Okre�li� impedancj� wej�ciow� układu przedstawionego na rys. 18.25. 

 

 
Rys. 18.25. Schemat układu do zadania 18.1. 

 

 

Rozwi�zanie 

Układ �yratora obci��onego pojemno�ci� realizuje sob� indukcyjno�� L, przy czym CRL z
2= . 

Schemat układu po zast�pieniu �yratora i pojemno�ci jedn� indukcyjno�ci� L przedstawiony 

jest na rys. 18.26. 

 

 
Rys. 18.26. Schemat układu zast�pczego do rys. 18.15 
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Jest to układ poł�czenia równoległego rezystancji R i impedancji indukcyjnej ZL=sL, wobec 

czego impedancja wej�ciowa całego układu jest równa 
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Zadanie 18.2 

Wyznaczy� macierz ła�cuchow� zast�pcz� układu przedstawionego na rys. 18.27 

 

 
Rys. 18.27. Układ poł�cze� czwórników do zadania 18.2 

 

Rozwi�zanie 

Układ przedstawiony na rysunku mo�e by� potraktowany jako poł�czenie ła�cuchowe trzech 

czwórników, jak to przedstawiono na rys. 18.27. Dwa czwórniki s� �yratorami o macierzy 

ła�cuchowej 
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Trzeci czwórnik stanowi kondensator C. Macierz ła�cuchowa tego czwórnika wyra�a si� 

wzorem 
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Macierz ła�cuchowa układu 3 czwórników poł�czonych kaskadowa wyra�a si� wzorem 
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Łatwo mo�na pokaza�, �e wynik ko�cowy odpowiada czwórnikowi o strukturze 

przedstawionej na rys. 18.28, z indukcyjno�ci� nieuziemion� równ� 2
zCRL = . 

 

 
Rys. 18.28. Schemat zast�pczy poł�czenia czwórników z rys. 18.17 

 

 

Zadanie 18.3 

Zrealizowa� układ sumatora trójwej�ciowego z wykorzystaniem wzmacniacza operacyjnego o 

wzmocnieniach równych 11 −=k , 52 −=k , 23 =k . 

 

Rozwi�zanie 

Wykorzystamy w realizacji schemat układu z rys. 18.9. Przyjmiemy arbitralnie warto�� 

rezystancji Rf sprz��enia zwrotnego równ� Rf = 10kΩ, co odpowiada konduktancji 

SG f
410−= . Dla uzyskania wzmocnienia k1 = -1 nale�y przyj�� 4

1 10−− =G S, co odpowiada 

101 =−R kΩ. Realizacja k2 = -5 wymaga zastosowania 4
2 105 −− ⋅=G S ( 22 =−R kΩ). Uzyskanie 

k3 = 2 jest mo�liwe przy wyborze 4
3 102 −+ ⋅=G S ( 53 =+R kΩ). Warunek zrównowa�enia 

konduktancji w obu w�złach wej�ciowych wzmacniacza wymaga, aby 

 
++−−− +=+++ 30210 GGGGGG f  

 

Podstawiaj�c odpowiednie warto�ci otrzymuje si� nast�puj�c� posta� warunku 

zrównowa�enia konduktancji  
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4
0

4
0 102107 −+−− ⋅+=⋅+ GG  

 

Przyjmuj�c 00 =−G  (brak rezystora) oraz 4
0 105 −+ ⋅=G S ( 20 =+R kΩ) otrzymuje si� schemat 

układu sumatora przedstawiony na rys. 18.29. 

 

 
Rys. 18.29. Schemat sumatora trójwej�ciowego do zadania 18.3 
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